JPS61520A - Manufacture of high-strength and high-ductility steel wire - Google Patents

Manufacture of high-strength and high-ductility steel wire

Info

Publication number
JPS61520A
JPS61520A JP12001584A JP12001584A JPS61520A JP S61520 A JPS61520 A JP S61520A JP 12001584 A JP12001584 A JP 12001584A JP 12001584 A JP12001584 A JP 12001584A JP S61520 A JPS61520 A JP S61520A
Authority
JP
Japan
Prior art keywords
wire
steel wire
ductility
strength
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12001584A
Other languages
Japanese (ja)
Inventor
Yukio Ochiai
落合 征雄
Yoji Hida
飛田 洋史
Hiroshi Oba
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12001584A priority Critical patent/JPS61520A/en
Publication of JPS61520A publication Critical patent/JPS61520A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a low-carbon steel wire having high strength and ductility and excellent weldability by wire-drawing a steel wire rod of a low-alloy steel whose Al/N ratio is specified, and subjecting the wire to two-stage annealing at appropriate temps. CONSTITUTION:A steel wire rod, consisting of <=0.1wt% C, <=0.3% Si, 0.1-0.6% Mn, 0.005-0.1% Al, N specified by an Al/N ratio of 2.5-7.5, and the balance Fe and inevitable impurities, is wire-drawn at >=50% total reduction of area. Then the wire is primarily annealed by keeping the temp. at 500-600 deg.C, and then secondarily annealed by keeping the temp. at 600-750 deg.C. The precipitation of AlN can be controlled with said steel composition, amt of wire to be drawn, and annealing conditions, and a low-carbon steel wire having high strength and ductility can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鋲螺類、金網、ガラス封入線、メッキ鋼線など
に幅広く用いられる高強度で高延性の鋼線の製造法に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing high-strength and high-ductility steel wire that is widely used for screws and screws, wire mesh, glass-enclosed wire, plated steel wire, etc. .

(従来技術及び問題点) 従来高強度かつ高延性を持たせるための方法としては、
例えば鋲螺類について言えば、特開昭50−51920
号、特開昭50−51921号、特開昭55−4192
7号各公報かごで代表される胤−歯−V系やMn −T
 i系で制御圧延する非調質鋼や、Cr、Moを添加し
た合金鋼を焼入れ、焼戻しする調質鋼が用いられている
。しかしながら非調質の制御圧延材は、均質な機械的特
性が得にくい。
(Prior art and problems) Conventional methods for providing high strength and high ductility include:
For example, regarding rivets and screws, JP-A-50-51920
No., JP-A-50-51921, JP-A-55-4192
Seed-tooth-V system and Mn-T represented by each publication No. 7 cage
Non-tempered steel that is controlled and rolled using i-series, and tempered steel that is quenched and tempered alloy steel to which Cr and Mo are added are used. However, it is difficult to obtain homogeneous mechanical properties in non-temperature control rolled materials.

調質鋼はCが高いため、延性には限度があるほか製造コ
ストも高い。またガラス封入線の場合、C増加により高
強度化すると気泡発生しやすいという問題が生ずる。一
方、金網やメッキ鋼線はスポット溶接部の冷間加工性お
よび曲げ特性劣化の点から、Cによる高強度化は限界が
あり、所望の強度延性が得にくいなどの問題点が残され
ていた。
Tempered steel has a high C content, so it has a limited ductility and is expensive to manufacture. Further, in the case of a glass-encapsulated wire, if the strength is increased by increasing C, a problem arises in that bubbles are likely to occur. On the other hand, increasing the strength of wire mesh and plated steel wire with carbon is limited due to the deterioration of cold workability and bending properties of spot welds, and problems remain, such as difficulty in achieving the desired strength and ductility. .

(発明の目的) 本発明は上記の問題点を解消するため、高強度高延性鋼
線を得るために、窒化アルミニウム(以下AtNと言う
)の析出を利用して、超細粒鋼を安定して得る鋼線の製
造法を提起するものである。
(Object of the Invention) In order to solve the above-mentioned problems, the present invention stabilizes ultra-fine grain steel by utilizing the precipitation of aluminum nitride (hereinafter referred to as AtN) in order to obtain a high-strength, high-ductility steel wire. This paper proposes a manufacturing method for steel wire that can be obtained by

本発明の確立により従来技術の問題点は解消され、高強
度かつ高延性の鋼線を低Cで製造することが可能となっ
た。
With the establishment of the present invention, the problems of the prior art have been solved, and it has become possible to produce high strength and high ductility steel wire at low C.

