JPH03249954A - Adjusting and controlling system for quantity of light in husking ratio sensor - Google Patents

Adjusting and controlling system for quantity of light in husking ratio sensor

Info

Publication number
JPH03249954A
JPH03249954A JP5000590A JP5000590A JPH03249954A JP H03249954 A JPH03249954 A JP H03249954A JP 5000590 A JP5000590 A JP 5000590A JP 5000590 A JP5000590 A JP 5000590A JP H03249954 A JPH03249954 A JP H03249954A
Authority
JP
Japan
Prior art keywords
light
rice
light amount
sensor
removal rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5000590A
Other languages
Japanese (ja)
Inventor
Takashi Nagai
隆 永井
Shinji Ninomiya
伸治 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP5000590A priority Critical patent/JPH03249954A/en
Publication of JPH03249954A publication Critical patent/JPH03249954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Adjustment And Processing Of Grains (AREA)

Abstract

PURPOSE:To adjust the quantity of light in a short time by setting the variable quantity of light per one time which is suitable to a grade, adjusting and controlling the quantity of light in the variable quantity of light while changing the quantity of light in the light emitting element for a husking ratio sensor. CONSTITUTION:The quantity of light in a husking ratio sensor 1 is adjusted at the proper quantity of light by the signal of sampling granules of husked rice 3 to be passed. The signal of sampling granules is partitioned as signal voltage. Frequencies per blocks of the respective partitions are calculated and shown in the frequency distribution. Voltage of the means block value of unpolished rice in the distribution 4 of the quantity of transmitted liquid which is the maximum frequency is considered as the mean signal voltage of unpolished rice. The quantity of light in the sensor is adjusted by the controlling device 18 for the quantity of light in a husking ratio controlling device 10 and is output so that this voltage of unpolished rice is regulated within proper range L. When the quantity of light in the sensor is made large, the distribution 4 of the quantity of transmitted light is transferred to the low signal voltage side. When the quantity of light in the sensor is made small, the distribution is transferred to the high signal voltage side. Thereby the amount of light is efficiently adjusted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、脱■率センサの光量調節制御方式に関し、
籾摺機の脱■率センサに用いる。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a light amount adjustment control method for a de-efficiency sensor.
Used as a dehulling rate sensor for rice hullers.

(従来の技術、及び発明が解決しようとする課題)発光
素子から受光素子へ投光する投光域に脱■された玄米と
未脱営の籾米との混合せる摺出米を割込通過させながら
、この投光による透過光量によって、玄米と籾米とを識
別しながら脱■率を検出する脱■率センサにあっては、
発光素子による投光量が十分であることを要し、このた
め、この光量ll1節を適正に行っておく必要がある。
(Prior art and the problem to be solved by the invention) Slurred rice, which is a mixture of demolded brown rice and unhulled rice, is passed through the light emitting area where light is emitted from the light emitting element to the light receiving element. However, in the case of a de-dusting rate sensor that detects the de-dusting rate while distinguishing between brown rice and unhulled rice based on the amount of light transmitted by this projection,
It is necessary that the amount of light emitted by the light emitting element is sufficient, and therefore, it is necessary to properly adjust the amount of light.

しかし、この光量調節制御においては、うるち米ともち
米のように同じ玄米相互、又は籾米相互においても透過
率が相異し、もち米の方が透過率が低いものであるから
、同一の変更光量のもとに光量調節を行う形態では、う
るち米よりもち米の方が光量調節制御に長時間を要する
However, in this light amount adjustment control, the transmittance is different even for the same brown rice or unhulled rice, such as non-glutinous rice and sticky rice, and the transmittance of sticky rice is lower. In the form of controlling the light amount based on the method, it takes a longer time to control the light amount for glutinous rice than for non-glutinous rice.

この発明は、このようなもち米のように透過率の低い場
合でも、短時間に光量調節を完了させようとするもので
ある。
The present invention aims to complete the light amount adjustment in a short time even when the transmittance is low, such as with glutinous rice.

(課題を解決するための手段) この発明は、脱■率センサ1のセンサ投光域に籾摺装[
2による摺出米3を割込通過させながら、この脱■率セ
ンサ1による透過光量分布4によって、籾Mと玄米Gと
の境界であるしきい値Kを求めて脱■率を算出し、この
脱■率によって一対の脱■ロール5,6間のロール間隙
を調節制御する脱活率制御において1品種等に適応した
一回当りの変更光量を設定して、この変更光量のもとに
、脱■率センサ1の発光素子16の光量を変更しながら
、玄米G相当の摺出米3の受光レベルが一定の光量調節
回数範HLに入るように自動的に光量調節制御すること
を特徴とする脱■率センサの光量調節制御方式の構成と
する。
(Means for Solving the Problems) The present invention provides a sensor light emitting area of the dehulling rate sensor 1 with a rice husk [
2, while allowing the rice 3 to pass through the grain, the threshold value K, which is the boundary between the paddy M and the brown rice G, is determined based on the transmitted light amount distribution 4 by the removal rate sensor 1, and the removal rate is calculated. In the deactivation rate control that adjusts and controls the roll gap between the pair of deactivation rolls 5 and 6 according to this deactivation rate, a changing light amount per one time that is adapted to one type of product is set, and based on this changing light amount. , while changing the light intensity of the light emitting element 16 of the removal rate sensor 1, the light intensity is automatically controlled so that the light reception level of the smooth rice 3 equivalent to brown rice G falls within a certain light intensity adjustment frequency range HL. The light amount adjustment control method of the depletion rate sensor is configured as follows.

