JPS61156858A - Manufacture of cmos fet - Google Patents

Manufacture of cmos fet

Info

Publication number
JPS61156858A
JPS61156858A JP59277447A JP27744784A JPS61156858A JP S61156858 A JPS61156858 A JP S61156858A JP 59277447 A JP59277447 A JP 59277447A JP 27744784 A JP27744784 A JP 27744784A JP S61156858 A JPS61156858 A JP S61156858A
Authority
JP
Japan
Prior art keywords
well
drain
source
silica
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59277447A
Other languages
Japanese (ja)
Inventor
Hitoshi Abiko
安彦 仁
Keimei Mikoshiba
御子柴 啓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277447A priority Critical patent/JPS61156858A/en
Publication of JPS61156858A publication Critical patent/JPS61156858A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the titled device in which elements are refined by a simple process, by a method wherein silica containing a required concentration of impurity is applied to the substrate and heat-treated. CONSTITUTION:A P-well 2 is formed in the N-type Si substrate 1, and an oxide film 3 for element isolation is grown; then, a gate oxide film 4 and a gate electrode poly Si 5 are grown. Next, the substrate surface 6 of the source and drain is exposed by etching the poly Si 5 and the gate oxide film 4, and silica 7 containing an N-type impurity at a concentration of 1X10<20>cm<-3> or more is applied. The silica 7 is selectively removed by excluding the NMOS region, and the whole is coated with a silica 8 containing a P-type impurity at a concentration of 1X10<20>cm<-3> or more. On irradiation with e.g. halogen lamp light and heat treatment at 900 deg.C or more for 90sec or less, the source-drain donor diffused layers 9 of the NMOSFET and its source-drain acceptor diffused layers 10 are formed out of the silicas 7 and 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は相補型MOS電界効果トランジスタの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a complementary MOS field effect transistor.

(従来の技術) 従来、CMOS型O8ンジスタを製造する場合、ゲート
電極形成後PチャネルMOSトランジスタ(PMOS)
領域及びNチャネルMOS)う/ジスタ(NMOS)領
域をマスクして、それぞれドナーおよびアクセプターを
イオン注入していた。
(Prior art) Conventionally, when manufacturing a CMOS type O8 transistor, a P-channel MOS transistor (PMOS) is formed after forming a gate electrode.
The donor and acceptor regions were masked and implanted with donor and acceptor ions, respectively.

(発明が解決しようとする問題点) しかし、これではPMOS領域、あるいはNMOS領域
を選択的にマスクするため2回の7オトリングラフ工程
を必要とする。また、イオン注入時のマスク材料として
フォトレジストを用いた場合、イオン注入時に7オトレ
ジストからガスが発生し、イオン注入装置の真空度が劣
イしするという問題がある。更に、マスク材料としてフ
ォトレジストの代わりにM等を用いた場合、素子微細化
の点で不゛利である。更にまた、素子微細化の点から見
ると、ソース・ドレインの不純物拡散層は浅くする必要
がある。そのため、不純物がイオン注入後のアニールで
あまり再拡散しないように、アニール時間を短くした抄
、アニール温度を低温化する種々の方法が提案されてい
る。しかし、これでは、イオン注入時よりも浅い拡散層
を形成するのは不可能である。また、イオン注入時の注
入エネルギーを減少するにしても、イオン注入装置能力
、生産性の点から限界があるという問題がある。
(Problems to be Solved by the Invention) However, this requires two 7-otoline graph steps to selectively mask the PMOS region or the NMOS region. Furthermore, when a photoresist is used as a mask material during ion implantation, there is a problem in that gas is generated from the photoresist during ion implantation and the degree of vacuum in the ion implantation apparatus is deteriorated. Furthermore, if M or the like is used instead of photoresist as a mask material, it is disadvantageous in terms of device miniaturization. Furthermore, from the point of view of device miniaturization, it is necessary to make the source/drain impurity diffusion layers shallow. Therefore, various methods have been proposed in which the annealing time is shortened and the annealing temperature is lowered so that the impurities are not re-diffused during the annealing after ion implantation. However, with this method, it is impossible to form a diffusion layer shallower than that during ion implantation. Further, even if the implantation energy during ion implantation is reduced, there is a problem in that there is a limit in terms of the capacity of the ion implanter and the productivity.

本発明の目的は、上記欠点を除去し、浅い拡散層をより
簡単な工程で実現し、素子微細化に適した相補型MOS
電界効果トランジスタの製造方法を提供することにある
The purpose of the present invention is to eliminate the above-mentioned drawbacks, realize a shallow diffusion layer through a simpler process, and create a complementary MOS suitable for device miniaturization.
An object of the present invention is to provide a method for manufacturing a field effect transistor.

