JPH03218969A - Silicon nitride-based body - Google Patents

Silicon nitride-based body

Info

Publication number
JPH03218969A
JPH03218969A JP2061781A JP6178190A JPH03218969A JP H03218969 A JPH03218969 A JP H03218969A JP 2061781 A JP2061781 A JP 2061781A JP 6178190 A JP6178190 A JP 6178190A JP H03218969 A JPH03218969 A JP H03218969A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
rare earth
excess oxygen
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2061781A
Other languages
Japanese (ja)
Other versions
JP2811493B2 (en
Inventor
Masahiro Sato
政宏 佐藤
Hideki Uchimura
内村 英樹
Masaki Terasono
正喜 寺園
Kazunori Koga
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2061781A priority Critical patent/JP2811493B2/en
Priority to US07/618,480 priority patent/US5114889A/en
Publication of JPH03218969A publication Critical patent/JPH03218969A/en
Application granted granted Critical
Publication of JP2811493B2 publication Critical patent/JP2811493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the oxidation resistance and strength of an Si3N4-rare earth metal oxide-SiO2 ternary sintered body contg. excess oxygen at high temp. by depositing silicon oxynitride and disilicate phases on the grain boundaries in the sintered body. CONSTITUTION:Silicon oxynitride and disilicate phases as crystal phases are deposited on the grain boundaries in a silicon nitride-based sintered body consisting of 70-99mol% Si3N4, 0.1-5mol% rare earth metal oxide (RE2O3) and <=25mol% (expressed in terms of SiO2) excess oxygen in 2-25 molar ratio of excess oxygen to RE2O3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスタービンやターボロー夕等の熱機関に好
通な高温乙こおける抗折強度、耐酸化性に優れた窒化珪
素質焼結体の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a silicon nitride sintered material that has excellent bending strength and oxidation resistance at high temperatures suitable for heat engines such as gas turbines and turbo engines. Concerning a method of manufacturing a body.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬度
、熱的化学的安定性に優れることからエンジニアリング
セラミックス、特に熱機関用材料として注目されている
。具体的な熱機関としてはターボロー夕やガスタービン
用部品が挙げられ、これらに適用する場合、焼結体に対
し室温から約l200゜C(7)範囲、部品によッテは
1400’C(7)高温において優れた機械的特性が要
求されているが、最近に至ってはl500゜Cにおける
特性の向上が望まれている。
(Prior Art) Silicon nitride sintered bodies have traditionally attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermal and chemical stability at high temperatures. Specific examples of heat engines include parts for turbo rotors and gas turbines, and when applied to these, the temperature range for sintered bodies is from room temperature to about 1200°C (7), and for some parts it is 1400°C (7). 7) Excellent mechanical properties are required at high temperatures, and recently it has been desired to improve properties at 1500°C.

一般にこれら窒化珪素質焼結体を製造する方法としては
、窒化珪素自体が難焼結性であることから、希土類元素
酸{ヒ物等の各種の焼結助剤を添加し、ホントプレス法
、常圧焼成法およびガス圧力焼成法等が採用されている
。また、最近では高密度、高強度化を目的として、所望
の組成からなる窒化珪素成形体の表面にガラス等からな
る不透過性シールを形成し、高圧力下で焼成する方法(
以下、シールHTPという)も研究されている。
Generally, as a method for manufacturing these silicon nitride sintered bodies, since silicon nitride itself is difficult to sinter, various sintering aids such as rare earth element acids (arsenic compounds) are added, and the honto press method, Normal pressure firing method, gas pressure firing method, etc. are employed. Recently, with the aim of increasing density and strength, a method has been developed in which an impermeable seal made of glass or the like is formed on the surface of a silicon nitride molded body having a desired composition, and then fired under high pressure.
(hereinafter referred to as seal HTP) is also being researched.

?方、組成の点からは、前述したようにY203等の希
土類元素酸化物の他、Alz(h 、MgO等の酸化物
が焼結助剤として最も一般的に使用されているが、焼結
体の高温特性を考慮した場合、A1■03や阿goなど
含まれると焼結体の粒界に低融点物質が生成されるため
に高温強度や高温耐酸化性が低下するという見地から上
記の酸化物を実質的に含まないSi3N4−RE203
 (希土類酸化物)−SiO■の単純三元系からなる組
成も検討されている。
? On the other hand, in terms of composition, in addition to rare earth element oxides such as Y203 as mentioned above, oxides such as Alz(h) and MgO are most commonly used as sintering aids; Considering the high-temperature properties of A103 and Ago, the above oxidation Si3N4-RE203 substantially free of substances
A composition consisting of a simple ternary system of (rare earth oxide) -SiO2 is also being considered.