(作用) 一対の脱■ロール5,6間の間隙部で摺出される摺出米
3は、脱■率検出のためのサンプリング粒として、一部
脱■率センサ1の投光域に供給される。この脱■率セン
サ1の投光域に割込まれる摺出米3は一粒毎透過光量が
検出され、この透過光量分布4における籾Mと玄米Gと
の境界であるしきい値Kが演算されて、脱■率が算出さ
れる。
(Function) Part of the removed rice 3 that is pushed out in the gap between the pair of removal rolls 5 and 6 is supplied to the light emitting area of the removal rate sensor 1 as sampling grains for detecting the removal rate. Ru. The amount of transmitted light for each grain of the polished rice 3 that falls into the light projection area of the removal rate sensor 1 is detected, and the threshold value K, which is the boundary between paddy M and brown rice G in this transmitted light amount distribution 4, is calculated. Then, the withdrawal rate is calculated.

この脱■率が予め設定する基準脱■率になるように、脱
■ロール5,6間のロール間隙調節制御が行われる。
Control is performed to adjust the gap between the rolls 5 and 6 so that this removal rate becomes a preset standard removal rate.

このような脱■率センサ1によるサンプリング粒の検出
において9発光素子16から受光素子へ投光される光量
の光量調節制御が行われるが、この光量調節制御は、透
過光量分布4が形成されると、この透過光量分布4の玄
米G相当部分の受光レベルが一定の光量調節範囲りに入
るように、発光素子]6の光量が順次m節される。
In such detection of sampled grains by the removal rate sensor 1, a light amount adjustment control of the amount of light emitted from the nine light emitting elements 16 to the light receiving element is performed. Then, the light intensity of the light emitting element]6 is sequentially adjusted m so that the light reception level of the portion corresponding to brown rice G in the transmitted light intensity distribution 4 falls within a certain light intensity adjustment range.

このとき、発光素子16に対する出力電圧等を変更する
ことによって光量を変更するが、調節開始前は、光量が
最低の位置にあるように一定の基準位置電圧に設定され
ていて、しかも、例えばサンプリング粒がうるち米かも
ち米かによって、予め設定した一回当りの変更光量が選
択されて、この−回当りの変更光量のもとに出発の基準
位置電圧から順次高くして複数回の段階に調節し、透過
光量分布4の玄米G相当部分の受光レベルが光量調節設
定範囲りに入るように制御される。うるち米に対しても
ち米では一回当りの変更光量は大きく設定しているため
に、光量変更回数はうるち米とぼり同じ調節制御回数乃
至時間で光量調節設定範囲りに入る。
At this time, the light amount is changed by changing the output voltage etc. to the light emitting element 16, but before the adjustment starts, the light amount is set to a constant reference position voltage so that it is at the lowest position, and furthermore, for example, sampling Depending on whether the grains are non-glutinous rice or glutinous rice, a preset amount of light to be changed per time is selected, and based on this amount of light to be changed per time, the voltage is increased sequentially from the starting reference position voltage and adjusted in multiple steps. However, the light reception level of the portion corresponding to brown rice G in the transmitted light amount distribution 4 is controlled so as to fall within the light amount adjustment setting range. Since the light intensity per change for glutinous rice is set larger than that for non-glutinous rice, the number of light intensity changes falls within the light intensity adjustment setting range with the same number of adjustment control times or time for non-glutinous rice.

(発明の効果) このように脱■率センサ1の発光素子16に対する出力
が、光量調節制御装置18によって、品種等に適応した
一回当りの変更光量に調節制御されるものであるから、
うるち米ともち米との相異のように透過光量を異にする
摺出米3の場合でも。
(Effects of the Invention) In this way, the output of the removal rate sensor 1 to the light emitting element 16 is adjusted and controlled by the light amount adjustment control device 18 to a changed light amount per time that is adapted to the product type, etc.
Even in the case of suride rice 3, which has a different amount of transmitted light, like the difference between non-glutinous rice and sticky rice.

