JPH03218640A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH03218640A
JPH03218640A JP1389690A JP1389690A JPH03218640A JP H03218640 A JPH03218640 A JP H03218640A JP 1389690 A JP1389690 A JP 1389690A JP 1389690 A JP1389690 A JP 1389690A JP H03218640 A JPH03218640 A JP H03218640A
Authority
JP
Japan
Prior art keywords
crystal growth
film
solid phase
phase crystal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1389690A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tajima
田島 和浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1389690A priority Critical patent/JPH03218640A/en
Publication of JPH03218640A publication Critical patent/JPH03218640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make it possible to form an active region having a uniform particle diameter by a method wherein an impurity is introduced in parts, which are used as source and drain regions, of an amorphous semiconductor film and a heat treatment for generating a solid phase crystal growth in the semiconductor film is performed. CONSTITUTION:An impurity is introduced in parts, which are used as source and drain regions 17a, of an amorphous semiconductor film 14 and a heat treatment for generating a solid phase crystal growth in the film 14 is performed. That is, the solid phase crystal growth in the regions 17a can be accelerated faster than that in an active region 17b by performing the heat treatment after the impurity is introduced in the parts, which are used as the regions 17. Accordingly, the solid phase crystal growth can be generated from the regions 17a toward the region 17b using the nuclei for the crystal growth generated in the regions 17a as seeds. Thereby, the region 17b having a uniform particle diameter is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質半導体膜で固相結晶成長を起こさせて
能動層を形成する薄膜トランジスタの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film transistor in which an active layer is formed by causing solid phase crystal growth in an amorphous semiconductor film.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な薄膜トランジスタの製造方法にお
いて、非晶質半導体膜のうちでソース・ドレイン領域と
すべき部分に不純物を導入してから固相結晶成長を起こ
させることによって、デバイス特性が均一な薄膜トラン
ジスタを短時間で製造することができる様にしたもので
ある。
The present invention provides a method for manufacturing a thin film transistor as described above, in which device characteristics are improved by introducing impurities into portions of an amorphous semiconductor film that are to be source/drain regions and then causing solid phase crystal growth. This makes it possible to manufacture uniform thin film transistors in a short time.

〔従来の技術〕[Conventional technology]

薄膜トランジスタは、集積度の高いSRAMの負荷素子
等として有望視されている。この薄膜トランジスタを製
造するには、非晶質半導体膜で固相結晶成長を起こさせ
てまず能動層を形成し、そノ後にこの能動層のうちでソ
ース・ドレイン領域とすべき部分に固相拡散やイオン注
入によって不純物を導入するのが一般的である(例えば
、特開昭61−127118号公報)。
Thin film transistors are seen as promising as load elements for highly integrated SRAMs and the like. To manufacture this thin film transistor, first an active layer is formed by causing solid-phase crystal growth in an amorphous semiconductor film, and then solid-phase diffusion is performed in the portions of this active layer that are to be source and drain regions. It is common to introduce impurities by ion implantation or ion implantation (for example, Japanese Patent Laid-Open No. 127118/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述の様な従来の方法では、能動層を形成す
るための固相結晶成長時の核の発生及び結晶粒の成長が
遅いので、これらの発生及び成長がランダムに行われる
。このため、活性領域つまりチャネルが形成される領域
の粒径にばらつきが生じる。しかも、粒径の制御は短チ
ャネル化が進むに連れて困難になってきている。
However, in the conventional method as described above, generation of nuclei and growth of crystal grains during solid-phase crystal growth for forming the active layer are slow, so that these generation and growth are performed randomly. This causes variations in grain size in the active region, that is, in the region where the channel is formed. Furthermore, control of particle size is becoming more difficult as channels become shorter.

そして、この様に活性領域の粒径にばらつきが生じると
、リーク電流やスイングや移動度等の薄膜トランジスタ
のデバイス特性にもばらつきが生じる。
When the particle size of the active region varies in this way, the device characteristics of the thin film transistor such as leakage current, swing, and mobility also vary.

