KR100256349B1 - The manufacturing method for low carbon steel wire rod with excellent wire drawing property - Google Patents

The manufacturing method for low carbon steel wire rod with excellent wire drawing property Download PDF

Info

Publication number
KR100256349B1
KR100256349B1 KR1019950030088A KR19950030088A KR100256349B1 KR 100256349 B1 KR100256349 B1 KR 100256349B1 KR 1019950030088 A KR1019950030088 A KR 1019950030088A KR 19950030088 A KR19950030088 A KR 19950030088A KR 100256349 B1 KR100256349 B1 KR 100256349B1
Authority
KR
South Korea
Prior art keywords
wire
wire rod
heat treatment
manufacturing
rod
Prior art date
Application number
KR1019950030088A
Other languages
Korean (ko)
Other versions
KR970014858A (en
Inventor
최해창
박경태
박수동
정의경
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950030088A priority Critical patent/KR100256349B1/en
Publication of KR970014858A publication Critical patent/KR970014858A/en
Application granted granted Critical
Publication of KR100256349B1 publication Critical patent/KR100256349B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: A method for manufacturing a mild steel wire rod for ultra fine wire having superior rod drawability is provided not only to decrease distribution of non-metallic inclusions influencing adverse effect on the generation of the snapping of a wire during the wire drawing of the ultra fine wire but also solve the problems of coarsening during annealing heat treatment, and formation and growth of the crystal grains by properly controlling aluminum constituent in the steel and a temperature of the heat treatment during the annealing heat treatment after the wire drawing. CONSTITUTION: In a method for manufacturing a mild steel wire rod for ultra fine wire, the method for manufacturing a mild steel wire rod having superior rod drawability comprises the processes of wire drawing the wire rod after manufacturing a steel billet comprising 0.003 to 0.05 wt.% of C, 0.1 to 0.3 wt.% of Mn, 0.02 wt.% or less of P, 0.02 wt.% or less of S, 0.03 to 0.08 wt.% of Al, and a balance of Fe and inevitable impurities into a wire rod; and finally wire drawing the annealing heat treated wire rod after annealing heat treating the drawn wire rod in the temperature range of 630 to 680 deg.C.

Description

신선가공성이 우수한 연강선재의 제조방법Manufacturing method of mild steel wire with excellent drawability

제1도는 본 발명재 및 비교재의 소둔 열처리 온도에 따른 광학현미경 관찰사진.1 is an optical microscope observation picture according to the annealing heat treatment temperature of the present invention and the comparative material.

본 발명은 극세선용 연강선재의 제조방법에 관한 것으로, 보다 상세하게는, 신선가공성이 우수한 극세선용 연강선재의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a fine steel wire rod for ultrafine wires, and more particularly, to a method for producing a fine steel wire rod for fine wire strands excellent in workability.

연강선재중 극세선용도(0.5mm dia 이하)로 사용하는 강종으로서는 SWRM6M1 및 SWRM6B 등을 들 수 있으며, 이러한 강종들의 사용용도로는 소둔선, 아연도선 철망, 못과 못사이에 쓰이는 용접재료등에 쓰이고 있다. 이러한 강종들은 극세선으로 신선(drawing)하여 용도별 특성에 맞게 사용하기 때문에, 신선가공성이 우수한 품질 특성을 가져야 한다. 여기서 언급하는 신선가공성은 신선가공시 단선율을 기준으로 평가하는 것으로, 단선율이 적을 수록 신선가공성이 우수함을 의미한다.Among the mild steel wires, the steel grades used for the use of ultra fine wires (0.5 mm dia or less) include SWRM6M1 and SWRM6B.These steel grades are used for annealing wires, galvanized wire mesh, and welding materials used between nails and nails. have. Since these steel grades are drawn in the ultra fine wire and used according to the characteristics of each application, the steel grades should have excellent quality characteristics. The freshness mentioned here is evaluated based on the disconnection rate during the fresh processing, and the less the disconnection rate, the better the freshness.

극세선용 연강선재는 통상 5.5mm의 선재를 1.2-1.6mm까지 신선하고 소둔처리(750℃)후 0.4mm까지 최종신선하여 제조하며, 용도별 특성에 맞게 신선공정중 아연도금등을 하여 사용한다.Fine steel wire rod is usually 5.5mm Wire rod of 1.2-1.6mm Fresh and annealing (750 ℃) 0.4mm It is manufactured by final drawing until the end, and zinc plating is used during the drawing process according to the characteristics of each application.