また、焼結体の組織の点からは、高温特性を決定する要
因として焼結体中の粒界相が注目されており、粒界相自
体の強度を向上させることを目的として粒界相を実質上
結晶化しようとする試みがなされている。そこで最近に
至っては、上記の単純三元系の組成に対し、焼成条件の
検討あるいは焼結体の熱処理等によって粒界にStJ4
−REzOz(希土類酸化物)−SiO■からなる各種
の結晶相、例えばメリライト、アパタイト、YAMある
いはワラストナイト等を析出させることによって高温特
性を改良する試みも行われている。
In addition, from the perspective of the structure of a sintered body, the grain boundary phase in the sintered body is attracting attention as a factor that determines high-temperature properties, and the grain boundary phase is used to improve the strength of the grain boundary phase itself. Attempts have been made to substantially crystallize it. Therefore, recently, for the above-mentioned simple ternary composition, StJ4 has been added to the grain boundaries by examining the firing conditions or by heat treating the sintered body.
Attempts have also been made to improve the high temperature properties by precipitating various crystal phases consisting of -REzOz (rare earth oxide) -SiO2, such as melilite, apatite, YAM or wollastonite.

?発明が解決しようとする問題点) しかしながら、粒界に上記の各種結晶相を析出した焼結
体は室温および1400゜Cの高温における強度の向上
あるいは耐酸化性に対する向上効果はある程度認められ
るものの、1500゜Cの高温における特性、特に耐酸
化性の劣化が激しく、1500゜Cの温度では殆ど使用
に耐えないという欠点を有している。
? Problems to be Solved by the Invention) However, although the sintered body in which the various crystal phases described above are precipitated at the grain boundaries has a certain degree of improvement in strength or oxidation resistance at room temperature and at high temperatures of 1400°C, It has the disadvantage that its properties, especially its oxidation resistance, deteriorate significantly at a high temperature of 1500°C, making it almost unusable at a temperature of 1500°C.

そこで、本出願人は、従来の焼結体と比較して特に1 
5 0 0 ’Cの高温における耐酸化性に優れた焼結
体として、過剰酸素を多量に含む系、具体的には窒化珪
素70乃至99モル%と、希土類元素酸化物0.1〜5
モル%と、過剰酸素(SiO■換算量)25モル%以下
からなり、(過剰酸素/希土類元素酸化物)モル比が2
より大きく、25以下の範囲にある組成物を焼成し、窒
化珪素結晶粒界を非晶質化あるいはシリコンオキシナイ
トライドO結晶を析出させた焼結体を提案したが、この
焼結体はその特性の安定性に欠け、特に1400゜Cに
おける強度が不十分であるという欠点を有して?た。
Therefore, the present applicant has particularly proposed that compared to conventional sintered bodies,
As a sintered body with excellent oxidation resistance at a high temperature of 500'C, a system containing a large amount of excess oxygen, specifically, 70 to 99 mol% silicon nitride and 0.1 to 5 mol% of rare earth element oxide is used.
mol% and excess oxygen (SiO2 equivalent amount) of 25 mol% or less, and the molar ratio (excess oxygen/rare earth element oxide) is 2.
We have proposed a sintered body in which silicon nitride grain boundaries are made amorphous or silicon oxynitride O crystals are precipitated by firing a composition in the range of 25 or less. It lacks stability in properties and has insufficient strength especially at 1400°C. Ta.

(発明の目的) 本発明の目的は、優れた高温耐酸化性を維持しつつ、1
400゜Cの高温における抗折強度を改善した窒化珪素
賞焼結体を提供することを目的とするものである。
(Object of the invention) The object of the invention is to maintain excellent high-temperature oxidation resistance while
The object of the present invention is to provide a silicon nitride ceramic sintered body with improved bending strength at a high temperature of 400°C.