また、上述の様な従来の方法では、能動層を形成するた
めの固相結晶成長と、不純物を固相拡散させるかまたは
不純物のイオン注入によって非晶質化した能動層で再び
固相結晶成長を起こさせるためとに、2回の熱処理が必
要である。
In addition, in the conventional method described above, solid phase crystal growth is performed to form the active layer, and solid phase crystal growth is performed again on the active layer that has been made amorphous by solid phase diffusion of impurities or impurity ion implantation. Two heat treatments are required to cause this.

しかも、リーク電流を低減させるために能動層の薄膜化
が進んでいるので、固相結晶成長のための熱処理時間も
20時間程度は必要である。従って、薄膜トランジスタ
を短時間で製造することができない。
Furthermore, since active layers are becoming thinner in order to reduce leakage current, a heat treatment time of about 20 hours is required for solid phase crystal growth. Therefore, thin film transistors cannot be manufactured in a short time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による薄膜トランジスタの製造方法は、非晶質半
導体膜l4のうちでソース・ドレイン17a領域とすべ
き部分に不純物を導入し、前記非晶質半導体膜14で固
相結晶成長を起こさせるための熱処理を施す様にしてい
る。
The method for manufacturing a thin film transistor according to the present invention includes introducing impurities into a portion of the amorphous semiconductor film 14 that is to be the source/drain 17a region, and causing solid phase crystal growth in the amorphous semiconductor film 14. It looks like it's going to be heat treated.

〔作用〕[Effect]

本発明による薄膜トランジスタの製造方法では、ソース
・ドレイン領域17aとすべき部分に不純物を導入して
から熱処理を施しているので、ソース・ドレイン領域1
7aにおける固相結晶成長を活性領域17bよりも速め
ることができる。
In the method for manufacturing a thin film transistor according to the present invention, heat treatment is performed after introducing impurities into the portions to be formed as the source/drain regions 17a.
Solid phase crystal growth in 7a can be made faster than in active region 17b.

従って、ソース・ドレイン頷域17aで発生した結晶成
長の核を種とし、ソース・ドレイン領域17aから活性
領域17bへ向かって固相結晶成長を起こさせることに
よって、均一な粒径を有する活性領域17bを形成する
ことができる。
Therefore, by using the crystal growth nuclei generated in the source/drain nodding region 17a as seeds and causing solid phase crystal growth from the source/drain region 17a toward the active region 17b, the active region 17b has a uniform grain size. can be formed.

〔実施例〕〔Example〕

以下、本発明の第1及び第2実施例を、第1図?第3図
を参照しながら説明する。
The first and second embodiments of the present invention will be described below with reference to FIG. This will be explained with reference to FIG.

第1図は、いわゆるトップゲート型のpチャネル薄膜ト
ランジスタの製造に適用した第1実施例を示している。
FIG. 1 shows a first embodiment applied to the manufacture of a so-called top-gate type p-channel thin film transistor.

この第1実施例では、第IA図に示す様に、石英等から
成る基板11上に厚さ8000人程度のSiOz膜12
と厚さ400人程度の多結晶Si膜13とを順次に形成
する。そして、多結晶St膜13にSi”をI X 1
 0 ”cm−”程度のドーズ量にイオン注入すること
によって、この多結晶Si膜13を非晶質Si膜14に
する。
In this first embodiment, as shown in FIG.
and a polycrystalline Si film 13 having a thickness of about 400 layers are sequentially formed. Then, Si” is applied to the polycrystalline St film 13 by I
This polycrystalline Si film 13 is transformed into an amorphous Si film 14 by ion implantation at a dose of about 0 cm-.

次に、第lB図に示す様に、非晶質Si膜14をアイラ
ンド状にパターニングし、更に、ゲート絶縁膜用のSi
ng膜15とゲート電極用の多結晶Si膜16とを順次
に形成し、これらの多結晶Si膜16とSiO■膜15
とをゲート電極のパターンにバターニングする。
Next, as shown in FIG. 1B, the amorphous Si film 14 is patterned into an island shape, and the Si
NG film 15 and polycrystalline Si film 16 for gate electrode are formed in sequence, and these polycrystalline Si film 16 and SiO2 film 15 are
and is patterned into a gate electrode pattern.