これらに応じた変更光量のもとに光量調節を行うために
、光量調節開始から終了時までの間の、光量調節回数、
乃至時間等をはシ一定にすることができ、できるだけ短
時間に、能率良く行うことができる。
In order to adjust the light amount based on the changed light amount according to these, the number of times the light amount adjustment is performed from the start to the end of the light amount adjustment,
The time or time can be kept constant, and the process can be carried out efficiently and in as short a time as possible.

(実施例) なお1図例において、籾摺機は、第4図において1機体
の上部に1回転周速差を有する一対の脱■ロール5,6
からなる籾摺装置2.この籾摺装置2に籾を供給する籾
供給漏斗7、及び籾摺装置2で脱■された摺出米3を玄
米Gと籾Mとに選別する回転選別筒からなる選別装置8
等を有し、又、機体の下部には、該籾摺装W2による摺
出米を風選する風選装!9等を設けている。
(Example) In the example shown in Figure 1, the rice hulling machine has a pair of dehulling rolls 5 and 6 having a one-rotation circumferential speed difference at the top of one machine in Figure 4.
A rice hulling device consisting of 2. A sorting device 8 consisting of a paddy supply funnel 7 that supplies paddy to the hulling device 2, and a rotating sorting tube that sorts the crushed rice 3 removed by the hulling device 2 into brown rice G and paddy M.
In addition, at the bottom of the machine, there is a wind sorting device for wind-selecting the rice that has been removed by the rice huller W2. 9th grade is provided.

又、機体の一側には、籾摺制御を行う脱活率制御装置1
0を設けると共に、摺出米3の一部のサンプリング粒を
流下させながら、このサンプリング粒から脱■率を検出
する脱■率センサ1を設けている。11は摺出米揚穀機
で、籾摺装置12で摺出された摺出米や、選別装[8で
選別された戻り混合米等を受けて、この選別装置8へ揚
穀する構成である。12は、玄米揚穀機で、該選別装[
2下の玄米風選装置13で風選された玄米を受けて取出
す構成である。14は、排塵機で、各風選装f[13,
9で風選した籾殻や、塵埃等を吸引排出するものである
Also, on one side of the machine, there is a deactivation rate control device 1 that controls the hulling.
0 is provided, and a grain removal rate sensor 1 is provided which detects the removal rate from some of the sampled grains of the polished rice 3 while flowing down the sampled grains. Reference numeral 11 denotes a crushed rice grain lifting machine, which receives the crushed rice crushed by the hulling device 12, the returned mixed rice sorted by the sorting device [8], and sends the grain to the sorting device 8 for frying. be. 12 is a brown rice frying machine;
It is configured to receive and take out the brown rice that has been wind-selected by the brown rice wind-selecting device 13 below. 14 is a dust extractor, each wind sorting f[13,
This device sucks and discharges the rice husks, dust, etc. that were wind-selected in step 9.

第1図において、マイクロコンピュータCPUを有した
脱■率制御装置10は、脱■率センサ1からの入力を受
けて、脱活ロール5,6のロール間隙を調節する間隙制
御モータ15を出力制御する構成である。脱■率センサ
1は、発光素子16から受光素子17へ照射される発光
に、摺出米3のサンプリング粒を一粒毎横断通過させる
ことによって、このサンプリング粒を照射したときの受
光素子17の受ける透過光量を検出して、脱■率制御装
置110へ出力するものである。
In FIG. 1, a deactivation rate control device 10 having a microcomputer CPU receives input from a deactivation rate sensor 1 and controls output of a gap control motor 15 that adjusts the roll gap between deactivation rolls 5 and 6. The configuration is as follows. The removal rate sensor 1 allows the light emitted from the light emitting element 16 to the light receiving element 17 to pass through each sampling grain of the polished rice 3, thereby detecting the value of the light receiving element 17 when the sampled grains are irradiated. It detects the amount of transmitted light received and outputs it to the removal rate control device 110.

光量制御装w】−8は、脱■率制御装置10の一部とし
て設けられ1発光素子16の光量を自動調節制御する光
量調節出力の出力回路19を有し、又、受光素子17が
検出する一粒毎の透過光量を入力回路20、及び−粒毎
の信号を検出する粒信号検出回路21を設け、発光素子
16による光量が予め設定された基準電圧による光量調
節設定範囲り内に入るように自動的に調節制御される構
成である。又、品種設定スイッチ22は、もち米。
The light amount control device w]-8 is provided as a part of the removal rate control device 10 and has an output circuit 19 for automatically controlling the light amount of one light emitting element 16. An input circuit 20 inputs the amount of transmitted light for each grain, and a grain signal detection circuit 21 detects a signal for each grain, and the light amount from the light emitting element 16 falls within a light amount adjustment setting range based on a preset reference voltage. This is a configuration that is automatically adjusted and controlled. Also, the type setting switch 22 is sticky rice.

