JPH03215625A - Production of superplastic duplex stainless steel and hot working method therefor - Google Patents

Production of superplastic duplex stainless steel and hot working method therefor

Info

Publication number
JPH03215625A
JPH03215625A JP881590A JP881590A JPH03215625A JP H03215625 A JPH03215625 A JP H03215625A JP 881590 A JP881590 A JP 881590A JP 881590 A JP881590 A JP 881590A JP H03215625 A JPH03215625 A JP H03215625A
Authority
JP
Japan
Prior art keywords
stainless steel
superplastic
duplex stainless
temperature
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP881590A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP881590A priority Critical patent/JPH03215625A/en
Publication of JPH03215625A publication Critical patent/JPH03215625A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a duplex stainless steel capable of superplastic deformation at high strain rate by subjecting a stock, such as Cr-Ni stainless steel plate or bar, to solution treatment and then to working under specific conditions. CONSTITUTION:For example, a plate stock, a bar stock, etc., composed of a duplex stainless steel having a bar basic composition consisting of, by weight, 4-18% Ni, 15-35% Cr, and the balance Fe are heated up to (a temp. where the structure is formed into a ferritic single phase) - 100 deg.C or above, held for 30-60min, and cooled rapidly by means of water cooling, etc., to undergo solution treatment, or, a molten metal of this stainless steel is cast and then solidified from a temp. where the structure is practically formed into a ferritic single phase down to 700 deg.C at >=3 deg.C/sec cooling rate. A slab or cast slab of the above stainless steel is worked at <=700 deg.C at >=50% draft, by which a superplastic duplex stainless steel slab can be produced. By subjecting this steel slab to heating up to 900-1100 deg.C at >=0.5 deg.C/sec temp.-rise rate, to soaking treatment for <10min, and then to deformation at a strain rate of 10<-2>S<-1> to 10<2>S<-1>, superplastic working can be carried out at high strain rate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた超塑性を示す2相ステンレス鋼の製造
方法およびその熱間加工方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing duplex stainless steel exhibiting excellent superplasticity and a method for hot working the same.

(従来の技術) 一般に、2相ステンレス鋼は、その最終工程で1000
〜1100℃近辺に加熱後急冷する溶体化処理を施して
使用され、その状態でα相とT相の2相を呈している。
(Prior Art) In general, duplex stainless steel has a
It is used after being subjected to solution treatment in which it is heated to around 1100°C and then rapidly cooled, and in that state it exhibits two phases, an α phase and a T phase.

このような2相ステンレス鋼は、耐食性に優れた効果を
発揮するのみならず、強度、靭性および溶接性などにお
いても優れた性質を具備することが知られており、近年
、種々の分野での需要が増大している。しかし、2相組
織であるためいわゆる難加工材に属するものとしても知
られているように、その加工の面から用途が著しく制限
されることがあった。
Duplex stainless steels are known to not only exhibit excellent corrosion resistance, but also have excellent properties such as strength, toughness, and weldability, and have recently been used in various fields. Demand is increasing. However, because it has a two-phase structure, it is also known to belong to so-called difficult-to-process materials, and its applications have been severely limited in terms of processing.

そこで2相ステンレス鋼の有する上記特性を備えた製品
の量産手段を模索した今までの研究結果をふまえ、例え
ば熱間加工に有害なSやOなどの不純物を低減する対策
がとられるようになってきて、管や板などの形状の単純
なものや、比較的簡単な形状の鍛造品の製造は可能とな
ってきているが、複雑な形状の部品、例えば管継手やバ
ルブ等の製造は極めて困難であり、未だに能率や歩留の
悪い機械加工や鋳物に頼らざるを得ないのが現状であっ
た。
Therefore, based on the results of previous research seeking ways to mass-produce products with the above-mentioned properties of duplex stainless steel, measures have been taken to reduce impurities such as S and O, which are harmful to hot working. In recent years, it has become possible to manufacture simple shapes such as pipes and plates, as well as forged products with relatively simple shapes, but it is extremely difficult to manufacture parts with complex shapes, such as pipe fittings and valves. The current situation is that we still have to rely on machining and casting, which are difficult and have low efficiency and yield.

