JPS605821A - Production of parts steel for cold forging - Google Patents

Production of parts steel for cold forging

Info

Publication number
JPS605821A
JPS605821A JP11318783A JP11318783A JPS605821A JP S605821 A JPS605821 A JP S605821A JP 11318783 A JP11318783 A JP 11318783A JP 11318783 A JP11318783 A JP 11318783A JP S605821 A JPS605821 A JP S605821A
Authority
JP
Japan
Prior art keywords
transformation point
steel
rolling
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11318783A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kubota
和芳 久保田
Fukukazu Nakazato
中里 福和
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11318783A priority Critical patent/JPS605821A/en
Publication of JPS605821A publication Critical patent/JPS605821A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel having excellent cold workability and strength and toughness after forming without requiring a spheroidizing heat treatment by hot rolling and cooling a specifically composed carbon steel or low allow steel at a prescribed temp. then repeating rolling at the limited temp. and draft and cooling the rolled steel. CONSTITUTION:A steel contg., by weight %, 0.10-0.60 C, 0.01-0.70 Si, 0.20- 2.00 Mn and 0.01-0.10 sol Al, contg. >=1 kind of <=0.15 Nb, Ti and Zr respectively and 0.001-0.030 B according to need and the balance Fe is heated to a temp. of the Ac3 point +200 deg.C or above and is hot-rolled. The hot-rolled steel is then cooled down to a temp. of the Ar1 point or below and in succession the steel is heated to a temp. region of the Ac3 point -Ac3 point +200 deg.C and is then rolled at a temp. region of the Ar3 point or above at >=10% draft per pass. The rolled steel is allowed to cool or is forcibly cooled in the range where the hardened structure is not formed right after finish rolling to >=10% draft at the Ar3 point or below.

Description

【発明の詳細な説明】 この発明は、冷間加工性に優れた冷間鍛造用部品鋼を、
長時間の球状化焼なまし工程を要することなく高能率で
製造する方法に関するものである。
[Detailed description of the invention] This invention provides cold forging component steel with excellent cold workability.
The present invention relates to a highly efficient manufacturing method without requiring a long spheroidizing annealing process.

これまで、ボルト、ナツト、各種軸傾等の、冷間鍛造に
よって作られる機械構造用部材には、必要とする強度等
に応じて様々な鋼種のものが使用されてきており、JI
’S規格においても、炭素鋼C8C材(G 405.1
 ) 3 gクロム鋼(SCr材(G4104)]、ク
ロムモリブデン鋼(SCM材(+o+1o5))、ニッ
ケルクロムモリブデン鋼[sNcM材(G4103))
等の如く、成分や用途に応じて多くの冷間鍛造用部品鋼
が規定されている。
Until now, various steel types have been used for mechanical structural parts made by cold forging, such as bolts, nuts, and various types of shaft tilting, depending on the required strength, etc., and JI
Even in the 'S standard, carbon steel C8C material (G 405.1
) 3g chromium steel (SCr material (G4104)), chromium molybdenum steel (SCM material (+o+1o5)), nickel chromium molybdenum steel [sNcM material (G4103)]
Many component steels for cold forging are specified depending on their composition and use.

ところで、これら従来の冷間鍛造用部品鋼は、その製造
の際、冷間で実施する伸線工程での割れの防止や冷間鍛
造性向上のための球状化焼なましを必須とするものであ
シ、その上、冷間鍛造終了後にも機械的性質向上のため
の焼入れ・焼もどし処理を欠くことができないものであ
った。特に、前記球状化焼なましには7oo〜80.0
 ℃の温度域での10時間近くの保持工程が必要であシ
、これが冷間鍛造用部品鋼製造作業上の大きな障害とな
っていたのである。
By the way, these conventional cold forging component steels require spheroidizing annealing to prevent cracking during the cold wire drawing process and to improve cold forgeability. Furthermore, even after cold forging, quenching and tempering treatments were indispensable to improve mechanical properties. In particular, for the spheroidizing annealing, 7oo to 80.0
A holding process of nearly 10 hours in a temperature range of 10°C was required, which was a major obstacle in the production of steel parts for cold forging.

従って、冷間鍛造用部品の製造においては、前記のよう
な長時間に亘る熱処理工程を省略するか或いは該工程に
おける時間短縮を図って作業能率を向上するとともに、
これKよって製品コストを低減することが、従来からの
最大の課題となっていたのである。
Therefore, in the production of parts for cold forging, it is possible to improve work efficiency by omitting the long heat treatment process as described above or by shortening the time in this process.
Therefore, reducing product costs has traditionally been the biggest challenge.