(問題点を解決するための手段) 本発明者等は、上記の問題点に対して検討を加えた結果
、過剰酸素を多量に含むSi3N4−REzoz(希土
類酸化物)−SiO■系の組成、特に窒化珪素が70乃
至99モル%と、希土類元素酸化物が0. 1〜5モル
%と、過剰酸素(SiO■換算量)で25モル%以下か
らなり、(過剰酸素/希土類元素酸化物)モル比が2よ
り大きく、25以下の範囲にある組成からなると同時に
、焼結体中の窒化珪素結晶粒子の粒界にシリコンオキシ
ナイトライド相並びにダイシリケート相の結晶相を同時
に存在させ、さに窒化珪素結晶粒径をlOμ詣以下に設
定することによって1400゜Cにおける高温強度を大
きく向上させることが出来ることを知見した。
(Means for Solving the Problems) As a result of research into the above problems, the present inventors have developed a composition of Si3N4-REzoz (rare earth oxide)-SiO■ system containing a large amount of excess oxygen, In particular, silicon nitride is 70 to 99 mol % and rare earth element oxide is 0. It consists of 1 to 5 mol% and 25 mol% or less of excess oxygen (SiO2 equivalent amount), and has a composition in which the (excess oxygen/rare earth element oxide) molar ratio is greater than 2 and 25 or less, By making the silicon oxynitride phase and the disilicate phase simultaneously exist at the grain boundaries of the silicon nitride crystal grains in the sintered body, and by setting the silicon nitride crystal grain size to less than 10μ, It has been found that high temperature strength can be greatly improved.

?下、本発明を詳述する。? The invention will be described in detail below.

本発明によれば、まず焼結体の組成が窒化珪素70〜9
9モル%、特に80〜93.5モル%と、希土類元素酸
化物0. 1〜5モル%、特に0.5〜3モル%、過剰
酸素が25モル%以下、特に6〜20モル%の割合から
なるとともに(過剰酸素/希土類元素酸化物)モル比が
2より大きく25以下、特に3〜200割合からなるこ
とが重要である。
According to the present invention, first, the composition of the sintered body is silicon nitride 70-9
9 mol %, especially 80 to 93.5 mol %, and 0.9 mol % of the rare earth element oxide. 1 to 5 mol%, especially 0.5 to 3 mol%, excess oxygen of 25 mol% or less, especially 6 to 20 mol%, and (excess oxygen/rare earth element oxide) molar ratio greater than 2 and 25 Hereinafter, it is particularly important that the ratio be 3 to 200.

なお、過剰酸素とは、焼結体の系全体に含まれる全酸素
量から希土類元素酸化物として化学量論的量で混入した
酸素を除いた酸素量で、具体的には窒化珪素原料中の不
純物酸素あるいはSiO■として添加された酸素から構
成され、いずれもSiO■換算量を示す。
Note that excess oxygen is the amount of oxygen excluding the stoichiometric amount of oxygen mixed in as rare earth element oxides from the total amount of oxygen contained in the entire system of the sintered body, and specifically, the amount of oxygen in the silicon nitride raw material. It is composed of impurity oxygen or oxygen added as SiO2, and both values are expressed in terms of SiO2.

なお、焼結体の組成を上記の範囲に限定したのは、窒化
珪素、希土類酸化物、過剰酸素のいずれかが前述の範囲
を逸脱しても室温強度ならびに高温強度が劣化するため
であり、また過剰酸素と希土類元素酸化物とのモル比を
上記の範囲に限定した理由は、このモル比が2以下では
粒界にシリコ?オキシナイトライド相やダイシリケート
相の結晶の析出が困難となり1500゜Cの高温におけ
る耐酸化性が劣化し易いためで、逆に25を越えると低
融点のガラスが生成されやすく、高温特性が劣化するか
らである。
The reason why the composition of the sintered body is limited to the above range is because the room temperature strength and high temperature strength will deteriorate even if any of silicon nitride, rare earth oxide, and excess oxygen deviates from the above range. The reason why the molar ratio of excess oxygen and rare earth element oxide is limited to the above range is that if this molar ratio is less than 2, silica will form at the grain boundaries. This is because precipitation of oxynitride phase and disilicate phase crystals becomes difficult, and oxidation resistance at high temperatures of 1,500°C tends to deteriorate.On the other hand, when the temperature exceeds 25, glass with a low melting point tends to be formed, and high-temperature properties deteriorate. Because it does.

本発明によれば、上記組成からなる焼結体の窒化珪素結
晶粒の粒界にシリコンオキシナイトライド相並びにダイ
シリケート相の両者が存在することを大きな特徴とする
。シリコンオキシナイトライド相は珪素、窒素、酸素か
らなる結晶相で一般にSi2NzOの化学式で表される
。一方、ダイシリケート相は希土類元素、珪素、酸素か
らなる結晶相で一般にREzOi・2SiO■の化学式
で表される。なお、粒界にシリコンオキシナイトライド
相のみあるいはダイシリケート相のみを含む場合では1
500゜Cにおける耐酸化性は優れるが高温強度が不十
分てあり、本発明の目的は達成されない。
According to the present invention, a major feature is that both a silicon oxynitride phase and a disilicate phase are present at the grain boundaries of silicon nitride crystal grains of the sintered body having the above composition. The silicon oxynitride phase is a crystalline phase consisting of silicon, nitrogen, and oxygen, and is generally represented by the chemical formula of Si2NzO. On the other hand, the disilicate phase is a crystalline phase consisting of rare earth elements, silicon, and oxygen, and is generally represented by the chemical formula REzOi.2SiO■. In addition, if the grain boundaries contain only silicon oxynitride phase or only disilicate phase, 1
Although the oxidation resistance at 500°C is excellent, the high temperature strength is insufficient, and the object of the present invention cannot be achieved.