(問題点を解決するための手段) 本発明の相補型MOS電界効果トランジスタの製造方法
は、一導電型半導体基板に反対導電型のウェルを形成す
る工程と、前記ウェルの表面及びウェル以外の前記半導
体基板の表面にゲート電極を形成する工程と、前記ウェ
ル及びウェル以外の半導体基板表面のうちソース・ドレ
インとなる領域の表面を露出させる工程と、前記半導体
基板全面に濃度I X 101020a”以上の一導電
型(または反対導電型)の不純物を含む第1の絶縁膜を
形成する工程と、前記ウェル(またはウェル以外)の上
にのみ前記第1の絶縁膜を残すように選択除去する工程
と、全面に濃度lX10cm  以上の反対導電型(ま
たは一導電型)の不純物を含む第2の絶縁膜を形成する
工程と、900℃以上で90秒以下の熱処理を行って前
記半導体基板にソース・ドレイン領域を形成する工程と
を含んで構成される。
(Means for Solving the Problems) A method for manufacturing a complementary MOS field effect transistor of the present invention includes a step of forming a well of an opposite conductivity type in a semiconductor substrate of one conductivity type, and a step of forming a well of an opposite conductivity type on a semiconductor substrate of one conductivity type, and a step of forming a gate electrode on the surface of the semiconductor substrate; a step of exposing the surface of the well and regions of the semiconductor substrate other than the well that will become the source/drain; a step of forming a first insulating film containing impurities of one conductivity type (or an opposite conductivity type); and a step of selectively removing the first insulating film so as to leave it only on the well (or other than the well). , a step of forming a second insulating film containing impurities of opposite conductivity type (or one conductivity type) at a concentration of 1×10 cm or more over the entire surface, and heat treatment at 900° C. or higher for 90 seconds or less to form source/drain regions on the semiconductor substrate. The method includes a step of forming a region.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

第1図(&)〜(ロ)は本発明の第1の実施例を説明す
るための工程順に示した断面図である。
FIGS. 1(a) to 1(b) are cross-sectional views shown in order of steps for explaining a first embodiment of the present invention.

まず、第1図(JL)に示すように、不純物濃度1×1
o 15C−”’S程度のN型シリコン基板1に、NM
OSFETが形成される領域のみ表面不純物濃度が1×
10cm〜1×10cm 程度のPウェル2を形成する
First, as shown in Figure 1 (JL), the impurity concentration is 1×1.
o N-type silicon substrate 1 of about 15C-'''S, NM
The surface impurity concentration is 1× only in the area where the OSFET is formed.
A P well 2 of approximately 10 cm to 1×10 cm is formed.

次に、第1図中)に示すように、素子分離用の厚い酸化
膜3を選択酸化法等により成長し、ゲート酸化膜4を数
百芙、ゲート電極用ポリシリコン5を数千又成長する。
Next, as shown in Figure 1), a thick oxide film 3 for element isolation is grown by selective oxidation, etc., several hundred layers of gate oxide film 4, and several thousand layers of polysilicon 5 for gate electrodes. do.

次に、第1図(e)に示すように、フォトリソグラフィ
によりゲートパターンをパターニングした後、ポリシリ
コン5、ゲート酸化膜4をエツチングで除去し、ソース
ドレインの基板表面6を露出する。
Next, as shown in FIG. 1(e), after patterning a gate pattern by photolithography, the polysilicon 5 and gate oxide film 4 are removed by etching to expose the substrate surface 6 of the source and drain.

次に、第1図(d)に示すように、例えば濃度1×lQ
cm  以上、望ましくはlX10cm  程度のN型
不純物を含むシリカ7を塗布する。
Next, as shown in FIG. 1(d), for example, a concentration of 1×lQ
Silica 7 containing an N-type impurity of at least 1 cm 2 , preferably about 1×10 cm 2 , is coated.

次に、第1図(e)に示すように、フォトリングラフイ
ーによりシリカ7をNMOS領域を除いて全て選択的に
除去する。
Next, as shown in FIG. 1(e), all the silica 7 except for the NMOS region is selectively removed by photophosphorography.

次に、第1図(f)に示すように、全面に例えば濃度I
X10em  以上望ましくはlX10cm程度P型不
純物を含むシリカ8を塗布する。
Next, as shown in FIG. 1(f), for example, the concentration I is applied to the entire surface.
Silica 8 containing P-type impurities is preferably coated to a thickness of about 1×10 cm or more.