(問題点を解決するための手段) 本発明はCO,1wt%以下、Si 0.3 wt%以
下、胤0.1〜0.6wt%、At0OO5〜0.1 
wt%およびAA wt%/N wt%比で2.5〜7
.5なる範囲のNを含有し、残部が鉄および不可避的不
純物からなる鋼成分の線材を用℃・、総減面率50%以
上の伸線を行なった後、500〜600℃の温度領域に
30分以上保定する一枠    次焼鈍を行い、ひきつ
づいて600〜750℃の温度領域に30分以上保定す
る二次焼鈍を行うか、または前記一次焼鈍後、総減面率
20%以上で伸線したのち、前記二次焼鈍を行ない、引
張強さ5QKg/ran2以上、絞り値80%以上の特
性をうることを特徴とする高強度高延性鋼線の製造法で
ある。
(Means for Solving the Problems) The present invention includes CO, 1wt% or less, Si 0.3wt% or less, seeds 0.1-0.6wt%, At0OO5-0.1
wt% and AA wt%/N wt% ratio of 2.5 to 7
.. Using a steel wire rod containing N in a range of 5°C and the balance consisting of iron and unavoidable impurities, the wire rod is drawn at a total area reduction of 50% or more, and then heated to a temperature range of 500 to 600°C. One frame held for 30 minutes or more: Next annealed, followed by secondary annealing held at a temperature range of 600 to 750°C for 30 minutes or more, or after the first annealing, wire drawn with a total area reduction of 20% or more. This is a method for producing a high-strength, high-ductility steel wire, characterized in that the wire is then subjected to the secondary annealing to obtain properties such as a tensile strength of 5QKg/ran2 or more and a reduction of area of 80% or more.

以下本発明で成分範囲、加工条件および焼鈍条件を定め
た理由を述べる。
The reasons for determining the component range, processing conditions, and annealing conditions in the present invention will be described below.

Cは鋼の強度、延性を支配する基本元素であり、Cの増
加とともに強度は増加し延性は劣化する。
C is a basic element that controls the strength and ductility of steel, and as C increases, the strength increases and the ductility deteriorates.

本発明では高延性の確保と溶接部の冷間加工性および曲
げ特性を劣化させない範囲として上限を0.1wt%と
じた。
In the present invention, the upper limit is set at 0.1 wt% as a range that ensures high ductility and does not deteriorate the cold workability and bending properties of the welded part.

Siは脱酸元素とし7て有用であるが、一方Si量の増
加にともない、延性を劣化させる。上限を0.3wt%
に限定した理由は、Si量の増加にともない延性が劣化
することや、メッキ剥離性、メカニカルデスケーリング
性を著しく害するためである。
Si is useful as a deoxidizing element 7, but on the other hand, as the amount of Si increases, ductility deteriorates. The upper limit is 0.3wt%
The reason for limiting this is that as the amount of Si increases, ductility deteriorates, and plating removability and mechanical descaling properties are significantly impaired.

地は脱酸元素であるとともにSによる熱間脆性を抑制す
る元素である。下限を0.1wt%とじた理由は、これ
より低くてはSによる熱間脆性を抑制することができな
いためである。また上限を0.6wt%とじた理由は経
済的理由によるものである。
Earth is a deoxidizing element and an element that suppresses hot embrittlement caused by S. The reason why the lower limit is set at 0.1 wt% is that if the content is lower than this, hot embrittlement caused by S cannot be suppressed. Furthermore, the reason why the upper limit is set at 0.6 wt% is due to economic reasons.

Atは強力な脱酸元素であり、鋼の清浄化には欠かせぬ
元素であるほか、鋼中のNと結合しAtNを形成する元
素である。Atの下限を0.005 wt%とじた理由
は、これ以下では鋼の脱酸は不十分となるほか、後述す
る0、1μ以下の微細なAtNの析出量が不足するため
である。上限を0.1wt%とじたのは、脱酸およびA
tN析出物生成効果は、これ以上では飽和するためであ
る。
At is a strong deoxidizing element and is an essential element for cleaning steel, as well as an element that combines with N in steel to form AtN. The reason why the lower limit of At is set at 0.005 wt% is that if it is less than this, the deoxidation of the steel will be insufficient, and the amount of fine AtN precipitation of 0.1 μm or less, which will be described later, will be insufficient. The upper limit was set at 0.1 wt% because of deoxidation and A
This is because the tN precipitate generation effect becomes saturated above this point.