本発明者等は、上述のような観点から、長時間に亘る球
状化熱処理を必要とせずに優れだ冷間加工性を発揮し5
かつ冷間鍛造後の焼入れ・焼戻し処理を施さなくても良
好な機械品性質を示す冷間鍛造用部品鋼を提供すべく、
多くの実、験・検討を加えながら研究を行った結果、 <) 特定成分組成の炭素鋼又は低合金鋼を(Ar3変
態点+200℃〕以上の温度に加熱してから熱間圧延を
施すことにより、鋼中に含まれるA9N。
From the above-mentioned viewpoint, the present inventors have developed a material that exhibits excellent cold workability without requiring long-term spheroidizing heat treatment.
In order to provide a part steel for cold forging that also exhibits good mechanical properties without quenching or tempering after cold forging,
As a result of many studies, experiments, and studies, we found that carbon steel or low-alloy steel with a specific composition is heated to a temperature of (Ar3 transformation point + 200℃) or higher and then hot rolled. A9N contained in steel.

NbN、 NbC、’I’ iC,T iN等のオース
テナ・イト細粒化に有効な炭窒化析出物を均一に分散さ
せるとともに素地中に完全に固溶化すると、 Ar1変
態点以下に冷却した場合に前記オーステナイト細粒化析
出物が再度均一微細に析出するようになる。そして、こ
れをAC3点以上の、しかも極低温度域に加熱すると、
生成するオーステナ・イト粒は極めて微細なものとなる
が、この温度域において各パス毎に一定以上の圧下な加
える圧延を行うことで結晶粒の異常成長を防止しつつ再
結晶のみを促進せしめ、更に該圧延をA’r3変態点未
満の温度域で終了してそのまま放冷するか、焼入れ組織
にならない範囲で急冷する処理を続けると、冷間加工性
に優れる上、成形後の強度及び靭性もそのままで極めて
良好な値を示す極微細組織鋼が得られること、(b) 
この場合、二次圧延後の放冷又は強制冷却をArc変態
点直下まで続けた後徐冷するか、或いは前記放冷又は強
制冷却の後Act変態点未満の温度での焼もどしを行う
と、得られる鋼の伸びが回復して、冷間加工性が一層向
上すること、以上(a)及び(b)に示す如き知見を得
るに至ったのである。
When carbonitride precipitates such as NbN, NbC, 'I' iC, and TiN, which are effective in refining austenite particles, are uniformly dispersed and completely dissolved in the matrix, when cooled to below the Ar1 transformation point, The austenite fine-grained precipitates are again precipitated uniformly and finely. Then, if you heat this to an extremely low temperature range of 3 AC points or higher,
The austenite grains that are produced are extremely fine, but by rolling with a reduction of more than a certain level in each pass in this temperature range, only recrystallization is promoted while preventing abnormal grain growth. Furthermore, if the rolling is finished in a temperature range below the A'r3 transformation point and left to cool as is, or rapid cooling is continued within a range that does not result in a quenched structure, not only will cold workability be excellent, but strength and toughness after forming will be improved. (b) that an ultrafine-structured steel exhibiting extremely good values can be obtained as is;
In this case, if the secondary rolling is followed by continuous cooling or forced cooling to just below the Arc transformation point and then slow cooling, or if the cooling or forced cooling is followed by tempering at a temperature below the Act transformation point, We have come to the knowledge shown in (a) and (b) above that the elongation of the resulting steel is recovered and the cold workability is further improved.

この発明は、上記知見に基づいてなされたものであシ、 C: 0.10−0.60%(以下、成分割合を表わす
係は重量係とする)。
This invention was made based on the above findings. C: 0.10-0.60% (hereinafter, the ratio representing the component ratio will be referred to as the weight ratio).

Si: 0.01〜O,’70%、 Mn: 0.20
〜2.00%。
Si: 0.01~O,'70%, Mn: 0.20
~2.00%.

SOムAQ : O,O]、 〜0.10%。SOmuAQ: O, O], ~0.10%.

を含有するとともに、必要にょシ更に、Nb:0.15
%以下、 Ti二〇、15%以下。
In addition to containing Nb: 0.15
% or less, Ti 20, 15% or less.