(発明が解決しようとする課題) ところで、このような難加工材を複雑な形状に加工する
方法として近年その研究の進歩が著しい超塑性加工技術
を利用した方法の適用が2相ステンレス鋼に対しても研
究されている。本発明者は成分系と適当な前処理を選べ
ば10−’s−’の歪速度で2000%以上の加工変形
が可能であり、10−’sという比較的速い歪速度でも
200%程度の超塑性変形が可能なことを明らかにした
(鉄と鋼、vol.70、Nα15、p.2168〜2
175)。その結果、今日では、二相ステンレス鋼の超
塑性加工や超塑性固相接合への適用が活発に図られるよ
うになってきた。
(Problem to be Solved by the Invention) By the way, as a method for processing such difficult-to-process materials into complex shapes, the application of a method using superplastic processing technology, whose research has made remarkable progress in recent years, has been proposed for duplex stainless steel. is also being studied. The inventor of the present invention found that if the component system and appropriate pretreatment are selected, processing deformation of more than 2000% is possible at a strain rate of 10-'s-', and even at a relatively high strain rate of 10-'s, processing deformation of about 200% can be achieved. It was revealed that superplastic deformation is possible (Tetsu to Hagane, vol.70, Nα15, p.2168-2
175). As a result, today, efforts are being made to actively apply duplex stainless steel to superplastic processing and superplastic solid phase joining.

しかしながら従来の材料ではやはり通常の熱間加工に比
べて変形速度が遅く、量産工程に適さないという難点が
あった。
However, conventional materials still have the disadvantage that their deformation speed is slow compared to normal hot working, making them unsuitable for mass production processes.

本発明は上述のような問題を解決すべくなされたもので
あり、その主たる目的は二相ステンレス鋼の通常の熱間
加工に比べ遜色のない速い歪速度での超塑性変形が可能
な高歪速度超塑性二相ステンレス鋼の製造方法およびそ
の方法で得た綱に適した熱間加工方法を提供することに
ある。
The present invention was made in order to solve the above-mentioned problems, and its main purpose is to develop a high-strain system capable of superplastic deformation at a high strain rate comparable to that of normal hot working of duplex stainless steel. The object of the present invention is to provide a method for producing a superplastic duplex stainless steel and a hot working method suitable for the steel obtained by the method.

(課題を解決するための手段) 本発明者は、前記のような観点から鋭意研究を重ね、従
来言われているところの二相混合組織による微細粒超塑
性のみでは上記目的の達成が困難であるが、加工変形中
のδ−フェライト→オーステナイト (γ)相への変態
を同時に利用すれば超塑性現象が大幅に加速されること
、さらに適当な前処理によって上記変態速度が加速され
、さらにはより微細化が可能な状態で上記変態が進行し
超塑性現象が一層加速されることを知見して本発明を完
成した。
(Means for Solving the Problems) The present inventor has conducted extensive research from the above-mentioned viewpoints, and has found that it is difficult to achieve the above-mentioned objectives with only fine-grained superplasticity due to a two-phase mixed structure, which has been conventionally said. However, if the transformation from δ-ferrite to austenite (γ) phase during processing deformation is simultaneously used, the superplastic phenomenon can be greatly accelerated, and furthermore, the above transformation rate can be accelerated by appropriate pretreatment, and The present invention was completed based on the finding that the above transformation progresses in a state where further refinement is possible and the superplastic phenomenon is further accelerated.

かくして、本発明の要旨とするところは、Pe、C『、
Niを主成分とする二相ステンレス鋼を実質的にフェラ
イト単相となる温度−100℃以上の温度に加熱して、
溶体化の後、700℃以下で50%以上の加工を施すこ
とを特徴とする超塑性二相ステンレス鋼の製造方法であ
る。
Thus, the gist of the present invention is that Pe, C',
Heating duplex stainless steel mainly composed of Ni to a temperature of -100°C or higher at which it becomes substantially single-phase ferrite,
This is a method for producing superplastic duplex stainless steel, which is characterized in that, after solution treatment, processing is performed by 50% or more at 700° C. or lower.