次に、本発明の窒化珪素質焼結体を製造するため具体的
方法としては、まず、前述の組成からなるとともに、そ
の粒界にシリコンオキシナイトラ?ド相とガラス相が混
在した焼結体を用意し、それを特定の条件で熱処理する
ことにより、粒界にシリコンナイトライト相とともにダ
イシリケート相を生成することができ、この方法が最も
生産性および特性の安定性から好適である。
Next, as a specific method for manufacturing the silicon nitride sintered body of the present invention, first, it consists of the above-mentioned composition, and silicon oxynitride is present at the grain boundaries. By preparing a sintered body containing a mixture of carbon and glass phases and heat-treating it under specific conditions, it is possible to generate a disilicate phase along with a silicon nitrite phase at grain boundaries, and this method is the most productive. It is suitable from the viewpoint of stability of properties.

粒界にシリコンオキシナイトライド結晶相を有する焼結
体を作成する方法としては、原料粉末として窒化珪素粉
末、希土類元素酸化物粉末、場合により酸化珪素粉末を
用い、窒化珪素、希土類元素酸化物、過剰酸素(SiO
■換算量)が前述したような過剰酸素を多量に含む組成
になるように秤量混合する。この時の窒化珪素粉末は焼
結性を促進するためBET比表面積が3〜20m”/g
、α化率95%以上であることが望ましい。また、窒化
珪素粉末には不純物酸素含有量が一般に0.8〜1.5
重量%程度含有されるが、全体の酸素量は酸化珪素の添
加によって任意に=1整できる。
As a method for creating a sintered body having a silicon oxynitride crystal phase at grain boundaries, silicon nitride powder, rare earth element oxide powder, and in some cases silicon oxide powder are used as raw material powder, and silicon nitride, rare earth element oxide, Excess oxygen (SiO
(2) Weigh and mix so that the amount (converted amount) becomes a composition containing a large amount of excess oxygen as described above. At this time, the silicon nitride powder has a BET specific surface area of 3 to 20 m"/g to promote sinterability.
, it is desirable that the gelatinization rate is 95% or more. In addition, silicon nitride powder generally has an impurity oxygen content of 0.8 to 1.5.
Although it is contained in about % by weight, the total amount of oxygen can be arbitrarily adjusted to 1 by adding silicon oxide.

上記の混合粉末に適宜ハインダーを添加して造粒後、成
形する。成形は周知の方法を採用でき、具体的にはプレ
ス成形、押し出し成形、鋳込み成?あるいは射出成形等
が採用できる。
A binder is appropriately added to the above mixed powder, the mixture is granulated, and then molded. Well-known methods can be used for molding, specifically press molding, extrusion molding, and casting. Alternatively, injection molding or the like can be used.

このようにして得られた成形体はバインダー除去した後
、焼成する。
The molded body thus obtained is fired after removing the binder.

焼成は、その焼成手段にもよるが1450〜2000゜
Cの非酸化性雰囲気で焼成する。焼成手段としてはガス
圧力焼成法、熱間静水圧焼成法等が好適である。
Firing is performed in a non-oxidizing atmosphere at 1450 to 2000°C, depending on the firing method. As the firing means, gas pressure firing method, hot isostatic pressure firing method, etc. are suitable.

ガス圧力焼成法によれば、焼成温度を1700〜200
0゜Cに制御し、雰囲気に窒素ガスをガス圧1.5〜1
00気圧で導入し焼成する。本発明の組成は過剰酸素を
多量に含むことから過剰酸素量の分解変動を抑制するた
めに炉内にSiO■粉末やSi02とSi,N4との混
合粉末を配置し雰囲気中に別0を発生させておくことが
望ましい。
According to the gas pressure firing method, the firing temperature is set at 1700-200°C.
Controlled at 0°C, nitrogen gas was added to the atmosphere at a gas pressure of 1.5 to 1.
Introduced and fired at 00 atm. Since the composition of the present invention contains a large amount of excess oxygen, in order to suppress decomposition fluctuations in the amount of excess oxygen, SiO2 powder or a mixed powder of Si02, Si, and N4 is placed in the furnace to generate additional oxygen in the atmosphere. It is desirable to leave it.