Zr:0.15%以下、 B : 0.001〜0.0
30%。
Zr: 0.15% or less, B: 0.001 to 0.0
30%.

のうちの1種以上をも含有し、 Fe及び不可避不純物:残シ。It also contains one or more of the following: Fe and inevitable impurities: Residue.

から成る成分組成の鋼を、(Ac3変態点+200℃〕
以上の温度に加熱して熱間圧延した後、Arz変態点以
下の温度に壕で冷却し、続いてAc3変態点〜[Ac3
変態点+200℃〕の温度域に加熱した後、1パス当シ
の圧下率が10%以上であるところの、Ar3変態点以
上の温度域での圧延と、これに続く圧下率がlO係係上
上Ar3変態点未満の仕上圧延とを施し、その後直ちに
放冷又は強制冷却するか、該冷却をArc変態点以下に
なるまで実施した後徐冷するか、或いは圧延後の放冷又
は強制冷却終了後にAc1変態点未満の温度で焼もどす
ことにより、冷間加工性に優れ、しかも冷間加工後の機
械的性質が焼入れ処理を施すことなく良好な値を示す冷
間鍛造用部品鋼を、比較的短時間に、かつ低コストで実
現することに特徴を有するものである。
Steel with a composition consisting of (Ac3 transformation point + 200℃)
After heating to a temperature above and hot rolling, it is cooled in a trench to a temperature below the Arz transformation point, and then rolled from the Ac3 transformation point to [Ac3
After heating to a temperature range of [transformation point + 200 ° C], the rolling reduction per pass is 10% or more, and the subsequent rolling reduction is 10% The upper surface is subjected to finish rolling to a temperature below the Ar3 transformation point, and then immediately left to cool or forcedly cooled, or the cooling is carried out until it becomes below the Arc transformation point and then slowly cooled, or the first step is left to cool or forcedly cooled after rolling. By tempering at a temperature below the Ac1 transformation point after completion of the work, we can produce cold forging component steel that has excellent cold workability and also exhibits good mechanical properties after cold working without quenching. It is characterized by being realized in a relatively short time and at low cost.

なお、この発明の方法における「強制冷却」とは、焼入
れ組織にならない範囲での急冷を意味するものである。
Note that "forced cooling" in the method of this invention means rapid cooling within a range that does not result in a hardened structure.

次に、この発明の冷間鍛造用部品鋼の製造方法において
、鋼の化学成分組成、及び圧延・熱処理条件を前記の如
くに限定した理由を説明する。
Next, the reason why the chemical composition of the steel and the rolling and heat treatment conditions are limited as described above in the method for producing steel parts for cold forging of the present invention will be explained.

A、鋼の化学成分組成 ■ C C成分は、鋼に所定の強度を付与するために欠くことの
できないものであるが、その含有量が0.10%未満で
は所望の強度を得ることができず、他方0.6.0%を
越えて含有させると冷間加工性及び靭性の劣化を招くよ
うになることから、C含有量を0.10〜0.60%と
定めだ。
A. Chemical composition of steel■ C C component is indispensable for imparting a certain strength to steel, but if its content is less than 0.10%, the desired strength cannot be obtained. On the other hand, if the C content exceeds 0.6.0%, cold workability and toughness will deteriorate, so the C content is set at 0.10 to 0.60%.

■ 5I Si成分は、鋼の脱酸剤として有効な元素であるととも
に、鋼の強化作用をも有するものであるが、その含有量
が001%未満では前記作用に所望の効果が得られず、
他方0.70%を越えて含有させると靭性低下が著しく
なることから、S1含有量を0.01〜O,’70%と
定めた。
■ The 5I Si component is an effective element as a deoxidizing agent for steel, and also has the effect of strengthening steel, but if its content is less than 0.01%, the desired effect cannot be obtained,
On the other hand, if the content exceeds 0.70%, the toughness will be significantly lowered, so the S1 content was set at 0.01 to O,'70%.

■ Mn Mn成分は、鋼の素地に固溶してこれを強化するととも
に、細晶粒の微細化により強度及び靭性を向上させる作
用を有しているが、その含有量が0.20%未満では靭
性向上作用に所望の効果を得ることができず、他方2.
 OO%を越えて含有させると冷間加工性が劣化するよ
うになることから、Mn含有量を020〜2.00%と
定めた。
■ Mn The Mn component has the effect of forming a solid solution in the base steel and strengthening it, as well as improving strength and toughness by refining fine grains, but if its content is less than 0.20%. In the case of 2., the desired effect of improving toughness cannot be obtained.
If the Mn content exceeds OO%, cold workability deteriorates, so the Mn content was set at 0.20 to 2.00%.