また、別の面からは、本発明は、Fe, Ni, Cr
を主成分とする二相ステンレス鋼を溶融、凝固後、実質
的にフェライト単相となる温度から700℃までの冷却
速度が3℃/s以上となるようにして鋳造した鋼片に7
00 ’C以下で50%以上の加工を施すことを待徴と
する超塑性二相ステンレス鋼の製造方法である。
Moreover, from another aspect, the present invention provides Fe, Ni, Cr
After melting and solidifying duplex stainless steel whose main component is ferrite, the steel billet is cast at a cooling rate of 3°C/s or more from the temperature at which it becomes substantially single-phase ferrite to 700°C.
This is a method for producing superplastic duplex stainless steel that requires processing of 50% or more at temperatures below 00'C.

このように本発明により製造された超塑性二相ステンレ
ス鋼は、900〜1100℃に加熱後10−2s−’以
上102s−’以下の歪速度で変形することにより超塑
性現象を効果的に現出させることが可能となる.また、
その際に、熱間加工温度へ加熱する際の昇温速度を0.
5℃/S以上としかつ変形までの均熱時間を10分未満
とすることによって、超塑性現象をより一層効果的に現
出させることができる。
As described above, the superplastic duplex stainless steel manufactured according to the present invention effectively exhibits the superplastic phenomenon by deforming at a strain rate of 10-2 s-' to 102 s-' after heating to 900-1100°C. It becomes possible to make it come out. Also,
At that time, the temperature increase rate when heating to the hot working temperature was set to 0.
By setting the heating temperature to 5° C./S or more and setting the soaking time until deformation to less than 10 minutes, the superplastic phenomenon can be brought out even more effectively.

(作用) 本発明の構成と作用について説明する。(effect) The structure and operation of the present invention will be explained.

本発明により優れた特性を発揮するための二相ステンレ
ス鋼はFe, Cr, Niを主成分とするものである
ならいずれでもよいが、好ましくは超塑性変形温度であ
る1000℃近辺での熱平衡状態においてδ−フェライ
ト地中にT相が30〜50%(体積%)混在するものが
よい。
The duplex stainless steel for exhibiting excellent properties according to the present invention may be any stainless steel as long as it has Fe, Cr, or Ni as its main components, but it is preferably in a thermal equilibrium state at around 1000°C, which is the superplastic deformation temperature. It is preferable that 30 to 50% (volume %) of T phase is mixed in the δ-ferrite ground.

対象となる綱は、好ましくは.Ni:4〜18%、Cr
:15〜35%、残部Feから成る基本組成を有するも
のである。さらにSi≦5%およびMn≦5%の一種以
上を含有していてもよい。なお、以下にあって特にこと
わりのない限り、r%」は「重量%」である。
The target rope is preferably . Ni: 4-18%, Cr
:15 to 35%, the balance being Fe. Furthermore, it may contain one or more of Si≦5% and Mn≦5%. In the following, unless otherwise specified, "r%" means "wt%".

また必要により、Mo≦6%、Cu≦1%、Ti≦0.
5 %、Zr≦0.5 %、Nb≦0.5 %、■≦0
.5 %、W≦1%、C≦0.1%、N≦0.8%、お
よびB≦0.01%のうちの一種または二種以上を含有
し、場合によっては、さらにReやCaをも少量含有し
ていてもよい。
If necessary, Mo≦6%, Cu≦1%, Ti≦0.
5%, Zr≦0.5%, Nb≦0.5%, ■≦0
.. 5%, W≦1%, C≦0.1%, N≦0.8%, and B≦0.01%, and in some cases, further contains Re and Ca. It may also contain a small amount.

これらのうち、固熔Nはδ→T変態を促進し、超塑性を
加速するので0.05〜0.25%添加するのが好まし
く、逆に窒化物としてNを固溶してしまうTiXZr.
 Nb、■は余り添加しない方が好ましい。
Among these, solid N promotes δ→T transformation and accelerates superplasticity, so it is preferable to add 0.05 to 0.25%.On the contrary, TiXZr.
It is preferable not to add too much Nb and ■.

次に、本発明にがかる超塑性二相ステンレス鋼の製造方
法の各工程について説明する。
Next, each step of the method for producing superplastic duplex stainless steel according to the present invention will be explained.