うるち米のように透過光量の異なる品種毎に光量調節の
一回毎の変更光量の出力電圧を異にして設定するもので
ある。籾摺作業開始時に、この品種設定スイッチ22を
品種に対応するように合せる。
The output voltage for changing the light amount each time the light amount is adjusted is set differently for each type of rice that has a different amount of transmitted light, such as non-glutinous rice. At the start of hulling work, the type setting switch 22 is set to correspond to the type.

例えば、うるち米ともち米では、もち米の方が発光素子
16に対する出力回路】9からの出力電圧は大きくなる
ように設定している。
For example, between non-glutinous rice and glutinous rice, the output voltage from the output circuit 9 to the light emitting element 16 is set to be higher for glutinous rice.

脱■率制御装!10における脱■率の演算処理制御につ
いて、第3図は、脱■率センサ1によって検出される所
定粒数のサンプリング粒の一粒毎の透過光量の透過率を
度数分布としてグラフィック化した透過率粒数分布曲線
(以下透過光量分布と云う)4の一般的な形態を示すも
のである。この脱■率制御装置10における脱■率の算
出処理は、 (1)このような透過光量分布4のグラフィック処理制
御を行う。
Escape rate control device! Regarding the arithmetic processing control of the removal rate in 10, FIG. This figure shows a general form of a particle number distribution curve (hereinafter referred to as transmitted light amount distribution) 4. The calculation process of the breakout rate in the breakout rate control device 10 is as follows: (1) Graphic processing control of the transmitted light amount distribution 4 is performed.

(2)この透過光量分布4を作成しながら、品種等に応
じた一回当りの変更光量のもとに、玄米G相当の摺出米
3の受光レベルを、一定の光量l1節設定範囲りに入る
ように光量調節制御を行う。
(2) While creating this transmitted light intensity distribution 4, the light reception level of the smooth rice 3 equivalent to brown rice G is determined within the fixed light intensity l1 setting range based on the light intensity that is changed each time according to the variety etc. Perform light intensity adjustment control so that the

(3)この透過光量分布4から玄米平均ブロック値KG
と籾平均ブロック値KMとを算出処理制御する。
(3) From this transmitted light amount distribution 4, the brown rice average block value KG
and the paddy average block value KM are calculated and controlled.

(4)透過光量分布4における玄米Gと、籾Mとの境界
位置である境界ブロック値をしきい値にとして算出処理
制御する。
(4) The calculation process is controlled using the boundary block value, which is the boundary position between brown rice G and paddy M in the transmitted light amount distribution 4, as a threshold value.

(5)このしきい値Kを境として、玄米G側のサンプリ
ング粒数と、籾M側のサンプリング粒数とによって脱程
率を算出処理制御する。
(5) With this threshold value K as a boundary, the shedding rate is calculated and controlled based on the number of sampled grains on the brown rice G side and the number of sampled grains on the paddy M side.

の各行程によって行われる このしきい値算出制御を更に詳細に説明すると。performed by each step of This threshold value calculation control will be explained in more detail.

透過光量の透過率は、第3図に示すように最大から最小
透過率までの間を1がらNまでの各ブロックにN区分し
ている。そこで−回のサンプリング粒の粒数を1例えば
2000粒、脱■率センサ1によって検出する時間を2
0秒、ブロック数Nを64ブロツクとしている。又、全
ブロック数N間の各平均透過光量に相当する出方電圧を
一粒信号電圧として、O〜l0V(ボルト)として出力
するように設定している。
As shown in FIG. 3, the transmittance of the amount of transmitted light is divided into N blocks from 1 to N from the maximum transmittance to the minimum transmittance. Therefore, the number of grains sampled each time is 1, for example, 2000 grains, and the time for detection by the removal rate sensor 1 is 2.
0 seconds, and the number of blocks N is 64 blocks. Further, the output voltage corresponding to each average amount of transmitted light among the total number of blocks N is set to be output as a signal voltage of O to 10V (volts).

玄米平均ブロック値KOは、玄米の平均値であって、こ
の算出は、玄米粒数が第3図のピーク値のときの粒数を
基準として、この基準粒数がら一定値(Nえば25粒)
の範囲内にある粒数のブロック光量積算の加算値を、粒
数の加算値で割った値とする。即ち、玄米ピーク値部分
の一粒当りの平均透過光量を求める。この場合、ピーク
粒数25粒以上のブロックが例えば1oブロック未満の
ときは、上位10ブロツクとして上記と同様に計算を行
うように制御する。
The brown rice average block value KO is the average value of brown rice, and this calculation is based on the number of grains when the number of brown rice grains is at the peak value in Figure 3, and this reference grain number is set to a constant value (for example, 25 grains). )
The value obtained by dividing the sum of block light quantity integration for the number of grains within the range by the sum of the number of grains. That is, the average amount of transmitted light per grain of brown rice at its peak value is determined. In this case, when the number of blocks with a peak grain count of 25 or more is less than 10 blocks, for example, the calculation is performed in the same manner as above as the top 10 blocks.

籾平均ブロック値KMは、籾の平均値であって。The paddy average block value KM is the average value of paddy.