그러나 연강선재의 용도가 극세선용으로 사용할 경우, 신선성에 유해한 영향을 미치는 인자로서 비금속개재물의 영향을 배제할 수 없다. 이는 연강선재를 극세선 용도로 사용할 경우 비금속 개재물이 상당량 존재하면 신선가공중에 비금속 개재물과 모재 계면에서의 미세균열의 생성 및 전파로 인해 신선가공시 단선을 유발할 가능성이 매우 높기 때문에, 극세선용도로 사용시 비금속개재물의 엄격한 관리가 요구된다. 이러한 비금속 개재물의 분포를 감소시키기 위해서는 용강 산소의 함량을 감소시키는 것이 가장 중요한데, 이는 용강중의 산소가 산화물계 비금속 개재물을 형성시키는 주 인자이기 때문이다. 따라서 산화물계 비금속 개재물을 감소시키기 위한 수단으로서는, 탈산제로 Al 및 Ca등을 미량 첨가하여 제강시 용강중에 잔존하는 산소를 감소시키는 방법을 고려할 수 있다.However, if the purpose of the mild steel wire is to be used for micro wire, the influence of non-metallic inclusions cannot be excluded as a detrimental effect on freshness. This is because when a mild steel wire is used for ultra fine wire, if a large amount of non-metallic inclusion exists, it is very likely to cause disconnection during drawing due to the generation and propagation of microcracks at the interface between the non-metallic inclusion and the base metal during the drawing process. Strict management of nonmetallic inclusions is required. In order to reduce the distribution of these nonmetallic inclusions, it is most important to reduce the content of molten steel oxygen because oxygen in the molten steel is the main factor for forming oxide-based nonmetallic inclusions. Therefore, as a means for reducing the oxide-based non-metallic inclusions, it is possible to consider a method of reducing the oxygen remaining in the molten steel during steelmaking by adding a small amount of Al and Ca as a deoxidizer.

종래재의 경우 Al 및 Ca등의 탈산제를 사용하지 않고 연강선재를 제조하여 사용하기 때문에 손재내의 산소함량이 상당히 높다. 이로인해 산화물계 비금속 개재물의 분포가 많다. 따라서 연강선재를 극세선 용도로 사용시 선재중에 비금속 개재물이 과다하게 분포할 경우 신선가공시 단선과다로 인해 극세선용도로의 사용이 어려운 단점이 있다.In the case of the conventional materials, since the mild steel wire is manufactured without using deoxidizers such as Al and Ca, the oxygen content in the hand is quite high. This results in a large distribution of oxide-based nonmetallic inclusions. Therefore, when the non-metallic inclusions are excessively distributed in the wire rod when the mild steel wire is used for the use of the ultra-fine wire, it is difficult to use the ultra-fine wire because of the excessive disconnection during the drawing process.

소재내의 산소함량은 제강시 Al, Ca등의 탈산제를 투입하여 저감시킬 수 있으나, Al함량이 높을경우 소둔 열처리시 석출하는 Al계 석출물로 인해 신선 가공후 소둔열처리시 결정립 조대화 및 이상 결정립의 발생으로 오히려 비금속개재물에 의한 결함발생시보다 더 유해한 영향을 신선가공성에 미친다. 따라서 극세선용도로 연강선재를 사용하기 위해서는 신선후 소둔 열처리시 결정립 조대화 및 이상 결정립의 생성을 억제시킬수 있어야지만 극세선 용도로 용도확대가 가능하기 때문에, 이러한 문제점들을 동시에 해결할 수 있는 방안이 필요하다.Oxygen content in the material can be reduced by adding deoxidizing agents such as Al and Ca during steelmaking, but when Al content is high, grain coarsening and abnormal grains are generated during annealing heat treatment after drawing due to Al-based precipitates that precipitate during annealing heat treatment. Rather, they have a more detrimental effect on freshness than non-metallic inclusions. Therefore, in order to use mild steel wire for ultra fine wire, it is necessary to suppress grain coarsening and abnormal grain formation during annealing and heat treatment after drawing. .

여기서 이상 결정립 성장이라함은 불균질하게 특정결정립들이 조대하게 성장하는 결정립 성장을 의미한다.Here, the abnormal grain growth refers to grain growth in which specific grains grow coherently.

종래의 소둔 열처리시 이상 결정립 생성 및 성장 제어에 관한 기술로는 야마자끼(山崎)〈일본 철과 강, CAMP '80-S1246 P646〉와 오찌아이(落合)등〈일본제철연구(日本 製鐵硏寇) 제 319호 (1985) P 44〉이 발표한 바 있다.Techniques related to abnormal grain formation and growth control in conventional annealing heat treatment include Yamazaki <Japanese Iron and Steel, CAMP '80 -S1246 P646> and Ochiai et al. (Iii) No. 319 (1985) P 44).

야마지끼등은〈일본 철과 강, CAMP '80-S1246 P646〉에 Al/N 비 보다는 Al량이 이상립 생성 거동에 결정적인 영향을 미친다고 주장하였는데, 그들 은 sol-Al량이 0.020%이하의 연주Al-killed강일 경우 sol-Al함량이 0.003-0.006% 범위에서는 750℃에서 이상립이 발생되기 때문에 750℃이하에서 소둔 열처리를 하거나 sol-Al함량을 0.003%이하 또는 0.006%이상으로 유지하여야지만 소둔 열처리시 이상 결정립의 생성을 억제할 수 있다고 보고한 바 있다.Yamajiki et al. Argued that the amount of Al in the iron and steel, CAMP '80 -S1246 P646, had a decisive effect on the formation of anomalous grains rather than the Al / N ratio, and they indicated that the sol-Al content was less than 0.020%. In the case of -killed steel, since sol-Al content occurs at 750 ℃ in the range of 0.003-0.006%, annealing treatment should be performed at 750 ℃ or below, or sol-Al content should be maintained at 0.003% or above 0.006%. It has been reported that the formation of abnormal grains can be suppressed.