まず、上記組成を有する鋼は通常の工程で熔解した後、
連続鋳造法やインゴノト法によって鋳塊とし、分塊圧延
や熱間圧延によって鋼板、棒鋼あるいは管材とする。
First, the steel having the above composition is melted in a normal process, and then
It is made into an ingot by continuous casting method or ingonoto method, and made into steel plate, steel bar or pipe material by blooming rolling or hot rolling.

このようにして用意された素材を、次いで、フェライト
単相となる温度−100℃以上の温度に加熱するが、こ
れはそれによってδ−フェライト相を増し超塑性変形中
のδ一T変態量を充分確保するためである。したがって
、この温度はδ単相域であることが好ましく、γが少量
残存するフェライト単相となる温度−100″C以上で
も構わない。
The material prepared in this way is then heated to a temperature above -100°C at which it becomes a single ferrite phase, which increases the δ-ferrite phase and reduces the amount of δ-T transformation during superplastic deformation. This is to ensure sufficient capacity. Therefore, this temperature is preferably in the δ single phase range, and may be -100''C or higher, at which the ferrite single phase with a small amount of γ remains.

この温度での保持時間は特に制限されないが、通常は、
30〜60分間保持後、急冷して溶体化する.このよう
に加熱後、溶体化してから、通常は水冷などによって7
00℃以下に象,冷し、700℃以下で50%以上の加
工を行う。これは加工を与えることによって超塑性変形
温度への加熱中もしくは変形中に加工によって導入した
転位を核としてTを6−フェライト粒内に微細に析出さ
せ、かつ変態速度も上昇させて高歪速度超塑性を可能に
するためである。
The holding time at this temperature is not particularly limited, but usually
After holding for 30 to 60 minutes, rapidly cool to form a solution. After heating in this way, it is dissolved and then cooled with water, etc. for 7
The material is cooled to below 00°C, and processed by 50% or more at below 700°C. This is because by applying processing, T is finely precipitated within the 6-ferrite grains using dislocations introduced by processing during heating to the superplastic deformation temperature or during deformation, and the transformation rate is also increased, resulting in a high strain rate. This is to enable superplasticity.

加工温度の上限を700℃としたのはそれを超えた温度
では回復により加工歪が解消する他、δ→T変態が進行
してしまうからである。また、加工度は高い方が好まし
<50%未満だと効果がないので下限を50%とした。
The upper limit of the working temperature was set at 700°C because at temperatures exceeding this, not only the working strain is eliminated by recovery, but also the δ→T transformation progresses. Further, the higher the degree of processing, the better, and if it is less than 50%, there is no effect, so the lower limit was set at 50%.

好ましくは室温で50%以上の冷間加工を施す。Preferably, 50% or more cold working is performed at room temperature.

ここに、上記加工度は板厚圧下量で示す。Here, the above-mentioned degree of processing is indicated by the amount of plate thickness reduction.

以上の場合、素材は一旦板、棒、管などの加工素材に加
工してから本発明によって、超塑性を付与すべく上述の
条件で加熱、加工するのである。
In the above case, the raw material is first processed into a processed material such as a plate, rod, or tube, and then heated and processed under the above-mentioned conditions in order to impart superplasticity according to the present invention.

一方、本発明の別の変更例によれば、鋳造プロセスと組
み合わせた前処理法も可能である.この場合、当該鋼を
鋳造、凝固後δ単相となる温度をすぎてから700℃ま
での冷却速度制御が重要となり、十分なフェライト量を
確保するには冷却速度を3’C/s以上とする必要があ
り、例えば連続鋳造法を採用する場合、鋳片断面形状寸
法と冷却速度とのかねあいが重要となる。上記冷却速度
は好ましくは10℃/S以上とする。
On the other hand, according to another variant of the invention, a pretreatment method in combination with a casting process is also possible. In this case, it is important to control the cooling rate from the point where the steel becomes δ single phase after casting and solidification to 700℃, and to ensure a sufficient amount of ferrite, the cooling rate should be 3'C/s or more. For example, when using a continuous casting method, the balance between the cross-sectional shape of the slab and the cooling rate becomes important. The cooling rate is preferably 10°C/S or more.