次にA2とNの成分比の限定理由を述べる。本発明者ら
は、焼鈍中に析出するA7Nの大きさや数量と焼鈍後の
フェライト結晶粒径の大きさと、の関係を詳細に研究し
た結果、次のことが明らかとなった。すなわち01μ以
下の微細なAtN0数が多くなるほど焼鈍後のフェライ
ト結晶粒径が小さく7なる。また0、1μ以下の微細な
AtNの析出数は、At wt%/Nwt%比で、2.
5〜7.5の範囲で著しく増加することを実験的に発見
した。以上の結果がらAtwt%/Nwt%成分比を2
.5〜7.5と限定した。
Next, the reason for limiting the component ratio of A2 and N will be described. The present inventors conducted a detailed study on the relationship between the size and quantity of A7N precipitated during annealing and the size of ferrite crystal grains after annealing, and as a result, the following became clear. That is, as the number of fine AtN0 of 01μ or less increases, the ferrite crystal grain size after annealing becomes smaller. In addition, the number of fine AtN precipitations of 0.1μ or less is determined by the At wt%/Nwt% ratio of 2.
It has been experimentally discovered that it increases significantly in the range of 5 to 7.5. Based on the above results, the Atwt%/Nwt% component ratio was set to 2.
.. It was limited to 5 to 7.5.

伸線減面率を50%以上とした理由は、すべり変形帯な
どの人tNの析出サイトを増殖させて、微細なAtNを
均一に分散させるためであり、50%以下では十分な効
果が得られない。
The reason why the wire drawing area reduction ratio is set to 50% or more is to increase the precipitation sites of AtN such as slip deformation zones and uniformly disperse fine AtN, and a sufficient effect is not obtained when the wire drawing area reduction ratio is 50% or less. I can't do it.

−次焼鈍温度を500〜600℃で行なう理由は、加工
組織の回復段階で微細なAtNの析出を促進させるため
である。下限を500℃としたのは、500℃以下では
AtHの析出量が少なく再結晶粒の細粒化が不十分であ
り、上限を600 ℃としたのは、600℃以上では析
出するAtNのサイズが大きくなり、目的とする微細A
tNが得られず、その結果、再結晶粒の細粒化が達成さ
れないためである。−次焼鈍時間を30分以上にした理
由は、30分以下ではM囚の析出が不十分となり、目的
とする効果が得られないためである。
- The reason why the secondary annealing temperature is 500 to 600°C is to promote the precipitation of fine AtN during the recovery stage of the processed structure. The lower limit was set at 500°C because below 500°C, the amount of AtH precipitated is small and recrystallized grains are not sufficiently refined.The upper limit was set at 600°C because the size of AtN that precipitates above 600°C. becomes larger, and the target fine A
This is because tN cannot be obtained and, as a result, recrystallized grains cannot be refined. - The reason why the subsequent annealing time is set to 30 minutes or longer is that if it is shorter than 30 minutes, precipitation of M prisoners will be insufficient and the desired effect will not be obtained.

二次焼鈍温度を600〜750℃に限定した理由は、再
結晶を完了させることがその狙いである。
The reason why the secondary annealing temperature is limited to 600 to 750°C is to complete recrystallization.

上限を750℃とした理由は、750℃よりも高い温度
になると、二次再結晶現象による結晶粒の粗大化が生じ
、高強度が得られなくなるためである。
The reason why the upper limit is set to 750°C is that if the temperature is higher than 750°C, crystal grains will become coarse due to secondary recrystallization phenomenon, making it impossible to obtain high strength.

下限を600℃としたのは、600℃以下では再結晶が
不十分となり、加工組織が残って高延性が得られなくな
るためである。二次焼鈍の時間を30分以上としたのは
、30分以下では再結晶が不十分なため、高延性が得ら
れないためである。
The reason why the lower limit is set to 600°C is that recrystallization becomes insufficient below 600°C, leaving a processed structure and making it impossible to obtain high ductility. The reason why the secondary annealing time is set to 30 minutes or more is because if it is 30 minutes or less, recrystallization is insufficient and high ductility cannot be obtained.

−次焼鈍と二次焼鈍の間に、総減面率20%以上の伸線
加工を行なうと、−次焼鈍で析出した微細AtNのまわ
りに伸線加工による転位が増殖し、−次回結晶粒をさら
に微細にする効果があることを実験的に求めた。20%
以上の伸線加工により高強度かつ高延性の鋼線が容易に
得られる。しかし20%以下の伸線加工ではその効果は
不十分である。
- If wire drawing is performed with a total area reduction of 20% or more between the secondary annealing, - dislocations due to the wire drawing will multiply around the fine AtN precipitated in the - next annealing, and - next crystal grains will be generated. We have experimentally determined that this has the effect of making the particles even finer. 20%
High strength and high ductility steel wire can be easily obtained by the above wire drawing process. However, the effect is insufficient when wire drawing is less than 20%.