そして、この状態でB゛またはBF2”を5×IQIS
c,−2程度のドーズ量にイオン注入することによって
、非晶質Si膜14のうちでソース・ドレイン領域にす
べき部分と多結晶Siliil6とにこれらのイオンを
導入する。
Then, in this state, set B゛ or BF2'' to 5 x IQIS.
By implanting ions at a dose of about c, -2, these ions are introduced into the portions of the amorphous Si film 14 that are to be made into source/drain regions and into the polycrystalline silicon 6.

次に、600゜C程度の温度の熱処理を10時間程度施
す。第3図は、非晶質Si膜の固相結晶成長の速さを紫
外線反射率の変化で示している。
Next, heat treatment is performed at a temperature of about 600° C. for about 10 hours. FIG. 3 shows the speed of solid phase crystal growth of an amorphous Si film as a change in ultraviolet reflectance.

この第3図から明らかな様に、St”のみがイオン注入
された非晶質Si膜に比べて、St”とB゛とがイオン
注入された非晶質Si膜では、結晶成長の核の発生も結
晶粒の成長も速い。
As is clear from FIG. 3, compared to an amorphous Si film into which only St" is ion-implanted, in an amorphous Si film into which St" and B" are ion-implanted, the number of nuclei for crystal growth is Both generation and grain growth are rapid.

このため、固相結晶成長のための熱処理時間として、前
者では約15時間以上、通常は20時間程度必要である
が、後者では5時間程度で十分である。なお、この様に
固相結晶成長を速めるには、B+をI X 1 0 ”
cm−”程度以上に導入すればよい。
Therefore, the heat treatment time for solid phase crystal growth is approximately 15 hours or more, usually about 20 hours, in the former case, but about 5 hours is sufficient in the latter case. In addition, in order to speed up the solid phase crystal growth in this way, B+ is
It is sufficient to introduce more than about cm-''.

従って、上述の10時間程度の熱処理によって、非晶質
Si膜14のうちでソース・ドレイン領域とすべき部分
で固相結晶成長が起こると同時に、まだ結晶成長の核が
発生していない活性領域とすべき部分へ向かって、ソー
ス・ドレイン領域とすべき部分の端部から結晶粒が成長
する。
Therefore, by the above-mentioned heat treatment for about 10 hours, solid-phase crystal growth occurs in the portions of the amorphous Si film 14 that should become the source/drain regions, and at the same time, the active regions where crystal growth nuclei have not yet occurred. Crystal grains grow from the ends of the portions that are to become source/drain regions.

?の結果、第IC図に示す様に、非晶質Si膜14が多
結晶Si膜l7になってソース・ドレイン領域17a及
び活性領域17bが完成し、しかも活性領域17bも均
一な粒径を有している。なお、上述の熱処理によって、
多結晶Si膜l6でも固相結晶成長が起こる。
? As a result, as shown in FIG. IC, the amorphous Si film 14 becomes a polycrystalline Si film 17 to complete the source/drain regions 17a and the active region 17b, and the active region 17b also has a uniform grain size. are doing. In addition, by the above-mentioned heat treatment,
Solid phase crystal growth also occurs in the polycrystalline Si film 16.

その後、ハロゲンランプやアークランプ等による高温、
短時間アニールを施すことによって、多結晶Silil
7、l6の結晶性の改善や不純物の活性化を行う。
After that, high temperature using halogen lamp or arc lamp, etc.
By applying short-time annealing, polycrystalline Silil
7. Improving the crystallinity of l6 and activating impurities.

第2図は、いわゆるボトムゲート型のpチャネル薄膜ト
ランジスタの製造に適用した第2実施例を示している。
FIG. 2 shows a second embodiment applied to the manufacture of a so-called bottom gate type p-channel thin film transistor.