■ sob、Ae sot、Al成分は優れた細粒化作用を有しており、特
にAAN等の微細な析出物を得るだめの一次圧延を実施
するこの発明の方法においては極めて重要な元素である
。しかしながら、その含有量が0.0Iチ未満では所望
の細粒化効果が得られず、他方、0、10 %を越えて
含有させると非金属介在物の量が急激に増加して切削性
を低下させることから、sot、Alf含有量を0.0
1〜0.10%と定めた。
■ Sob, Ae sot, and Al components have excellent grain refining effects and are extremely important elements, especially in the method of this invention that performs primary rolling to obtain fine precipitates such as AAN. . However, if the content is less than 0.0I, the desired grain refining effect cannot be obtained, and on the other hand, if the content exceeds 0.10%, the amount of nonmetallic inclusions will increase rapidly and the machinability will be impaired. Since the sot and Alf content is reduced to 0.0
It was set at 1 to 0.10%.

■Nb 、 Ti 、及びZr これらの成分には、いずれも炭化物の形成・析出によっ
て鋼材組織を微細化し強度及び延性を上昇させる作用が
あるので、特にこれらの特性を向上させる作用がある場
合に1種以上含有させるものであるが、それぞれ0.1
4%を越えて含有させてもそれ以上の強度上昇効果を得
ることができないばかシか靭性劣化を招くことにもなる
ので、Nb。
■Nb, Ti, and Zr All of these components have the effect of refining the steel structure and increasing strength and ductility through the formation and precipitation of carbides. Each species contains 0.1 or more seeds.
Even if the Nb content exceeds 4%, it will not be possible to obtain any further strength-increasing effect, but it will also lead to deterioration of toughness.

Ti及びZr含有量はそれぞれ0.15%以下と定めた
The Ti and Zr contents were each set at 0.15% or less.

■ B B成分には、鋼の焼入れ性を向上し、圧延材に微細組織
をもたらす作用があるので必要に応じて含有せしめられ
るものであるが、その含有量が0、0 Ol %未満で
は前記作用に所望の効果を得ることができず、他方0.
030 %を越えて含有させても前記作用にそれ以上の
向上効果が得られないはかシか靭性劣化を招くことにも
なるので、B含有量はO,OOl〜0.030%と定め
た。
■ B The B component has the effect of improving the hardenability of steel and providing a microstructure to the rolled material, so it can be included as necessary, but if its content is less than 0.0 OL %, the above-mentioned It is not possible to obtain the desired effect in the action, and on the other hand, 0.
Even if the B content exceeds 0.030%, no further improvement in the above-mentioned action can be obtained and it may lead to deterioration of the toughness, so the B content was set at 0.030% to 0.030%. .

B、圧延・熱処理条件 ■ −次圧延条件 上記のような化学成分組成の鋼の凝固組織は、一般に、
MN 、 NbN、 NbC,TiC,TiN等のオー
ステナイト細粒化に有効な析出物が不均一分散している
2ともに、その一部が粗大析出物となった状態を呈して
いるため、これをAc3変態点直上に加熱しても均一な
微細オーステナイト組織とすることが極めて困難である
。しかし、これを(Ac3変態点+200℃〕以上の温
度に加熱後、中間寸法への一次熱間圧延を行うと、前記
オーステナイト細粒化成分が素地中へ完全に固溶してし
まい、続いてこれをArc変態点以下の温度に一旦冷却
することにより、該オーステナイト細粒化析出物を均一
微細に分散析出することができるのである。
B. Rolling/Heat Treatment Conditions - Next Rolling Conditions The solidification structure of steel with the above chemical composition is generally
Precipitates such as MN, NbN, NbC, TiC, and TiN, which are effective in refining austenite, are dispersed non-uniformly, and some of them are coarse precipitates. Even if heated just above the transformation point, it is extremely difficult to form a uniform fine austenite structure. However, when this is heated to a temperature higher than (Ac3 transformation point + 200°C) and then subjected to primary hot rolling to an intermediate size, the austenite refining component completely dissolves into the base material, and then By once cooling this to a temperature below the Arc transformation point, the fine austenite precipitates can be uniformly and finely dispersed and precipitated.