一方、熱間静水圧焼成法によれば、好適には成形体表面
にガラス等からなるシール材を塗布形成し高温高圧下で
焼成する、いわゆるシールHIP法が採用される。この
具体的方法としては、まず焼成に先立ち前述した方法で
得た成形体に対し、焼成工程においてシール材であるガ
ラス等との反応を防止することを目的としてBN粉末等
のガラスと濡れ性の悪い粉末をスラリー化して成形体に
塗布するか、または上記スラリーをスプレー塗布する。
On the other hand, according to the hot isostatic pressure firing method, a so-called seal HIP method is preferably employed in which a sealing material made of glass or the like is coated on the surface of the molded body and fired at high temperature and high pressure. In this specific method, first, prior to firing, the molded body obtained by the above-mentioned method is coated with wettable glass such as BN powder in order to prevent the reaction with glass, which is a sealing material, in the firing process. Either the bad powder is made into a slurry and applied to the molded body, or the slurry is spray applied.

゛なお、BHの成形体表面への塗布量はその厚みが1〜
10mm程度が望ましい。
゛Please note that the amount of BH applied to the surface of the molded product is
Approximately 10 mm is desirable.

次に、BNが塗布された成形体に対し、焼成時にシール
を形成するガラス粉末をその表面に塗布するかあるいは
上記成形体をガラス製カプセル内に封入する。また他の
方法として、前記成形体を内部にガラス粉末が充填され
たルッポ内に埋めることもてきる。その後、HIP法に
より高温高圧下で焼成する。
Next, glass powder that forms a seal during firing is applied to the surface of the molded body coated with BN, or the molded body is encapsulated in a glass capsule. As another method, the molded body may be buried in a lupus filled with glass powder. Thereafter, it is fired at high temperature and pressure using the HIP method.

焼成は、まず成形体表面に存在するガラスの軟化点以上
、焼成温度にまで昇温すると同時に該温度における窒化
珪素の分解平衡圧と同等もしくはそれより0.01〜0
. 2 M P a程度高い圧力の窒素ガスを導入しつ
つ、前記ガラスを軟化させ成形体表面にガラスによるガ
ス不透過性膜を形成する。
Firing is performed by first raising the temperature to a firing temperature that is above the softening point of the glass present on the surface of the molded body, and at the same time raising the temperature to a temperature equal to or 0.01 to 0 lower than the decomposition equilibrium pressure of silicon nitride at that temperature.
.. While introducing nitrogen gas at a high pressure of about 2 MPa, the glass is softened to form a gas-impermeable glass film on the surface of the molded body.

ガス不透過性膜が成形体表面に完全に形成された後、炉
内圧力を充分に緻密化しうる条件下、例え?、5 0 
M P a以上の圧力まで上昇させる。この時の圧力媒
体は、窒素、アルゴン等の不活性ガスを用いる。この段
階で希土類酸化物、SiO■、窒化珪素により液相が生
成され、焼成が進行し、その緻密化はほぼ終了する。そ
の後温度、圧力を共に下げ焼成を終了する。
After the gas-impermeable film is completely formed on the surface of the compact, the pressure inside the furnace can be sufficiently densified, for example? ,50
Increase the pressure to M Pa or higher. The pressure medium used at this time is an inert gas such as nitrogen or argon. At this stage, a liquid phase is generated by the rare earth oxide, SiO2, and silicon nitride, the firing progresses, and the densification is almost completed. After that, both the temperature and pressure are lowered and firing is completed.

なお、焼成温度は1450゜C−1800゜C1特にl
450゜C〜1730゜Cに設定される。
The firing temperature is 1450°C-1800°C1, especially l
The temperature is set at 450°C to 1730°C.

上記ガス圧力焼成法やシールHIP法により粒界がシリ
コンオキシナイトライド相単独、あるいはシリコンオキ
シナイトライド結晶相と珪素、希土類元素、酸素および
窒素の非品質和からなる焼結体を得ることができる。
By the above-mentioned gas pressure sintering method or seal HIP method, it is possible to obtain a sintered body in which the grain boundaries are composed of a silicon oxynitride phase alone or a non-qualified sum of a silicon oxynitride crystal phase, silicon, rare earth elements, oxygen, and nitrogen. .