この算出は、総サンプリング粒数(2000粒)の籾側
から例えば5粒をカットしたブロックを最大ブロックと
し、この籾側から一部ブロック(例えば10ブロツク)
の光量積算の加算値を粒数の加算値で割った値とする。
In this calculation, the maximum block is a block in which, for example, 5 grains are cut from the paddy side of the total number of sampled grains (2000 grains), and some blocks (for example, 10 blocks) are cut from this paddy side.
The value obtained by dividing the added value of the integrated light amount by the added value of the number of grains.

即ち、籾Mビーク値部分の一粒当りの平均透過光量を求
める。
That is, the average amount of transmitted light per grain in the M peak value portion of the paddy is determined.

このようにして、玄米平均ブロック値KGと籾平均ブロ
ック値KMとが求められると、これら各平均ブロック値
KG、KMによって、境界ブロック値であるしきい値K
を次式によって算出する。
In this way, when the brown rice average block value KG and the paddy average block value KM are determined, the threshold value K, which is the boundary block value, is determined by each of these average block values KG and KM.
is calculated using the following formula.

K= (KM−KG)Xk+KO k:定数 この定数kについては、籾平均ブロック値KMの算出を
行った上位10ブロツクの粒数により、次のように設定
する。
K= (KM-KG)

100 粒未満  ・・・k=0.55100〜149
粒 ・・・k=0.47150粒以上   ・・・k=
0.40摺呂米サンプリング粒の分布により、脱■率を
算出するとき、脱■率センサ1の発光の透過率に対する
分布は、玄米Gと籾Mが完全に分かれた分布形態ではな
く、両者が相重合した部分をしきい値に近くにもつ分布
となり、しきい値Kにより計算脱■率の精度が決まる。
Less than 100 grains...k=0.55100~149
Grains...k=0.47150 or more grains...k=
When calculating the removal rate based on the distribution of the sample grains of 0.40 Suriro rice, the distribution for the transmittance of the emitted light from the removal rate sensor 1 is not a distribution form in which brown rice G and paddy M are completely separated, but both are separated. The distribution has a phase-polymerized portion close to the threshold value, and the accuracy of the calculated removal rate is determined by the threshold value K.

実脱■率の高低によって、籾側上位ブロックの粒数が変
ることを利用して、その粒数により境界ブロック位置を
調整することにより、実説能率に対する計算脱■率の精
度を高めることができる。
By taking advantage of the fact that the number of grains in the upper blocks on the rice side changes depending on the actual shedding rate, and adjusting the position of the boundary block according to the number of grains, it is possible to improve the accuracy of the calculated shedding rate relative to the actual efficiency. .

このようにして、しきい値Kが決ると、例えば、次式の
ようにサンプリング全粒数(2000粒)に対するしき
い値Kから玄米側にある玄米Gの総粒数の比を求めて脱
拷率とする。
Once the threshold value K is determined in this way, for example, the ratio of the total number of grains of brown rice G on the brown rice side is calculated from the threshold value K to the total number of grains sampled (2000 grains) as shown in the following equation. Torture rate.

脱■率=((サンプリング全粒数−しきい値に以上のブ
ロックにある総粒数)/サンプリング全粒数)X100
 (%) このようにして脱■率が算出されると、この算出脱■率
が設定脱■率になるように間隙制御モータ15を出力し
て、ロール間隙を調整する。
Elimination rate = ((total number of grains sampled - total number of grains in blocks above the threshold value)/total number of grains sampled) x 100
(%) When the removal rate is calculated in this way, the gap control motor 15 is outputted to adjust the roll gap so that the calculated removal rate becomes the set removal rate.

第2図を参照して光量調節制御を説明する。透過光量分
布4は、脱■率センサ1の発光素子16の光量を変更す
ることによって、水平方向へ移動される。玄米Gと籾M
との判別に適する光量調節設定範囲りを予め決めておき
、透過率分布4の玄米平均ブロックのピーク値である玄
米平均ブロック値KGが、この光量調節設定範囲りに入
ったとき、脱■率センサ1の光量調節制御を終るように
制御構成する。
The light amount adjustment control will be explained with reference to FIG. The transmitted light amount distribution 4 is moved in the horizontal direction by changing the amount of light emitted from the light emitting element 16 of the exfoliation rate sensor 1. Brown rice G and paddy M
A light intensity adjustment setting range suitable for discrimination is determined in advance, and when the brown rice average block value KG, which is the peak value of the brown rice average block of transmittance distribution 4, falls within this light intensity adjustment setting range, the removal rate The control structure is configured so that the light amount adjustment control of the sensor 1 is completed.

実際に通過する摺出米3のサンプリング粒の信号により
、脱■率センサ1のセンサ光量を適正光量に調節する。
Based on the signal of the sampling grains of the polished rice 3 that actually pass through, the sensor light amount of the removal rate sensor 1 is adjusted to an appropriate light amount.