そして、この−次圧延の際の加熱温度が(AC3変態点
+200℃〕未満では、オーステナイト細粒化成分の完
全固溶を図ることが極めて困難となシ、最終ミクロ組織
の細粒化並びに均一化の阻害要因となる。
If the heating temperature during this second rolling is less than (AC3 transformation point + 200°C), it will be extremely difficult to achieve complete solid solution of the austenite refining component, and the final microstructure will become finer and more uniform. This becomes an impediment to the development of

また、Ac3変態点以下の加熱温度での一次熱間圧延で
は粒成長が著しくなって所定の細粒化が困難となるが、
仕上温度なA r 3変態点以下とする低温圧延を行う
ことは、再加熱後のオーステナイト粒を一層細かくする
ので好ましいことである。
In addition, primary hot rolling at a heating temperature below the Ac3 transformation point causes significant grain growth, making it difficult to achieve the desired grain refinement.
It is preferable to carry out low-temperature rolling at a finishing temperature of A r 3 transformation point or lower, since this makes the austenite grains even finer after reheating.

■ 二次圧延条件 二次の熱間圧延は、最終目的の微細なα結晶粒を有する
高度形能、高強度、高靭性を兼ね備えた鋼を得るために
特に重要なものである。
■ Secondary rolling conditions Secondary hot rolling is particularly important in order to obtain the final objective of steel with fine α grains, high formability, high strength, and high toughness.

即ち、AC3変態点〜〔Ac3変態点+200℃)の範
囲の温度に加熱した後、1パス当りの圧下率を10%以
上にしてγ粒の異常成長を抑制し、かつAr3変態点未
満の温度で10%以上の加工を加える条件にて圧延を行
って仕上げをしてから、放冷又は焼入れ組織にならない
範囲で急冷すると、α粒の成長を有効ゝに防止すること
ができて、高靭性を得ることができるのである。
That is, after heating to a temperature in the range of AC3 transformation point to [Ac3 transformation point + 200 ° C.], the reduction rate per pass is set to 10% or more to suppress abnormal growth of γ grains, and the temperature is below the Ar3 transformation point. After finishing by rolling under the condition of adding 10% or more processing, and then letting it cool or rapidly cooling it without forming a hardened structure, the growth of α grains can be effectively prevented, resulting in high toughness. can be obtained.

二次圧延に際しての加熱温度がAc3変態点未満である
と均一微細なオーステナイト粒を得ることができず、一
方(AC3変態点+2oo℃〕を越える温度に加熱する
オーステナイト粒が粗大化してしまい、いずれにしても
所望とする細粒の最終組織が得られなくなる。
If the heating temperature during secondary rolling is less than the Ac3 transformation point, it will not be possible to obtain uniformly fine austenite grains, while on the other hand, the austenite grains heated to a temperature exceeding (AC3 transformation point + 2oo°C) will become coarse, and eventually However, the desired final structure of fine grains cannot be obtained.

また、A r 3変態点以上での1バス当りの圧下率が
10%未満であるとγ粒の異常成長を来たし、Ar3変
態点未満での圧下率が10チ未満であると結晶粒の微細
化及び整粒化が不十分となって、所望の高靭性が達成で
きなく彦る。そして、二次冷却後に放冷又は強制冷却す
ることによって、α粒の成長が防止され、組織の微細化
が確保されるのである。
Furthermore, if the rolling reduction per bath above the Ar3 transformation point is less than 10%, abnormal growth of γ grains will occur, and if the rolling reduction is less than 10 inches below the Ar3 transformation point, the fineness of crystal grains will occur. As a result, the desired high toughness cannot be achieved due to insufficient granulation and particle size regulation. By performing natural cooling or forced cooling after the secondary cooling, the growth of α grains is prevented and the refinement of the structure is ensured.

■ 二次圧延終了後の徐冷、又は焼もどし処理条件 二次圧延終了後の冷却時に、鋼材温度がArc変態点を
下回ってから徐冷を行うか、或いは冷却終了後にAc1
変態点未満の温度での焼戻しを行うと圧延後の銅相の伸
びが回復して冷間加工性が一層改善されるが、徐冷開始
温度がArc変態点以上であったり、焼もどし温度がA
ct変態点以上であると鋼H強度が低下して所望の機械
的性質を得ることができなくなる。
■ Slow cooling or tempering treatment conditions after the completion of secondary rolling When cooling after the completion of secondary rolling, do slow cooling occur after the steel material temperature falls below the Arc transformation point, or do you perform slow cooling after the completion of cooling?
Tempering at a temperature below the transformation point recovers the elongation of the copper phase after rolling and further improves cold workability, but if the slow cooling start temperature is above the Arc transformation point or the tempering temperature is A
If the temperature is higher than the ct transformation point, the steel H strength decreases and desired mechanical properties cannot be obtained.