かくして製造される超塑性2相ステンレス鋼は、超塑性
を発渾しながら熱間加工されるが、本発明によれば、熱
間加工に際して超塑性変形温度を900〜1100℃と
したのはこの範囲で最も超塑性が得られ易いためであり
、一方、歪速度を10−2〜10°2S−1としたのは
、この範囲をはずれると超塑性が得にくいからである。
The superplastic duplex stainless steel produced in this way is hot worked while developing superplasticity, and according to the present invention, the superplastic deformation temperature is set at 900 to 1100°C during hot working. This is because superplasticity is most easily obtained within this range, and on the other hand, the reason why the strain rate is set to 10<-2> to 10<2>S<-1> is that it is difficult to obtain superplasticity outside this range.

本発明にかかる加工方法においては超塑性変形温度への
昇温速度や加熱後変形前の保持時間も重要である。すな
わち、昇温速度が遅すぎたり、保持時間が長すぎるとそ
の間にδ→T変態が進んで超塑性特性が劣化するので下
限および上限をそれぞれ0.5℃/s、10分とした.
好ましくは1℃/s以上、5分以内である。
In the processing method according to the present invention, the heating rate to the superplastic deformation temperature and the holding time after heating and before deformation are also important. That is, if the heating rate is too slow or the holding time is too long, the δ→T transformation will progress during that time and the superplastic properties will deteriorate, so the lower and upper limits were set to 0.5°C/s and 10 minutes, respectively.
Preferably it is 1° C./s or more and 5 minutes or less.

なお、本発明における超塑性加工とは、鍛造、バルジ成
形、線引、押出し等を包含し、上記条件の加工を施すも
のは全て対象となる他、超塑性を利用した拡散接合を含
むものももちろん本発明の範囲に包含される。
In addition, superplastic processing in the present invention includes forging, bulge forming, wire drawing, extrusion, etc., and includes all processing performed under the above conditions, as well as processing including diffusion bonding using superplasticity. Of course, it is included within the scope of the present invention.

本発明によって加工した製品の後処理としては、特に必
要としないが、場合によってはスケール除去の場合の酸
洗やσ相が析出した場合などでは溶体化処理が必要なこ
ともある。
Although no particular post-treatment is required for the product processed according to the present invention, in some cases, pickling for scale removal or solution treatment may be necessary when σ phase is precipitated.

このようにして得られた製品は超塑性加工によって組織
が著しく微細化しているので、その機械的性質や耐食性
において通常工程で製造されたちの以上のすぐれた性質
をも有するようになるのである。
The structure of the products obtained in this way is significantly refined by superplastic processing, so they also have better mechanical properties and corrosion resistance than products manufactured using conventional processes.

次に、実施例により、本発明を一層具体的に説明する. 実施例1 第1表に示す成分の綱゜を実験室の高周波炉で大気中溶
解し、それぞれ50kgのインゴノトとした。
Next, the present invention will be explained in more detail with reference to Examples. Example 1 The components shown in Table 1 were melted in the atmosphere in a high-frequency furnace in a laboratory to form ingots each weighing 50 kg.

熱間鍛造と熱間圧延によって厚さ20〜5mmの種々の
鋼板に圧延加工した。
Various steel plates with a thickness of 20 to 5 mm were processed by hot forging and hot rolling.

(以下余白) まずA鋼の5mm厚の鋼板を種々の温変に30分加熱し
てから50’Cにまで水冷して溶体化処理を行った後、
厚さ1+n+まで(加工度80%)冷間圧延した。
(Left below) First, a 5mm thick steel plate of A steel was heated to various temperatures for 30 minutes, then water-cooled to 50'C and subjected to solution treatment.
It was cold rolled to a thickness of 1+n+ (workability: 80%).

冷間圧延温度は30℃であった.このようにして得た材
料より引張試験片を採取し、加熱温度と超塑性伸びとの
関係を見た。超塑性加工は1000″Cに加熱し、歪速
度t =IX10−’s−’で行った。
The cold rolling temperature was 30°C. Tensile test pieces were taken from the material thus obtained, and the relationship between heating temperature and superplastic elongation was examined. Superplastic working was performed by heating to 1000''C and strain rate t=IX10-'s-'.