次に、第1図(ロ)に示すように、例えばタングステン
ハロゲンランプ光を照射して、例えば900℃以上で9
0秒以下、望ましくは1000℃で10秒間程度の熱処
理をしてシリカ7及び8からそれぞれN型不純物及びP
型不純物を基板lに拡散させ、NMOSFETのソース
ドレイン・ドナー拡散層9及びPMOSFETのソース
ドレイン・アクセプター拡散層10を形成する。
Next, as shown in FIG.
N-type impurities and P impurities are removed from silica 7 and 8 by heat treatment for 0 seconds or less, preferably at 1000°C for about 10 seconds.
Type impurities are diffused into the substrate 1 to form the source/drain/donor diffusion layer 9 of the NMOSFET and the source/drain/acceptor diffusion layer 10 of the PMOSFET.

第2図に本発明の第2の実施例を説明するための断面図
である。
FIG. 2 is a sectional view for explaining a second embodiment of the present invention.

第1図(a)〜第1図(e)で示した工程までは第1の
実施例と同様に行う。第1図(e)に示したようなゲー
ト電極形成後に、第2図に示すように、例えば濃度1 
×i o20cm−3以上、望ましくは1刈0”cm−
3程度のP型不純物を含むシリカ21を塗布し、PMO
S領域を除いて選択的に除去する。次に、例えば濃度I
X10Cm  以上、望ましくは1×1022cm  
程度N型不純物を含むシリカ22を塗布して熱処理をす
ると、第1の実施例と同じ結果が得られる。
The steps shown in FIG. 1(a) to FIG. 1(e) are performed in the same manner as in the first embodiment. After forming the gate electrode as shown in FIG. 1(e), as shown in FIG.
×i o20cm-3 or more, preferably 0"cm-
Apply silica 21 containing P-type impurity of about 3 to
It is selectively removed except for the S region. Next, for example, the concentration I
X10cm or more, preferably 1x1022cm
If silica 22 containing N-type impurities is applied and heat treated, the same results as in the first embodiment can be obtained.

上記の第1及び第2の実施例ではシリカを塗布したが、
気相成長法等信の方法により不純物を含む絶縁膜を形成
しても同様の結果が得られることは言うまでもない。ま
た、第1及び第2の実施例では、900℃以上で90秒
以下の熱処理を行う方法として、タングステンハロゲン
ランプ光の照射を行ったが、他の方法によっても勿論同
様の結果が得られる。
In the first and second examples above, silica was applied, but
It goes without saying that similar results can be obtained even if an insulating film containing impurities is formed by a method such as vapor phase growth. Further, in the first and second embodiments, irradiation with tungsten halogen lamp light was used as a method for heat treatment at 900° C. or higher and for 90 seconds or less, but the same results can of course be obtained by other methods.

(発明の効果) 以上説明したように、本発明によれば、従来よりも浅い
ンースドレイ・ン不純物拡散層を簡単な工程で形成でき
、素子微細化に適した相補型MOS電界効果トランジス
タを製造することができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to form a shallower drain impurity diffusion layer in a simpler process than in the past, and to manufacture a complementary MOS field effect transistor suitable for device miniaturization. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明の第1の実施例を説明す
るための工程順に示した断面図、第2図は本発明の第2
の実施例を説明するだめの断面図である。 1・・・・−・Nfiシリコン基板、2・・・・・・P
ウェル、3・・・・・・酸化膜、4・・・・・・ゲート
酸化膜、5・・・・・・ポリシリコン、6−・・・・・
表面、7,8・・・・・・7リカ、9・・・・・・N型
不純物拡散層、10・・・・・・P型不純物拡散層、2
1.22・・・・・・シリカ。 1(ゝ 代理人 弁理士  内 原   CIl荊1し 筋1図
FIGS. 1(a) to (g) are cross-sectional views showing the process order for explaining the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the second embodiment of the present invention.
FIG. 1...-Nfi silicon substrate, 2...P
well, 3... oxide film, 4... gate oxide film, 5... polysilicon, 6-...
Surface, 7, 8...7 Rica, 9...N-type impurity diffusion layer, 10...P-type impurity diffusion layer, 2
1.22...Silica. 1 (Representative Patent Attorney Uchihara CIl 1 line 1 figure