次に、上記の方法により得られた焼結体に対して130
0″C〜1600゜Cの酸化性雰囲気もしくは窒素等の
非酸化性雰囲気で3〜100時間程度熱処理することに
よって粒界の結晶化をさらに進行させ、粒界にシリコン
オキシナイトライド相とともにダイシリケート相を析出
させることができる。また、この時に粒界には上記結晶
相とともに非晶質相を含む場合もある。
Next, the sintered body obtained by the above method was
Crystallization of the grain boundaries is further advanced by heat treatment in an oxidizing atmosphere of 0''C to 1600 degrees C or a non-oxidizing atmosphere such as nitrogen for about 3 to 100 hours, and disilicate is formed at the grain boundaries along with the silicon oxynitride phase. A phase can be precipitated.Furthermore, at this time, the grain boundaries may contain an amorphous phase as well as the above-mentioned crystalline phase.

この時の熱処理温度が1300℃より低いと粒界の結晶
化が進行しないためにダイシリケート相が生成せず、l
600゜Cより高いと焼結体の表面が分解し強度が劣化
する傾向にある。
If the heat treatment temperature at this time is lower than 1300°C, crystallization of grain boundaries will not proceed, so a disilicate phase will not be formed, and l
If the temperature is higher than 600°C, the surface of the sintered body tends to decompose and its strength deteriorates.

上記の製造方法によれば、窒化珪素結晶粒子の平均粒径
(長径)が10μl以下で、アスペクト比が3以上の微
細な組織からなる焼結体が得られるが、上記焼成法のう
ち熱間静水圧焼成法において、その焼成温度を1450
〜1730゜Cの低温に設定すると窒化珪素粒子の粒成
長が抑制されるために窒化珪素結晶粒子の微細化を促進
することができ、具体的にはその平均粒径(長径)を7
μm以下の微細構造の焼結体を得ることができる。
According to the above manufacturing method, a sintered body consisting of a fine structure with an average grain size (major axis) of silicon nitride crystal particles of 10 μl or less and an aspect ratio of 3 or more can be obtained. In the isostatic pressure firing method, the firing temperature is set at 1450℃.
By setting the temperature to a low temperature of ~1730°C, grain growth of silicon nitride particles is suppressed, so it is possible to promote the refinement of silicon nitride crystal grains.
A sintered body with a microstructure of micrometers or less can be obtained.

これにより、焼結体の室温強度とともに高温強度を向上
することができる。
Thereby, the room temperature strength and high temperature strength of the sintered body can be improved.

本発明によれば、焼結体中の粒界の結晶性を高める上で
粒界に存在してガラス相を形成巳易い酸化物、具体的に
はAlzOz,CaO,MgO,Fe403等の酸化物
は焼結体全量中、0.05重量%以下であることが?ま
しい。また、希土類元素酸化物としては、Y20,が一
般的であるが、YbzO+ , ErzO= , Ho
z03等の重希土類元素酸化物を用いる方が色ムラ等の
発生を防止するとともに安定した特性の焼結体を得るこ
とができる点で望ましい。
According to the present invention, in order to improve the crystallinity of grain boundaries in a sintered body, oxides that exist in grain boundaries and easily form a glass phase, specifically oxides such as AlzOz, CaO, MgO, Fe403, etc. Should it be less than 0.05% by weight based on the total amount of the sintered body? Delicious. In addition, Y20 is common as a rare earth element oxide, but YbzO+, ErzO=, Ho
It is preferable to use a heavy rare earth element oxide such as z03 because it prevents the occurrence of color unevenness and allows a sintered body with stable characteristics to be obtained.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例1) 原料粉末として、窒化珪素粉末(BET比表面積5m”
/g、α化率95%、不純物酸素量10重量%)と、各
種希土類酸化物あるいはSiO■粉末を用いて、第1表
に示す組成に成るように調合し混合後、It/cjl 
 でプレス成形した。
(Example 1) As a raw material powder, silicon nitride powder (BET specific surface area 5 m"
/g, gelatinization rate 95%, impurity oxygen content 10% by weight) and various rare earth oxides or SiO■ powder to form the composition shown in Table 1. After mixing, It/cjl
Press molded.

得られた成形体をSiO■粉末を炉内に設置した50a
tmの窒素ガス雰囲気下で第1表に示す温度で焼成した
The obtained molded body was placed in a furnace containing SiO powder.
It was fired at the temperature shown in Table 1 under a nitrogen gas atmosphere of tm.

次に、得られた焼結体をさらに第1表に示す条件で熱処
理した。
Next, the obtained sintered body was further heat-treated under the conditions shown in Table 1.

熱処理後の各焼結体に対し、JISR1601に従い、
室温、1400゜Cにおける4点曲げ抗折強度および1
500″C×24時間の耐酸化性試験?行い、試験後の
酸化重量増を測定した。
For each sintered body after heat treatment, according to JISR1601,
Four-point bending strength at room temperature, 1400°C and 1
An oxidation resistance test was conducted at 500"C x 24 hours, and the oxidation weight increase after the test was measured.