以上のような条件で製造された細粒7エライト及びパー
ライトコロニーを有する鋼は、冷間鍛造時に要求される
変形能に優れるばかりでなく、強度及び靭性においても
良好な値を示すので、従来の冷間鍛造用部品鋼のように
長時間の球状化熱処理工程や、冷間鍛造後の焼入れ−・
焼もどし処理工程を要することなく、目的とする強度及
び靭性を具備した冷間鍛造部品を得ることが可能となる
Steel with fine-grained 7-elite and pearlite colonies manufactured under the above conditions not only has excellent deformability required during cold forging, but also exhibits good values for strength and toughness, so it is superior to conventional steel. Long-time spheroidizing heat treatment process like steel parts for cold forging and quenching after cold forging.
It becomes possible to obtain a cold forged part having the desired strength and toughness without requiring a tempering process.

次に、この発明を、実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 まず、通常の溶解法にて第1表に示される如き成分組成
を有する炭素鋼並びに低合金鋼を溶製した後、直径:1
807nfLのビレットとした。
Example First, carbon steel and low alloy steel having the compositions shown in Table 1 were melted using a normal melting method, and then a diameter of 1.
It was made into a billet of 807nfL.

次いで、このビレットに、第2表に示すような条件の圧
延及び熱処理を施し、直径:25朋の線材を製造した。
Next, this billet was subjected to rolling and heat treatment under the conditions shown in Table 2 to produce a wire rod with a diameter of 25 mm.

次に、このようにして得られた線材を使用[、第1図に
示゛される工程にて冷間据込鍛造を行った後、製品頭部
外周における割れの有無によって冷間加工性を評価し、
更に製品軸部から試験片を切シ出して引張り試験を行い
、その結果も第2表に併せて示した。
Next, using the wire rod obtained in this way, after performing cold upsetting forging in the process shown in Fig. Evaluate,
Furthermore, a test piece was cut out from the product shaft and subjected to a tensile test, and the results are also shown in Table 2.

第2表に示される結果からも、本発明の方法によって得
られる鋼材は、いずれも優れた加工性を有しているとと
もに良好な機械的性質をも示すのに対して、製造条件の
いずれかが本発明の範囲から外れた比較法によって得ら
れる鋼材はこれらの特性に劣っていることが明白である
From the results shown in Table 2, it is clear that all of the steel materials obtained by the method of the present invention have excellent workability and also exhibit good mechanical properties, whereas any of the manufacturing conditions It is clear that steel materials obtained by comparative methods outside the scope of the present invention are inferior in these properties.

上述のように、本発明によれば、長時間を必要゛ とす
る球状化熱処理を施すことなく優れた冷間加工性を発揮
し、しかも冷開成形後の焼入れ処理を行わなくても強度
及び靭性に優れだ冷間鍛造用部品鋼を、格別な設備を要
することなく低コストで製造することができるなど、工
業上有用な効果がもたらされるのである。
As described above, according to the present invention, excellent cold workability can be exhibited without performing a spheroidizing heat treatment that requires a long time, and strength and strength can be improved even without a quenching treatment after cold-open forming. Industrially useful effects are brought about, such as the ability to produce cold-forging component steel with excellent toughness at low cost without requiring special equipment.