サンプリング粒の信号を信号電圧(0〜10■)として
N区分し、各区分のブロック毎の度数を算出して度数分
布で表し、最大度数である透過光量分布4の玄米平均ブ
ロック値KOの電圧を玄米の平均信号電圧とみなす、こ
の玄米電圧を適正な範囲り内に入るようにセンサ光量を
前記脱■率制御装置10内の光量制御装置18により光
量調節出力して行う。光量調節出力によって、センサ光
量を大きくして明るくする(光量ダラーではFF→00
)と、透過光量分布4は低信号電圧側へ移動し、又、セ
ンサ光量を小さくして暗くする(00→FF)と高信号
電圧側へ移動する。初期設定では、光量データがクリア
されているために、最も暗い側の信号電圧10V(FF
)でスタートし、その後の分布状態を見ながらΔB移動
させて、光量の適正範囲り内に位置させる。
The signal of the sampled grain is divided into N divisions as a signal voltage (0 to 10■), the frequency of each block in each division is calculated and expressed as a frequency distribution, and the voltage of the brown rice average block value KO of transmitted light amount distribution 4, which is the maximum frequency, is calculated. is regarded as the average signal voltage of brown rice, and the light intensity of the sensor is adjusted and outputted by the light intensity control device 18 in the black removal rate control device 10 so that this brown rice voltage falls within an appropriate range. The light amount adjustment output increases the sensor light amount to make it brighter (FF → 00 for light amount dollar)
), the transmitted light amount distribution 4 moves to the low signal voltage side, and when the sensor light amount is decreased and darkened (00→FF), it moves to the high signal voltage side. In the initial setting, the light amount data is cleared, so the signal voltage on the darkest side is 10V (FF
), and while observing the subsequent distribution state, move it by ΔB to position it within the appropriate light amount range.

籾供給漏斗7のシャッタの開きによって光量調節が開始
される。このシャッタを開くとき品種設定スイッチ22
によって、籾摺対象物である籾の品種を設定しておく、
シャッタの開きによって。
Light amount adjustment is started by opening the shutter of the paddy supply funnel 7. When opening this shutter, type setting switch 22
The type of paddy that is to be hulled is set by
by opening the shutter.

脱■ロール5,6間で摺出された摺出米3の一部が脱■
率センサ1へ流れて、サンプリング粒として発光素子1
6からの投光を受け、受光素子17で受けた受光量によ
って透過光量とし、この透過光量の分布が形成される。
A part of the rolled rice 3 that has been rolled out between the removal rolls 5 and 6 is removed.
The light emitting element 1 flows as a sampling particle to the rate sensor 1.
The amount of transmitted light is determined by the amount of light received by the light receiving element 17, and a distribution of the amount of transmitted light is formed.

サンプリング粒数を2000粒として正規の透過光量分
布4(曲線)が形成されるが、それまでの過程で、既に
500粒程度でも大体の透過光量分布4(曲線)が形成
されるため、この時点で光量調節を開始するもよい。
The normal transmitted light amount distribution 4 (curve) is formed when the number of sampled grains is 2000 grains, but in the process up to that point, the approximate transmitted light amount distribution 4 (curve) has already been formed even with about 500 grains, so at this point You can also start adjusting the light intensity.

光量調節開始時は、発光素子16の出力回路19からの
出力値は、最も暗い側のl0V(FF)側の基準位置に
あって、この基準位置から選択設定された一定の変更光
量に応じた電圧毎に出力が間欠的に増加される。従って
、各光量調節段階毎に出発基準位置NBから光量調節設
定範囲りの中央位置NCまでの間の光量調節間隔ΔBを
移動される。しかも、うるち米ともち米のように、相互
に脱■率センサ1の透過光量を異にする品種においても
、この品種に応じて一回毎の調節幅を異なるように設定
しているものであるから、一定の光量調節間隔ΔBにお
ける調節回数、乃至時間等は、該変更光量の異なる設定
によって、はシ一定とすることかできる。
At the start of light intensity adjustment, the output value from the output circuit 19 of the light emitting element 16 is at the reference position on the darkest l0V (FF) side, and the output value is changed from this reference position according to the selected and set constant light intensity. The output is intermittently increased for each voltage. Therefore, at each light amount adjustment step, the light amount adjustment interval ΔB is moved from the starting reference position NB to the center position NC of the light amount adjustment setting range. Moreover, even for varieties such as non-glutinous rice and glutinous rice, in which the amount of light transmitted through the de-eating rate sensor 1 is different, the adjustment width at each time is set to be different depending on the variety. Therefore, the number of times of adjustment, time, etc. at a constant light amount adjustment interval ΔB can be kept constant by changing the setting of the changed light amount.