また、熱処理後の焼結体のX線回折曲線から窒化珪素以
外の結晶相を同定した。
Furthermore, crystal phases other than silicon nitride were identified from the X-ray diffraction curve of the sintered body after heat treatment.

結果は第1表に示した。The results are shown in Table 1.

(実施例2) 実施例1と同様の原料粉末を用い、第2表に示す割合に
成るように調合混合後、1t/c1il  でプレス成
形後、l 4 0 0 ’Cで仮焼した。
(Example 2) Using the same raw material powder as in Example 1, the mixture was prepared and mixed in the proportions shown in Table 2, press-molded at 1t/c1il, and calcined at 1400'C.

得られた成形体に対しBN粉末(粒径l〜5μm)のペ
ーストを1〜10mmの厚みで塗布後、SiO■を主成
分とするガラスを1〜10mmの厚みで塗布した。
A paste of BN powder (particle size 1 to 5 μm) was applied to the obtained molded body to a thickness of 1 to 10 mm, and then glass containing SiO2 as a main component was applied to a thickness of 1 to 10 mm.

このように処理された成形体を熱間静水圧焼成炉に配置
して各種の条件で焼成を行い、第2表に示すような特性
の異なる数種の試料を作成した。
The molded bodies thus treated were placed in a hot isostatic pressure firing furnace and fired under various conditions to produce several types of samples with different properties as shown in Table 2.

次に、これらの試料に対し、第1表に示す条件で熱処理
を行った。
Next, these samples were heat treated under the conditions shown in Table 1.

熱処理後の焼結体に対し、実施例1と同様に強度、耐酸
化性ならびに結晶相の同定を行った。
The strength, oxidation resistance, and crystal phase of the sintered body after the heat treatment were determined in the same manner as in Example 1.

結果は第1表に示した。The results are shown in Table 1.

第1表によれば、粒界がシリコンオキシナイトライド相
あるいはこれとガラス賞からなる焼結体(試料8.19
)はいずれも1500゜Cにおける耐酸化性は優れるも
のの1400’Cにおける抗折強度が低い。また(過剰
酸素/希土類元素酸化物)モル比が2以下で、粒界がガ
ラスあるいはYAM結晶を含む焼結体(試料11、22
)はl400゜Cにおける強度は優れるが15”00゜
Cの耐酸化性が悪く、これを熱処理しても耐酸化性の向
上は認められなかった(試料12、23)。
According to Table 1, a sintered body (sample 8.19) in which the grain boundaries are composed of silicon oxynitride phase or this and glass particles
) have excellent oxidation resistance at 1500°C, but low bending strength at 1400'C. In addition, sintered bodies with a (excess oxygen/rare earth element oxide) molar ratio of 2 or less and grain boundaries containing glass or YAM crystals (Samples 11 and 22
) has excellent strength at 400°C, but poor oxidation resistance at 15”00°C, and no improvement in oxidation resistance was observed even after heat treatment (Samples 12 and 23).

また、粒界にシリコンオキシナイトライド相が生成した
焼結体を熱処理するに際し、その温度が低い場合(試料
9、20)、ダイシリケート相の生成が認められず、高
温強度の向上は殆どない。
Furthermore, when heat treating a sintered body in which a silicon oxynitride phase has been formed at the grain boundaries, if the temperature is low (Samples 9 and 20), the formation of a disilicate phase is not observed, and there is almost no improvement in high-temperature strength. .

また処理温度が高過ぎる場合(試料10、21)には、
シリコンオキシナイトライト相とダイシリケート相の他
にアパタイト等の他の結晶相が観察されたが、いずれも
焼結体の表面が分解しており、特性も満足すべきもので
ながらだ。
In addition, if the processing temperature is too high (sample 10, 21),
In addition to the silicon oxynitrite phase and the disilicate phase, other crystal phases such as apatite were observed, but the surface of the sintered body was decomposed in both cases, and the properties were satisfactory.

これに対し、本発明の試料はいずれもシリコン?キシナ
イトライド相およびダイシリケート相が析出しており、
特性の上でも酸化重量増0. 1 2 mg/cm2以
下の優れた耐酸化性を有するとともに500MPa以上
の優れた高温強度を示した。
In contrast, the samples of the present invention are all silicon? A xynitride phase and a disilicate phase are precipitated,
In terms of characteristics, oxidation weight increase is 0. It exhibited excellent oxidation resistance of 12 mg/cm2 or less and excellent high-temperature strength of 500 MPa or more.