【図面の簡単な説明】[Brief explanation of drawings]

101図は本発明の実施例で採用した冷間据込鍛造の工
程図である。 出願人 住友金、属工業株式会社 代理人 富 1) 和 夫 ほか1名
FIG. 101 is a process diagram of cold upsetting forging employed in an example of the present invention. Applicant: Sumitomo Metal, Gens Kogyo Co., Ltd. Agent: Tomi 1) Kazuo and 1 other person

Claims (3)

【特許請求の範囲】[Claims] (1)重量割合で、 C:0.10〜060%。 Si:O,O2N2.70%。 Mn: 0.20〜2.00%。 sob−M 二 0.01 〜0.10%。 を含有するとともに、必要により更に、Nb:0.15
%以下、Ti:0.15%以下。 Zr:0.15%以下、 B 二0.001〜0.03
0%。 のうちの1種以上をも含有し、 Fe及び不可避不純物:残シ。 から成る成分組成の鋼を、[Ac3変態点+200℃〕
以上の温度に加熱して熱間圧延した後、Arc変態点以
下の温度にまで冷却し、続いてAC3変態点〜(Ac3
変態点+20C)C,]の温度域に加熱した後、1パス
当りの圧下率が10%以上であるところの、Ar3変態
点以上の温度域での圧延と、これに続く圧下率が10%
以上のAr3変態点未満の仕上圧延とを施し、その後直
ちに放冷又は強制冷却することを特徴とする、加工性に
優れた冷間鍛造用部品鋼の製造方法。
(1) Weight percentage: C: 0.10-060%. Si:O, O2N2.70%. Mn: 0.20-2.00%. sob-M2 0.01-0.10%. and, if necessary, further Nb: 0.15
% or less, Ti: 0.15% or less. Zr: 0.15% or less, B2 0.001 to 0.03
0%. It also contains one or more of the following: Fe and unavoidable impurities: residue. Steel with a composition consisting of [Ac3 transformation point + 200℃]
After heating to a temperature above and hot rolling, it is cooled to a temperature below the Arc transformation point, and then the AC3 transformation point ~ (Ac3
After heating to a temperature range of transformation point +20C)C, ], rolling in a temperature range of Ar3 transformation point or higher, where the rolling reduction per pass is 10% or more, and the subsequent rolling reduction is 10%.
A method for producing cold forging component steel with excellent workability, characterized by subjecting it to the above-described finish rolling below the Ar3 transformation point, and then immediately allowing it to cool or forcedly cooling.
(2)重量割合で、 C: 0.10〜0.60%。 Si: 0.01〜O,’70%。 Mn: 0.20〜2. O0%。 soL、AQ: 0.01〜0.10%。 を含有するとともに、必要により更に、Nb: Oyl
 5 %以下、Ti:0.15%以下。 Zr:0.15%以下、B : 0.001〜0.03
0%。 のうちの1種以上をも含有し、 F’e及び不可避不純物:残り。 から成る成分組成の鋼を、[Ac3変態点+200℃]
以上の温度に加熱して熱間圧延した後、Ar□変態点以
下の温度にまで冷却し、続いてAC3変態点〜(Ac3
変態点+200℃〕の温度域に加熱した後、1パス当り
の圧下率が10%以上であるところの、Ar3変態点以
−ヒの温度域での圧延と、これに続く圧下率が10%以
上のAr3変態点未満の仕上圧延とを施し、その後直ち
にArc変態点以下にまで放冷又は強制冷却i〜てから
徐冷することを特徴とする、加工性に優れた冷間鍛造用
部品鋼の製造方法。
(2) C: 0.10 to 0.60% by weight. Si: 0.01~O,'70%. Mn: 0.20-2. O0%. soL, AQ: 0.01-0.10%. and, if necessary, further contains Nb: Oyl
5% or less, Ti: 0.15% or less. Zr: 0.15% or less, B: 0.001 to 0.03
0%. It also contains one or more of the following: F'e and unavoidable impurities: the remainder. Steel with a composition consisting of [Ac3 transformation point + 200 ° C]
After heating to a temperature above and hot rolling, it is cooled to a temperature below the Ar□ transformation point, and then the AC3 transformation point ~ (Ac3
After heating to a temperature range of transformation point + 200 ° C], rolling in a temperature range of Ar3 transformation point or below, where the rolling reduction per pass is 10% or more, and the subsequent rolling reduction of 10%. Part steel for cold forging with excellent workability, characterized by subjecting it to the above finish rolling below the Ar3 transformation point, followed by immediate cooling or forced cooling to below the Arc transformation point, and then gradual cooling. manufacturing method.
(3)重量割合で、 C:0.10〜0.60%。 Si:0.01〜0.70%。 Mn: 0.20〜2.00%。 SOムAg:o、o1〜0.10%。 を含有するとともに、必要により更に、Nb:0.15
%以下、Ti:0.15係以下。 Zr:0.15%以下、 B :0.001〜0.03
0%。 のうちの1種以上をも含有し、 Fe及び不可避不純物:残り。 から成る成分組成の鋼を、(Ac3変態点+200℃〕
以上の温度に加熱して熱間圧延した後、Arc変態点以
下の温度にまで冷却し、続いてAc3変態点〜(’Ac
3Ac3変態00℃〕の温度域に加熱した後、1バス当
りの圧下率が10q6以上であるところの、Ar3変態
点以上の温度域での圧延と、これに続く圧下率が10q
6以上のAr3変態点未満の仕上圧延とを施し、その後
直ちに放冷又は強制冷却してから、Ac4変態点未満の
温度で焼もどすことを特徴とする、加工性に優れた冷間
鍛造用部品鋼の製造方法。
(3) C: 0.10 to 0.60% by weight. Si: 0.01-0.70%. Mn: 0.20-2.00%. SOmuAg: o, o1-0.10%. and, if necessary, further Nb: 0.15
% or less, Ti: 0.15 or less. Zr: 0.15% or less, B: 0.001 to 0.03
0%. Also contains one or more of the following: Fe and unavoidable impurities: remainder. Steel with a composition consisting of (Ac3 transformation point + 200℃)
After heating to a temperature above and hot rolling, it is cooled to a temperature below the Arc transformation point, and then the Ac3 transformation point ~ ('Ac
3Ac3 transformation 00°C], then rolling in a temperature range of Ar3 transformation point or higher where the rolling reduction per bath is 10q6 or higher, followed by rolling with a rolling reduction of 10q or higher per bath.
A cold-forged part with excellent workability, characterized in that it is subjected to finish rolling at a temperature of 6 or higher and below the Ar3 transformation point, then immediately left to cool or forcedly cooled, and then tempered at a temperature below the Ac4 transformation point. Method of manufacturing steel.
JP11318783A 1983-06-23 1983-06-23 Production of parts steel for cold forging Pending JPS605821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11318783A JPS605821A (en) 1983-06-23 1983-06-23 Production of parts steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11318783A JPS605821A (en) 1983-06-23 1983-06-23 Production of parts steel for cold forging