結果を第1図にグラフで示す。The results are shown graphically in FIG.

これからも判るように、本発明方法の範囲で優れた超塑
性が得られている。超塑性変形温度には3℃八で昇温し
、変形前に2分間保持した。
As can be seen, excellent superplasticity is obtained within the scope of the method of the present invention. The superplastic deformation temperature was reached by raising the temperature to 3°C and holding it for 2 minutes before deformation.

第2図は同しくA鋼の5m+s厚材を1350℃に加熱
、30分間保持してから50℃にまで水冷した後IIま
で30℃で冷間圧延し、このようにして得た材料から引
張試験片を採取し超塑性変形温度の影響を調べたもので
あり、900〜1100℃の範囲で200%以上の伸び
が得られている。超塑性加工は歪速度t”7X10−’
s−’で行った。なお、上限の歪速度<1>であるI 
X102s−’ニおイテも900 〜1100゜cでは
200%以上の超塑性伸びが得られた.超塑性変形温度
ヘの加熱条件は第1図の場合と同しであった。
Figure 2 shows a 5 m+s thick material of A steel heated to 1350°C, held for 30 minutes, water cooled to 50°C, and then cold rolled at 30°C to II. Test pieces were taken and the influence of superplastic deformation temperature was investigated, and an elongation of 200% or more was obtained in the range of 900 to 1100°C. For superplastic processing, the strain rate is t"7X10-'
I went with s-'. Note that I, which is the upper limit strain rate <1>
Superplastic elongation of over 200% was obtained for X102s-' Niite at 900 to 1100°C. The heating conditions to the superplastic deformation temperature were the same as in FIG.

第3図は前加工条件の影響を同じ< 1350℃溶体化
材について調べたものであり、溶体化後700℃以下で
の圧延によって優れた結果が得られた。前加工は5II
Ifi→2.5 mmと、加工度50%で行った。
FIG. 3 shows the effect of pre-processing conditions on the same solution treated material at <1350°C, and excellent results were obtained by rolling at 700°C or less after solution treatment. Pre-processing is 5II
Ifi → 2.5 mm, and the processing degree was 50%.

超塑性加工は1000℃に加熱し、歪速度t−1×10
−’s−’で行った。超塑性変形温度には3℃/sで昇
温し、変形前に2分間保持した。
Superplastic processing is performed by heating to 1000℃ and strain rate t-1×10
I went with -'s-'. The superplastic deformation temperature was reached at a rate of 3° C./s and held for 2 minutes before deformation.

実施例2 本例では、A鋼を用いて超塑性加工温度への昇温速度な
らびに変形前保持時間の影響を調べた。
Example 2 In this example, the influence of the heating rate to the superplastic working temperature and the holding time before deformation was investigated using Steel A.

前処理としては1350℃で溶体化後室温にまで水冷し
てからその温度で51→lIIImまで冷間加工したも
のである. 超塑性加工は1000℃に加熱し、歪速度t−2×10
−’s−’で行った。超塑性変形温度には3℃八で昇温
し、変形前に2分間保持した。
The pretreatment involved solution treatment at 1350°C, water cooling to room temperature, and cold working at that temperature from 51 to lIIIm. Superplastic processing is performed by heating to 1000℃ and strain rate t-2×10
I went with -'s-'. The superplastic deformation temperature was reached by raising the temperature to 3°C and holding it for 2 minutes before deformation.

結果を第4図および第5図にグラフで示すがこれにより
本発明方法の効果は明らかである。
The results are shown graphically in FIGS. 4 and 5, which clearly demonstrate the effectiveness of the method of the present invention.