この第2実施例では、第2A図に示す様に、不純物を含
有しているゲート電極用の多結晶Si膜16をSiO■
膜12上でパターニングし、この状態でゲート絶縁膜用
のSing膜15と多結晶Si膜13とを順次に形成す
る。そして、多結晶Si膜13にSi”をイオン注入す
ることによって、この多結晶Si膜13を非晶質Si膜
14にする。
In this second embodiment, as shown in FIG. 2A, a polycrystalline Si film 16 for the gate electrode containing impurities is replaced with SiO2.
Patterning is performed on the film 12, and in this state, a Sing film 15 for a gate insulating film and a polycrystalline Si film 13 are sequentially formed. Then, by ion-implanting Si'' into the polycrystalline Si film 13, the polycrystalline Si film 13 is made into an amorphous Si film 14.

次に、第2B図に示す様に、非晶質Si膜14とSin
.膜15とをアイランド状にパターニングし、非晶質S
i膜14のうちの活性領域とすべき部分をフォトレジス
トl8で覆う。
Next, as shown in FIG. 2B, the amorphous Si film 14 and the
.. The film 15 is patterned into an island shape, and the amorphous S
A portion of the i-film 14 that is to be an active region is covered with a photoresist 18.

そして、この状態でB゛またはBF. ”をイオン注入
することによって、非晶質Si膜14のうちでソース・
ドレイン頷域とすべき部分にこれらのイオンを導入する
In this state, B' or BF. ” by ion-implanting the source and the amorphous Si film 14.
These ions are introduced into the area that should be the drain area.

次に、600℃程度の温度の熱処理を10時間程度行う
ことによって、第1実施例と同様にして、第2C図に示
す様に、非晶質Si膜14を多結晶Si膜l7にする。
Next, by performing heat treatment at a temperature of about 600° C. for about 10 hours, the amorphous Si film 14 is turned into a polycrystalline Si film 17, as shown in FIG. 2C, in the same manner as in the first embodiment.

その後、エキシマレーザ等による高温、短時間アニール
を施すことによって、多結晶Si膜17、16の結晶性
の改善や不純物の活性化を行う。なお、この高温、短時
間アニールを、第1実施例と同様にハロゲンランプやア
ークランプ等によって行ってもよい。
Thereafter, high-temperature, short-time annealing using an excimer laser or the like is performed to improve the crystallinity of the polycrystalline Si films 17 and 16 and to activate impurities. Note that this high-temperature, short-time annealing may be performed using a halogen lamp, an arc lamp, or the like, as in the first embodiment.

以上の様な第1及び第2実施例で製造したPチャネル薄
膜トランジスタでは、活性領域17bも均一な粒径を有
しているので、リーク電流やスイングや移動度等のデバ
イス特性の均一性が高い。
In the P-channel thin film transistors manufactured in the first and second embodiments as described above, the active region 17b also has a uniform grain size, so device characteristics such as leakage current, swing, and mobility are highly uniform. .

従って、これらのpチャネル薄膜トランジスタを負荷素
子として用いたSRAMでは、製造歩留が高い。
Therefore, SRAMs using these p-channel thin film transistors as load elements have a high manufacturing yield.

〔発明の効果〕〔Effect of the invention〕

本発明による薄膜トランジスタの製造方法では、均一な
粒径を有する活性領域を形成することができるので、リ
ーク電流等のデバイス特性が均一な薄膜トランジスタを
製造することができる。
In the method for manufacturing a thin film transistor according to the present invention, an active region having a uniform grain size can be formed, so a thin film transistor with uniform device characteristics such as leakage current can be manufactured.

また、非晶質半導体膜自体の固相結晶成長とソース・ド
レイン領域の固相結晶成長とを1回で行っており、しか
もこの固相結晶成長が速いので、薄膜トランジスタを短
時間で製造することができる。
In addition, the solid phase crystal growth of the amorphous semiconductor film itself and the solid phase crystal growth of the source/drain regions are performed in one step, and since this solid phase crystal growth is fast, thin film transistors can be manufactured in a short time. I can do it.