(実施例) 本発明鋼(A、B、C)と従来鋼(D、E)の鋼組成を
第1表に示す。
(Example) Table 1 shows the steel compositions of the present invention steels (A, B, C) and conventional steels (D, E).

これらの鋼はいずれも250を転炉で溶製後、連続鋳造
したのち、分塊圧延により117wn96ビレツトとし
、その後熱間圧延により5.5 m+n lの線材とし
、ステルモア冷却設備で冷却した。線材を伸線後焼鈍腰
得られた鋼線の特性を第2表に示す。
For each of these steels, 250 steel was melted in a converter, continuously cast, then bloomed into a 117wn96 billet, then hot rolled into a 5.5 m+nl wire rod, and cooled in a Stelmore cooling facility. Table 2 shows the properties of the steel wire obtained after drawing and annealing the wire.

第2表の結果から明らかのように、本発明法により製造
された鋼線(水準3.4.7.8.10.11)はフェ
ライト結晶粒度番号が11以上となり、高強度かつ高延
性の鋼線が得られた。また水準1.2.5.6.9は本
発明鋼であるが、焼鈍条件が本発明法ではな℃・場合で
あり、0.1μ以下のAtN析出量が少なくなるため、
細粒化による高強度が得られない。水準10と11は一
次焼鈍後の伸線加工量を変化させている。
As is clear from the results in Table 2, the steel wire manufactured by the method of the present invention (level 3.4.7.8.10.11) has a ferrite grain size number of 11 or more, and has high strength and high ductility. A steel wire was obtained. In addition, level 1.2.5.6.9 is the steel of the present invention, but the annealing conditions are not the method of the present invention at °C, and the amount of AtN precipitation of 0.1μ or less is reduced.
High strength cannot be obtained through grain refinement. Levels 10 and 11 vary the amount of wire drawing after primary annealing.

両者の比較で明らかのように、−次焼鈍と二次焼鈍の間
で、伸線加工減面率が30%の場合は、より高強度化が
なされるが、15%の場合は効果が不十分である。また
従来鋼(水準12.13)は、本発明法の焼鈍を行なっ
たものであるが、焼鈍中の微細なAtNの析出数が不足
するため再結晶が円1.滑に進み、フェライト結晶粒度
番号で7.2〜8.0となり、延性はあるが高強度化が
達成できない。水準14は従来鋼を本発明法の焼鈍を行
なったものである。Cが高いために高強度化は達成しや
すいが延性が劣化している。
As is clear from the comparison between the two, when the wire drawing area reduction rate is 30% between secondary annealing and secondary annealing, higher strength is achieved, but when it is 15%, there is no effect. It is enough. In addition, conventional steel (level 12.13) was annealed using the method of the present invention, but recrystallization was 1.5 yen due to insufficient number of fine AtN precipitates during annealing. It progresses smoothly, and the ferrite grain size number is 7.2 to 8.0, and although it has ductility, high strength cannot be achieved. Level 14 is a conventional steel annealed using the method of the present invention. Due to the high C content, it is easy to achieve high strength, but the ductility is degraded.

(発明の効果) 本発明で述べた鋼成分、伸線量、焼鈍条件により、At
Nの析出状態が制御され、再結晶粒が微細化される結果
、高強度、高延性かつ溶接性のすぐれた低炭素鋼線を製
造することができる。本発明を適用することにより、鋲
螺類、金網、ガラス封入線、メッキ鋼線などの冷間鍛造
性、スポット溶接性、曲げ特性などを向上させることが
できる。
(Effect of the invention) With the steel composition, wire drawing amount, and annealing conditions described in the present invention, At
As a result of controlling the precipitation state of N and refining the recrystallized grains, it is possible to produce a low carbon steel wire with high strength, high ductility, and excellent weldability. By applying the present invention, cold forgeability, spot weldability, bending properties, etc. of studs and screws, wire mesh, glass-enclosed wire, plated steel wire, etc. can be improved.