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型半導体基板に反対導電型のウェルを形成
する工程と、前記ウェルの表面及びウェル以外の前記半
導体基板の表面にゲート電極を形成する工程と、前記ウ
ェル及びウェル以外の半導体基板表面のうちソース・ド
レインとなる領域の表面を露出させる工程と、前記半導
体基板全面に濃度1×10^2^0cm^−^3以上の
一導電型(または反対導電型)の不純物を含む第1の絶
縁膜を形成する工程と、前記ウェル(またはウェル以外
)の上にのみ前記第1の絶縁膜を残すように選択除去す
る工程と、全面に濃度1×10^2^0cm^−^3以
上の反対導電型(または一導電型)の不純物を含む第2
の絶縁膜を形成する工程と、900℃以上で90秒以下
の熱処理を行って前記半導体基板にソース・ドレイン領
域を形成する工程とを含むことを特徴とする相補型MO
S電界効果トランジスタの製造方法。
(1) A step of forming a well of an opposite conductivity type on a semiconductor substrate of one conductivity type, a step of forming a gate electrode on the surface of the well and a surface of the semiconductor substrate other than the well, and a step of forming the well and the semiconductor substrate other than the well. A step of exposing the surface of the region that will become the source/drain on the surface, and a step of exposing the surface of the region that will become the source/drain; a step of forming a first insulating film, a step of selectively removing the first insulating film so as to leave it only on the well (or other than the well), and a step of selectively removing the first insulating film so as to leave it only on the well (or other than the well); A second containing impurities of three or more opposite conductivity types (or one conductivity type)
A complementary MO comprising the steps of: forming an insulating film; and forming source/drain regions on the semiconductor substrate by performing heat treatment at 900° C. or higher for 90 seconds or less.
A method for manufacturing an S field effect transistor.
(2)熱処理が光照射により行われる特許請求の範囲第
(1)項記載の相補型MOS電界効果トランジスタの製
造方法。
(2) A method for manufacturing a complementary MOS field effect transistor according to claim (1), wherein the heat treatment is performed by light irradiation.
JP59277447A 1984-12-28 1984-12-28 Manufacture of cmos fet Pending JPS61156858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277447A JPS61156858A (en) 1984-12-28 1984-12-28 Manufacture of cmos fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277447A JPS61156858A (en) 1984-12-28 1984-12-28 Manufacture of cmos fet

Publications (1)

Publication Number Publication Date
JPS61156858A true JPS61156858A (en) 1986-07-16

Family

ID=17583699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277447A Pending JPS61156858A (en) 1984-12-28 1984-12-28 Manufacture of cmos fet

Country Status (1)

Country Link
JP (1) JPS61156858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166220A (en) * 1986-12-26 1988-07-09 Toshiba Corp Manufacture of semiconductor device
JPS6464315A (en) * 1987-09-04 1989-03-10 Toshiba Corp Manufacture of semiconductor integrated circuit
JPS6484746A (en) * 1987-09-28 1989-03-30 Ricoh Kk Semiconductor device
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898203A (en) * 1909-12-11 1999-04-27 Kabushiki Kaisha Toshiba Semiconductor device having solid phase diffusion sources
JPS63166220A (en) * 1986-12-26 1988-07-09 Toshiba Corp Manufacture of semiconductor device
JPS6464315A (en) * 1987-09-04 1989-03-10 Toshiba Corp Manufacture of semiconductor integrated circuit
JPS6484746A (en) * 1987-09-28 1989-03-30 Ricoh Kk Semiconductor device
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source
US5766965A (en) * 1992-05-29 1998-06-16 Yoshitomi; Takashi Semiconductor device and method of manufacturing the same
US5903027A (en) * 1992-05-29 1999-05-11 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Similar Documents

Publication Publication Date Title
JPH0212836A (en) Manufacture of semiconductor device
JPH05315561A (en) Manufacture of semiconductor device
JPS6052594B2 (en) Manufacturing method of semiconductor devices
JPH0974072A (en) Manufacture of semiconductor device
JPS61156858A (en) Manufacture of cmos fet
JPH02264464A (en) Manufacture of semiconductor device
KR100253569B1 (en) Manufacture of semiconductor device
US6881617B2 (en) Manufacturing method for bipolar gate CMOS semiconductor device
JP3092634B2 (en) Method for manufacturing thin film transistor
JPH05226593A (en) Manufacture of semiconductor device
JPH09223793A (en) Semiconductor device and its manufacture
JPH0831601B2 (en) Method for manufacturing semiconductor device
JPH02306663A (en) Manufacture of semiconductor device
JPH1027855A (en) Manufacture of cmos transistor
KR960039273A (en) Manufacturing method of semiconductor device
JP2633525B2 (en) Method for manufacturing semiconductor device
JPS6043028B2 (en) Manufacturing method of semiconductor device
US20070148841A1 (en) Method for forming transistor in semiconductor device
KR100207547B1 (en) Method of fabricating cmos
JPH04257267A (en) Manufacture of soi-structured semiconductor device
JP2005109388A (en) Semiconductor device and its manufacturing method
JP2005045026A (en) Manufacturing method of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH0366146A (en) Manufacture of semiconductor device
JPH03289174A (en) Manufacture of mos transistor using varied channel