なお、第6図には同様な試験によって行った加工伸びの
結果の鋼種による比較を示す.実施例3 最後にA鋼と全て同じものを溶解し、内容積厚さ20+
**の分割金型中に鋳込み、凝固後直ちに金型をはずし
て水冷した。このときの鋳片中心部の1350〜700
℃までの平均冷却速度は5℃八であった。
Furthermore, Figure 6 shows a comparison of the results of working elongation conducted in a similar test by steel type. Example 3 Finally, all the same steel as A was melted and the internal volume thickness was 20+
It was cast into a split mold marked **, and immediately after solidification, the mold was removed and cooled with water. 1350 to 700 at the center of the slab at this time
The average cooling rate to 5°C was 8°C.

鋳片の表層黒皮部をそれぞれ5111Nずつ除去後、3
III1まで冷間加工して試験片を採取した。
After removing 5111N of the black scale on the surface of the slab, 3
A test piece was collected after cold working to III1.

各試験片を加熱温度1000″C、歪速度t = l 
XIO1s−1で超塑性加工を行ったところ、800%
以上の超塑性伸びを示した。超塑性加工は昇温速度3℃
/S、変形前に2分保持して行った。
Each test piece was heated at a temperature of 1000″C and a strain rate of t = l.
When superplastic processing was performed with XIO1s-1, 800%
The superplastic elongation was as follows. Superplastic processing has a heating rate of 3℃
/S, held for 2 minutes before deformation.

一方、鋳込み後放冷したもの(中心部の冷却速度は0.
2℃ /s)では超塑性伸びは150%しか得られなか
った。
On the other hand, those that were left to cool after casting (the cooling rate in the center was 0.
2° C./s), the superplastic elongation was only 150%.

(発明の効果) 本発明は以上説明したように構成されたことにより、通
常の熱間加工と比べ遜色のない速い歪速度での超塑性変
形を可能ならしめるという顕著な効果が奏され、産業上
益とするところ極めて大である.
(Effects of the Invention) By having the structure as explained above, the present invention has the remarkable effect of enabling superplastic deformation at a high strain rate comparable to that of normal hot working, and is suitable for industrial use. The profits are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は、 本発明により得られた 超塑性材の特性を示すグラフである. Figures 1 to 6 are Obtained by the present invention This is a graph showing the characteristics of superplastic materials.

Claims (4)

【特許請求の範囲】[Claims] (1)Fe、Cr、Niを主成分とする二相ステンレス
鋼を実質的にフェライト単相となる温度−100℃以上
の温度に加熱して、溶体化の後、700℃以下で50%
以上の加工を施すことを特徴とする超塑性二相ステンレ
ス鋼の製造方法。
(1) Duplex stainless steel mainly composed of Fe, Cr, and Ni is heated to a temperature above -100°C at which it becomes essentially a single phase of ferrite, and after solutionization, 50% at below 700°C.
A method for producing superplastic duplex stainless steel, characterized by performing the above processing.
(2)Fe、Ni、Crを主成分とする二相ステンレス
鋼を溶融、凝固後、実質的にフェライト単相となる温度
から700℃までの冷却速度が3℃/s以上となるよう
にして鋳造して得た鋼片に700℃以下で50%以上の
加工を施すことを特徴とする超塑性二相ステンレス鋼の
製造方法。
(2) After melting and solidifying the duplex stainless steel whose main components are Fe, Ni, and Cr, the cooling rate from the temperature at which it becomes substantially single-phase ferrite to 700°C is 3°C/s or more. A method for producing superplastic duplex stainless steel, which comprises subjecting a cast piece of steel to 50% or more processing at a temperature of 700°C or lower.
(3)特許請求の範囲1または2記載の方法で製造した
超塑性二相ステンレス鋼を900〜1100℃に加熱後
10^−^2s^−^1以上10^2s^−^1以下の
歪速度で変形することを特徴とする超塑性二相ステンレ
ス鋼の熱間加工方法。
(3) After heating the superplastic duplex stainless steel manufactured by the method described in claim 1 or 2 to 900 to 1100°C, the strain is 10^-^2s^-^1 or more and 10^2s^-^1 or less. A hot working method for superplastic duplex stainless steel characterized by rapid deformation.
(4)熱間加工温度へ加熱する際の昇温速度を0.5℃
/s以上としかつ変形までの均熱時間が10分未満とす
る請求項3記載の超塑性二相ステンレス鋼の熱間加工方
法。
(4) Temperature increase rate when heating to hot processing temperature is 0.5℃
4. The method of hot working a superplastic duplex stainless steel according to claim 3, wherein the soaking time is at least 10 minutes and the soaking time is less than 10 minutes.
JP881590A 1990-01-18 1990-01-18 Production of superplastic duplex stainless steel and hot working method therefor Pending JPH03215625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP881590A JPH03215625A (en) 1990-01-18 1990-01-18 Production of superplastic duplex stainless steel and hot working method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP881590A JPH03215625A (en) 1990-01-18 1990-01-18 Production of superplastic duplex stainless steel and hot working method therefor