Claims (1)

【特許請求の範囲】 1 C0.1wt%以下、Si0.3wt%以下、Mn
0.1〜0.6wt%、Al0.005〜0.1wt%
およびAlwt%/Nwt%比で2.5〜7.5なる範
囲のNを有し、残部が鉄および不可避的不純物からなる
鋼成分の線材を用い、総減面率50%以上の伸線を行な
つた後、500〜600℃の温度領域に30分以上保定
する一次焼鈍を行い、ひきつづいて、600〜750℃
の温度領域に30分以上保定する二次焼鈍を行ない、引
張強さ50Kg/mm^2以上、絞り値80%以上の特
性をうることを特徴とする高強度高延性鋼線の製造法。 2 前記一次焼鈍後、総減面率20%以上で伸線したの
ち、前記二次焼鈍を行なうことを特徴とする特許請求の
範囲第1項記載の高強度高延性鋼線の製造法。
[Claims] 1 C0.1wt% or less, Si0.3wt% or less, Mn
0.1-0.6wt%, Al0.005-0.1wt%
Using a steel wire rod having an Alwt%/Nwt% ratio of N in the range of 2.5 to 7.5, with the balance consisting of iron and unavoidable impurities, the wire is drawn with a total area reduction of 50% or more. After this, primary annealing is performed by holding in a temperature range of 500 to 600°C for 30 minutes or more, followed by annealing at a temperature of 600 to 750°C.
A method for producing a high-strength, high-ductility steel wire, which is characterized by performing secondary annealing at a temperature range of 30 minutes or more to obtain properties of a tensile strength of 50 Kg/mm^2 or more and a reduction of area of 80% or more. 2. The method for producing a high-strength, high-ductility steel wire according to claim 1, characterized in that, after the primary annealing, the wire is drawn at a total area reduction of 20% or more, and then the secondary annealing is performed.
JP12001584A 1984-06-13 1984-06-13 Manufacture of high-strength and high-ductility steel wire Pending JPS61520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12001584A JPS61520A (en) 1984-06-13 1984-06-13 Manufacture of high-strength and high-ductility steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12001584A JPS61520A (en) 1984-06-13 1984-06-13 Manufacture of high-strength and high-ductility steel wire

Publications (1)

Publication Number Publication Date
JPS61520A true JPS61520A (en) 1986-01-06

Family

ID=14775788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12001584A Pending JPS61520A (en) 1984-06-13 1984-06-13 Manufacture of high-strength and high-ductility steel wire

Country Status (1)

Country Link
JP (1) JPS61520A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341784A (en) * 1986-08-08 1988-02-23 鹿島建設株式会社 Cold storage
KR100256349B1 (en) * 1995-09-14 2000-05-15 이구택 The manufacturing method for low carbon steel wire rod with excellent wire drawing property
JP2001207240A (en) * 1999-11-16 2001-07-31 Kobe Steel Ltd Steel product excellent in straightness after cold drawing
RU2612101C1 (en) * 2015-09-02 2017-03-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of hot-rolled stock preparation for production of hardware fasteners
KR20200114349A (en) * 2019-03-28 2020-10-07 주식회사 포스코 Wire rod for high strength steel fiber, high strength steel fiber and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341784A (en) * 1986-08-08 1988-02-23 鹿島建設株式会社 Cold storage
KR100256349B1 (en) * 1995-09-14 2000-05-15 이구택 The manufacturing method for low carbon steel wire rod with excellent wire drawing property
JP2001207240A (en) * 1999-11-16 2001-07-31 Kobe Steel Ltd Steel product excellent in straightness after cold drawing
RU2612101C1 (en) * 2015-09-02 2017-03-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of hot-rolled stock preparation for production of hardware fasteners
KR20200114349A (en) * 2019-03-28 2020-10-07 주식회사 포스코 Wire rod for high strength steel fiber, high strength steel fiber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5545269A (en) Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
JP3526576B2 (en) Manufacturing method of high-strength steel with excellent weld strength and weld strength
JP5829977B2 (en) High-strength cold-rolled steel sheet excellent in yield strength and formability and method for producing the same
JP6837372B2 (en) High-strength cold-rolled steel sheet with excellent formability and its manufacturing method
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JPH05105957A (en) Production of heat resistant high strength bolt
JPS61520A (en) Manufacture of high-strength and high-ductility steel wire
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH02285053A (en) Maraging steel and its production
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP3592490B2 (en) High ductility and high strength steel sheet with excellent low temperature toughness
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JP3328791B2 (en) Martensitic stainless steel wire excellent in cold workability and method for producing the same
JPH05195054A (en) Production of high strength stainless steel material for structural use excellent in workability