なお、上側では、−回の変更光量を予め設定しておき、
これにもとづいて光量制御する形態であるが、この変更
光量を決めるに当り、前記光量調節開始の基準位置を、
透過光量分布4が形成開始されだした時点で行い、この
ときの透過光量分布4曲線のピーク値における透過光量
値NB (ブロック)と、予め設定している光量調節設
定範囲りの中央位置における透過光量値NC(ブロック
)との差ΔBを、この間の調節回数で除して、−回当り
の調節の変更光量(調節幅)として設定する光量制御装
置18の構成とするもよい。
In addition, on the upper side, the - times of changing light intensity are set in advance,
The light amount is controlled based on this, but in determining this changed light amount, the reference position for starting the light amount adjustment is
This is done when the transmitted light amount distribution 4 starts to form, and the transmitted light amount value NB (block) at the peak value of the transmitted light amount distribution 4 curve at this time and the transmission at the center position of the preset light amount adjustment setting range are calculated. The light amount control device 18 may be configured to divide the difference ΔB from the light amount value NC (block) by the number of adjustments during this period and set it as the changed light amount (adjustment width) of the adjustment per - time.

なお、前記のような光量調節制御に入る前に。Note that before starting the light amount adjustment control as described above.

光量調節を早く、的確に行う方法として、透過光量調節
が光量調節設定範囲りに近づくまでは簡単な処理として
、この設定範囲りに近づいてからは正確な処理を行う光
量調節形態を次に説明する。
As a quick and accurate way to adjust the light amount, we will explain below a light amount adjustment mode that performs simple processing until the transmitted light amount gets close to the light amount adjustment setting range, and performs accurate processing once it approaches this setting range. do.

第5図、第6図において、摺出米3のサンプリングによ
って、透過光量分布4曲線を作成しながら、前記光量調
節を行う場合、この光量制御装置18において、第6図
のような制御処理を行う。
In FIGS. 5 and 6, when the light amount adjustment is performed while creating the transmitted light amount distribution curve 4 by sampling the rolled rice 3, the light amount control device 18 performs the control process as shown in FIG. conduct.

粒数がピーク値となる透過光量分布4のブロックNBが
、光量調節によって光量調節設定範囲L±nブロックの
範囲外にあるときは、ピークブロックNBと設定範囲り
の中央位置の値NCとの差ΔBにより変更光量を決定し
て、前記のように光量調節制御を行わせ、玄米相当部分
における玄米平均値を求めての光量調節終了判断は行わ
せない。
When the block NB of the transmitted light amount distribution 4 where the number of grains has a peak value is outside the light amount adjustment setting range L±n blocks due to light amount adjustment, the peak block NB and the value NC at the center position of the setting range are The changed light amount is determined based on the difference ΔB, and the light amount adjustment control is performed as described above, but the end of the light amount adjustment is not determined by finding the average value of brown rice in the portion corresponding to brown rice.

粒数がピーク値となる透過光量分布4のピークブロック
NEが、設定範囲Lfnブロック内になったときは、上
記と同様に変更光量の決定を行わせるが、−回変更を行
わせた後に、複数玄米ブロックの平均値により、玄米平
均ブロック値を求めて、その値が設定範囲り内の有無に
よって終了判定を行うように制御する。
When the peak block NE of the transmitted light amount distribution 4 where the number of grains reaches the peak value is within the setting range Lfn block, the changing light amount is determined in the same way as above, but after making the change - times, An average brown rice block value is obtained from the average value of a plurality of brown rice blocks, and control is performed so that termination is determined depending on whether or not the value is within a set range.

即ち、サンプル粒の玄米相当の透過光量NBが。In other words, the transmitted light amount NB of the sample grains is equivalent to that of brown rice.

設定範囲りと大きく離れているときは、まだ光量調節終
了の判定の必要はないから、粒数のピークブロックだけ
に着目して、次回の光量の変更を行ったのでよく、粒数
のピークブロックNEが設定範囲り内に接近したときは
、次回の光量変更にて設定範囲り内となる可能性が高い
ため、ピークのブロックだけでなく、このピークブロッ
クを含む玄米相当部分の複数ブロック平均値を求めて、
この平均値が設定範囲り内にあれば光量調節終了の判定
を行う処理とする。
When it is far from the setting range, there is no need to judge whether the light intensity adjustment is finished yet, so I focused only on the peak block of grain number and changed the light intensity next time. When NE approaches within the set range, there is a high possibility that the next light intensity change will bring it within the set range, so the average value of not only the peak block but also multiple blocks of the portion equivalent to brown rice that includes this peak block is calculated. In search of
If this average value is within the set range, it is determined that the light amount adjustment has ended.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を示すもので、第1図は脱■率制
御のブロック図、第2図、第3図は脱■率センサにおけ
る透過光量分布グラフ、第4図は籾摺機の斜面図、第5
図は一部別実施例の透過光量分布グラフ、第6図はその
制御フローチャートである。 (符号の説明) 1 脱■率センサ 2 籾摺装置 3 摺出米 4 透過光量分布 5.6 脱■ロール 16 発光素子  8 9 2 光量制御装置 出力回路 品種設定スイッチ 籾 玄米 しきい値
The figures show an embodiment of the present invention. Figure 1 is a block diagram of the removal rate control, Figures 2 and 3 are graphs of the transmitted light amount distribution in the removal rate sensor, and Figure 4 is a diagram of the rice hulling machine. Slope map, 5th
The figure is a transmitted light amount distribution graph of a partially different embodiment, and FIG. 6 is a control flowchart thereof. (Explanation of symbols) 1 Dehulling rate sensor 2 Hulling device 3 Dehulled rice 4 Transmitted light amount distribution 5.6 Dehulling roll 16 Light emitting element 8 9 2 Light amount control device output circuit type setting switch Unhusked brown rice threshold