なお、本発明の試料における粒界の2種の結晶相はいず
れもシリコンオキシナイトライドを主成分とするもので
あり、焼結体中の窒化珪素粒子の平均粒径(長径)はい
ずれも10μ議以下、且つ平均アスペクト比が3以上で
、特に第2表の熱間静水圧焼成法によるものでは7μ■
以下の微細な組織構造の焼結体であった。
Note that the two types of crystal phases at the grain boundaries in the sample of the present invention both have silicon oxynitride as a main component, and the average particle diameter (longer diameter) of the silicon nitride particles in the sintered body is 10 μm. or less, and the average aspect ratio is 3 or more, especially when the hot isostatic firing method shown in Table 2 is used, the average aspect ratio is 7 μ■
The sintered body had the following fine structure.

なお、試料No2についてそのX線回折チャートを第1
図に示した。
In addition, the X-ray diffraction chart of sample No. 2 is
Shown in the figure.

(発明の効果) 以上詳述した通り、本発明の窒化珪素質焼結体によれば
、過剰酸素を多量に含むSiJ  REz03(希土類
酸化物) −SiO■の単純3元系において、粒界にシ
リコンオキシナイトライド相並びにダイシリケート相の
結晶相を析出させることにより、1500゜Cの高温に
おける耐酸化性を維持しつつ、高温抗折強度を向上させ
ることができる。
(Effects of the Invention) As detailed above, according to the silicon nitride sintered body of the present invention, in the simple ternary system of SiJ REz03 (rare earth oxide) -SiO■ containing a large amount of excess oxygen, By precipitating the silicon oxynitride phase and the disilicate crystal phase, high-temperature bending strength can be improved while maintaining oxidation resistance at a high temperature of 1500°C.

よって、窒化珪素質焼結体の産業用部品、特に熱機関用
部品としての応用をさらに拡げるこができる。
Therefore, the application of the silicon nitride sintered body to industrial parts, particularly as parts for heat engines, can be further expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の窒化珪素質焼結体のX線回折チャート
である。
FIG. 1 is an X-ray diffraction chart of the silicon nitride sintered body of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1) 窒化珪素70乃至99モル%と、希土類元素酸
化物0.1〜5モル%と、過剰酸素(SiO_2換算量
)25モル%以下からなり、過剰酸素/希土類元素酸化
物で表されるモル比が2より大きく、25以下の範囲に
ある窒化珪素質焼結体であって、該焼結体中の粒界の結
晶がシリコンオキシナイトライドおよびダイシリケート
であることを特徴とする窒化珪素質焼結体。
(1) Consisting of 70 to 99 mol% silicon nitride, 0.1 to 5 mol% rare earth element oxide, and 25 mol% or less of excess oxygen (SiO_2 equivalent amount), expressed as excess oxygen/rare earth element oxide A silicon nitride sintered body having a molar ratio of more than 2 and less than or equal to 25, characterized in that grain boundary crystals in the sintered body are silicon oxynitride and disilicate. Quality sintered body.
(2) 前記焼結体の窒化珪素結晶粒子の平均粒径が1
0μm以下である特許請求の範囲第1項記載の窒化珪素
質焼結体。
(2) The average grain size of the silicon nitride crystal grains of the sintered body is 1
The silicon nitride sintered body according to claim 1, which has a diameter of 0 μm or less.
JP2061781A 1989-11-27 1990-03-13 Silicon nitride sintered body Expired - Lifetime JP2811493B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2061781A JP2811493B2 (en) 1989-11-27 1990-03-13 Silicon nitride sintered body
US07/618,480 US5114889A (en) 1989-11-27 1990-11-27 Silicon nitride sintered body and process for preparation thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30861689 1989-11-27
JP1-308616 1989-11-27
JP2061781A JP2811493B2 (en) 1989-11-27 1990-03-13 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03218969A true JPH03218969A (en) 1991-09-26
JP2811493B2 JP2811493B2 (en) 1998-10-15

Family

ID=26402857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061781A Expired - Lifetime JP2811493B2 (en) 1989-11-27 1990-03-13 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2811493B2 (en)

Also Published As

Publication number Publication date
JP2811493B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP2811493B2 (en) Silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2783702B2 (en) Silicon nitride sintered body
JP4069610B2 (en) Surface-coated silicon nitride sintered body
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP2742596B2 (en) Silicon nitride sintered body and method for producing the same
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH06100376A (en) Sintered beta-sialon and its production
JP2691294B2 (en) Silicon nitride sintered body and method for producing the same
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12