Publications (1)

Publication Number Publication Date
JPS605821A true JPS605821A (en) 1985-01-12

Family

ID=14605754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11318783A Pending JPS605821A (en) 1983-06-23 1983-06-23 Production of parts steel for cold forging

Country Status (1)

Country Link
JP (1) JPS605821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231766A (en) * 1985-07-31 1987-02-10 Tech Res Assoc Openair Coal Min Mach Controller for static hydraulic driving
JPS62124354A (en) * 1985-11-20 1987-06-05 Tech Res Assoc Openair Coal Min Mach Control of closed circuit hydraulic drive unit
JPH02225620A (en) * 1989-02-27 1990-09-07 Kobe Steel Ltd Production of case hardening steel excellent in cold forgeability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231766A (en) * 1985-07-31 1987-02-10 Tech Res Assoc Openair Coal Min Mach Controller for static hydraulic driving
JPS62124354A (en) * 1985-11-20 1987-06-05 Tech Res Assoc Openair Coal Min Mach Control of closed circuit hydraulic drive unit
JPH02225620A (en) * 1989-02-27 1990-09-07 Kobe Steel Ltd Production of case hardening steel excellent in cold forgeability
JPH0699747B2 (en) * 1989-02-27 1994-12-07 株式会社神戸製鋼所 Method for manufacturing case-hardening steel with excellent cold forgeability

Similar Documents

Publication Publication Date Title
EP0523375B1 (en) Process for producing steel bar wire rod for cold working
JPH10273756A (en) Cold tool made of casting, and its production
JPH029647B2 (en)
JPS58107416A (en) Method of directly softening steel wire or rod steel useful for mechanical construction
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JPS605821A (en) Production of parts steel for cold forging
JPS6214606B2 (en)
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JPS62253724A (en) Production of wire rod for cold forging having granular cementite structure
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP4116708B2 (en) Manufacturing method of fine grain structure steel
JPH0860239A (en) Production of thick steel plate excellent in low temperature toughness
JP2937346B2 (en) Method for producing high carbon steel for spheroidizing annealing
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPS609825A (en) Production of tough and hard steel
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
JPS61520A (en) Manufacture of high-strength and high-ductility steel wire
JPH02274810A (en) Production of high tensile untempered bolt
JPH06104864B2 (en) Manufacturing method of steel material for non-heat treated bolts with excellent toughness