Claims (1)

【特許請求の範囲】[Claims]  脱■率センサ1のセンサ投光域に籾摺装置2による摺
出米3を割込通過させながら、この脱■率センサ1によ
る透過光量分布4によって、籾Mと玄米Gとの境界であ
るしきい値Kを求めて脱■率を算出し、この脱■率によ
って一対の脱■ロール5、6間のロール間隙を調節制御
する脱■率制御において、品種等に適応した一回当りの
変更光量を設定して、この変更光量のもとに、脱■率セ
ンサ1の発光素子16の光量を変更しながら、玄米G相
当の摺出米3の受光レベルが一定の光量調節設定範囲L
に入るように自動的に光量調節制御することを特徴とす
る脱■率センサの光量調節制御方式。
While the rice 3 removed by the hulling device 2 is passed through the sensor light emitting area of the removal rate sensor 1, the boundary between paddy M and brown rice G is determined by the transmitted light amount distribution 4 by the removal rate sensor 1. In the removal rate control, which calculates the removal rate by determining the threshold value K and adjusts and controls the roll gap between the pair of removal rolls 5 and 6 based on this removal rate, the removal rate is adjusted per one time according to the product type, etc. A light intensity adjustment setting range L is set in which the light reception level of the smooth rice 3 equivalent to brown rice G is constant while changing the light intensity of the light-emitting element 16 of the desorption rate sensor 1 based on the changed light intensity.
A light amount adjustment control method for an exit rate sensor, which is characterized by automatically controlling the light amount so that the light enters the room.
JP5000590A 1990-02-28 1990-02-28 Adjusting and controlling system for quantity of light in husking ratio sensor Pending JPH03249954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000590A JPH03249954A (en) 1990-02-28 1990-02-28 Adjusting and controlling system for quantity of light in husking ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000590A JPH03249954A (en) 1990-02-28 1990-02-28 Adjusting and controlling system for quantity of light in husking ratio sensor

Publications (1)

Publication Number Publication Date
JPH03249954A true JPH03249954A (en) 1991-11-07

Family

ID=12846886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000590A Pending JPH03249954A (en) 1990-02-28 1990-02-28 Adjusting and controlling system for quantity of light in husking ratio sensor

Country Status (1)

Country Link
JP (1) JPH03249954A (en)

Similar Documents

Publication Publication Date Title
JPH03249954A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JPH03249955A (en) Adjusting and controlling system for quantity of light in husking ratio sensor
JP6593159B2 (en) Automatic rice milling machine
JPH0438451A (en) Dehulling rate sensor of huller
JPH0432750A (en) Light quantity adjustment control system for milling rate sensor
JPH03278845A (en) Controlling system for hulling ratio of huller and the like
JPH03221846A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JPH03277948A (en) Method for detecting and controlling hulled ratio of rice huller and the like
JPH03258354A (en) Husking controlling system in rice husker
JPH0440348A (en) Hulling rate sensor
JPH03221148A (en) Dehulling control apparatus of huller
JPH0432749A (en) Light quantity adjustment control system for milling rate sensor
JPH0440243A (en) Controlling apparatus for husking ratio of husker
JPH0440242A (en) Controlling apparatus for husking ratio of husker
JPH0438450A (en) Light quantity control device of dehulling rate sensor
JPH0385427A (en) Controlling system of light quantity adjustment of hulling rate sensor
JPH03278846A (en) Detection control system for hulling ratio of huller and the like
JPH0398651A (en) Dehulling ratio control apparatus of huller
JPH0833353B2 (en) Measuring device for removal rate
JPH0438449A (en) Light quantity control device of dehulling rate sensor
JPH0398652A (en) Abnormality detection apparatus of dehulling ratio sensor
JPH03221845A (en) Light quantity adjustment control system for rice-hull removing rate sensor
JP2000042433A (en) Automatic rice-polishing apparatus with automatic reduction in generation of broken rice
JP2923457B2 (en) Grain sorter
JPH0445857A (en) Self-checker for controller of huller or the like