Publications (1)

Publication Number Publication Date
JPH03215625A true JPH03215625A (en) 1991-09-20

Family

ID=11703314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP881590A Pending JPH03215625A (en) 1990-01-18 1990-01-18 Production of superplastic duplex stainless steel and hot working method therefor

Country Status (1)

Country Link
JP (1) JPH03215625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027203A (en) * 2001-07-11 2003-01-29 Nippon Steel Corp Method for heating steel sheet for heat forming
KR100419654B1 (en) * 1999-11-24 2004-02-25 주식회사 포스코 Method for plate rolling dual phase stainless steel
CN111020144A (en) * 2019-10-24 2020-04-17 昆明理工大学 Hot working method for controlling precipitation of sigma phase at lower working temperature of Ni-saving type duplex stainless steel
CN113174544A (en) * 2021-04-21 2021-07-27 中国科学院金属研究所 Superplastic forming nanocrystalline antibacterial martensitic stainless steel and preparation method thereof
CN113201695A (en) * 2021-04-21 2021-08-03 中国科学院金属研究所 Superplastic forming precipitation hardening nanocrystalline antibacterial stainless steel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419654B1 (en) * 1999-11-24 2004-02-25 주식회사 포스코 Method for plate rolling dual phase stainless steel
JP2003027203A (en) * 2001-07-11 2003-01-29 Nippon Steel Corp Method for heating steel sheet for heat forming
CN111020144A (en) * 2019-10-24 2020-04-17 昆明理工大学 Hot working method for controlling precipitation of sigma phase at lower working temperature of Ni-saving type duplex stainless steel
CN111020144B (en) * 2019-10-24 2021-08-20 昆明理工大学 Hot working method for controlling precipitation of sigma phase at lower working temperature of Ni-saving type duplex stainless steel
CN113174544A (en) * 2021-04-21 2021-07-27 中国科学院金属研究所 Superplastic forming nanocrystalline antibacterial martensitic stainless steel and preparation method thereof
CN113201695A (en) * 2021-04-21 2021-08-03 中国科学院金属研究所 Superplastic forming precipitation hardening nanocrystalline antibacterial stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6574307B2 (en) High toughness seamless steel pipe and manufacturing method thereof
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JPH10273756A (en) Cold tool made of casting, and its production
CN107385319A (en) Yield strength 400MPa level Precision Welded Pipe steel plates and its manufacture method
CN105861935B (en) Excellent Fe 36Ni invar alloy materials of a kind of thermoplasticity and preparation method thereof
JPS6179724A (en) Manufacture of thin plate of high-silicon iron alloy
JPH029647B2 (en)
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JPH0314899B2 (en)
CN109112409B (en) Controlled rolling and controlled cooling production process for low-yield-ratio thin F + P steel plate
JPH0372030A (en) Production of austenitic stainless steel strip excellent in ductility
JPH0570685B2 (en)
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPH02147148A (en) Production of case hardening steel product
JPH08176728A (en) Cast steel having excellent refractoriness, strength and toughness and production thereof
JP3380032B2 (en) Method for producing high-strength steel wire with excellent drawability
JPH062046A (en) Production of ferritic stainless steel sheet excellent in surface characteristic and deep drawability
JPS59118861A (en) Free cutting steel and its production
JPH02294450A (en) Die steel for molding plastics and its manufacture
JPS62222044A (en) Hot-working method for two-phase stainless steel powder
JPS63238218A (en) Production of austenitic stainless steel pipe
JPS6017061A (en) Free cutting steel and its production
JPS605821A (en) Production of parts steel for cold forging