【図面の簡単な説明】 第1図及び第2図は本発明の夫々第1及び第2実施例を
順次に示す側断面図、第3図は固相結晶成長の速さを示
すグラフである。 なお図面に用いた符号において、 171−−−−−・・−・一・・・−・・・一非晶質S
i膜17a−・−・−・−・−ソース・ドレイン領域1
7b・−一−−−−一〜・−−一一一活性領域である。
[Brief Description of the Drawings] Figures 1 and 2 are side cross-sectional views sequentially showing the first and second embodiments of the present invention, respectively, and Figure 3 is a graph showing the speed of solid phase crystal growth. . In addition, in the symbols used in the drawings, 171--------...--1...--1 Amorphous S
i film 17a--------source/drain region 1
7b.-1--1 to .--111 active region.

Claims (1)

【特許請求の範囲】 非晶質半導体膜のうちでソース・ドレイン領域とすべき
部分に不純物を導入し、 前記非晶質半導体膜で固相結晶成長を起こさせるための
熱処理を施す薄膜トランジスタの製造方法。
[Claims] Manufacture of a thin film transistor by introducing impurities into portions of an amorphous semiconductor film that are to be source/drain regions, and performing heat treatment to cause solid phase crystal growth in the amorphous semiconductor film. Method.
JP1389690A 1990-01-24 1990-01-24 Manufacture of thin film transistor Pending JPH03218640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1389690A JPH03218640A (en) 1990-01-24 1990-01-24 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1389690A JPH03218640A (en) 1990-01-24 1990-01-24 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPH03218640A true JPH03218640A (en) 1991-09-26

Family

ID=11845940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1389690A Pending JPH03218640A (en) 1990-01-24 1990-01-24 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPH03218640A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318919A (en) * 1990-07-31 1994-06-07 Sanyo Electric Co., Ltd. Manufacturing method of thin film transistor
US6534832B2 (en) 1993-09-07 2003-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device and glass member and substrate member having film comprising aluminum, nitrogen and oxygen
US7038302B2 (en) 1993-10-12 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Glass substrate assembly, semiconductor device and method of heat-treating glass substrate
US7148094B2 (en) 1993-06-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318919A (en) * 1990-07-31 1994-06-07 Sanyo Electric Co., Ltd. Manufacturing method of thin film transistor
US7148094B2 (en) 1993-06-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
US6534832B2 (en) 1993-09-07 2003-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device and glass member and substrate member having film comprising aluminum, nitrogen and oxygen
US7038302B2 (en) 1993-10-12 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Glass substrate assembly, semiconductor device and method of heat-treating glass substrate

Similar Documents

Publication Publication Date Title
JPH03218640A (en) Manufacture of thin film transistor
JPS63205944A (en) Manufacture of mos integrated circuit
JPH05121681A (en) Manufacture of cmos circuit element and soi mos fet
JP2004055838A (en) Method for manufacturing thin film transistor
JPH03227525A (en) Manufacture of thin film transistor
JPH06349856A (en) Thin-film transistor and its manufacture
JP3057253B2 (en) Method for forming boron-containing semiconductor layer
KR970053902A (en) Process time reduction semiconductor manufacturing method
JPH02298074A (en) Mos transistor and manufacture thereof
JPH0252419A (en) Manufacture of semiconductor substrate
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPS61156858A (en) Manufacture of cmos fet
JPH042163A (en) Manufacture of mask rom
JPH03157941A (en) Manufacture of mis type semiconductor device
JPH03283626A (en) Manufacture of transistor
JP2005056900A (en) Method of manufacturing semiconductor device
JPH0684944A (en) Thin film transistor
JPS63236310A (en) Semiconductor device and manufacture thereof
JPH04249315A (en) Manufacture of semiconductor element
JPH0458524A (en) Manufacture of semiconductor device
JP2760449B2 (en) Semiconductor thin film manufacturing method
JPH0254538A (en) Manufacture of p-channel thin film transistor
JPH03200319A (en) Formation of poly-crystalline silicon
JPS61287160A (en) Manufacture of mos type semiconductor device
JP2990806B2 (en) Method for manufacturing semiconductor device