오찌아이 등은〈日本 製鐵硏寇 제 329호(1985) P44〉에서 저탄소 강종에서 이상립의 발생을 방지하기 위해서는 Al 또는 Al/N비의 적정범위의 선택이 필요하다고 주장한 바 있다. 그는 Al함유량이 낮은 연속주조강은 Al함유량이 높은 Al-killed강에 비하여 이상립의 발생경향이 크며 그것은 N량의 변화를 시도하여도 Al 이 적기 때문에 Al/N비가 위험영역으로 들어가기 때문으로 생각했으며, Al/N비를 선택할 경우 1 미만으로 하는 경우 품질특성에 기여하는 영향이 크기 때문에 필연적으로 7이상으로 하게되는데 Al/N비를 높이는 수단으로 Al량을 높이는 것은 가격 상승의 부담이 잇어 저질소 취련 및 정련, 연속주조 공정에서 흡입질소를 방지하는 것이 필요하다고 주장한 바 있다.Ochiai et al., In 日本 製 鐵 硏 寇 No. 329 (1985) P44, argued that it is necessary to select an appropriate range of Al or Al / N ratio to prevent the occurrence of abnormal grains in low-carbon steel grades. He thinks that continuous cast steel with low Al content has a larger tendency of abnormal grains than Al-killed steel with high Al content, because the Al / N ratio enters the hazardous area because there is little Al even if the N content is changed. In case of selecting Al / N ratio, if it is less than 1, it will inevitably be more than 7 because it has a big influence on quality characteristics.Increasing Al amount as a means to increase Al / N ratio is a burden of price increase. It has been argued that it is necessary to prevent intake nitrogen in the nitrogen blowing, refining and continuous casting processes.

상기 언급한 종래재는 Al함량이 높을 경우 이상립의 생성으로 극세선용으로 사용불가능하다. 또한 Al함량이 낮을 경우 이상립의 생성은 억제되나 조대한 비금속 개재물의 과다분포로 극세선 신선 가공시 단선율이 높다는 단점이 있다.The conventional materials mentioned above cannot be used for ultrafine wires due to the formation of abnormal grains when the Al content is high. In addition, when the Al content is low, the generation of abnormal grains is suppressed, but there is a disadvantage that the disconnection rate is high when the ultra fine wire is drawn due to the excessive distribution of coarse nonmetallic inclusions.

이에, 본 발명자는 상기한 문제점을 해결하여 신선가공성이 우수한 극세선용 연강선재를 제조하기 위하여 연구와 실험을 행한 결과, Al원소를 0.03-0.07%소량 첨가할 경우, 용강중 산소함량의 제어가 가능하여 산화물계 비금속 개재물의 분포를 저감할수 있으며, 신선후 소둔 열처리시 열처리 온도를 630-680℃범위로 하였을 경우, 소둔 열처리시 결정립 조대화 및 이상결정립 생성 및 성장을 억제할 수 있다는 사실을 확인하고, 이에 근거하여 본 발명을 제안하게 된 것이다.Accordingly, the present inventors have solved the above problems and conducted research and experiments to produce a fine steel wire rod for excellent fine wire drawing, when the addition of 0.03-0.07% Al element, it is possible to control the oxygen content in the molten steel It can be confirmed that the distribution of oxide-based nonmetallic inclusions can be reduced, and that grain size coarsening and abnormal grain formation and growth can be suppressed during annealing heat treatment when the annealing heat treatment temperature is in the range of 630-680 ° C. during the annealing heat treatment after drawing. Based on this, the present invention has been proposed.

본 발명은 강중 알루미늄 성분및 신선후 소둔 열처리시 열처리온도를 적절히 제어하므로서, 극세선 신선시 단선 발생에 유해한 영향을 미치는 비금속 개재물의 분포를 감소시키면서, 소둔 열처리시 결정립 조대화, 이상결정립의 생성 및 성장을 함께 해결한 신선가공성이 우수한 극세선용 연강선재의 제조방법을 제공하고자 하는데, 그 목적이 있다.According to the present invention, while appropriately controlling the aluminum component in steel and the heat treatment temperature during annealing after annealing, reducing the distribution of non-metallic inclusions that have a detrimental effect on the occurrence of disconnection during ultrafine wire drawing, grain coarsening and annealing of grains during annealing and The purpose of the present invention is to provide a method for producing a fine steel wire rod for excellent wire drawing, which has solved growth.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 극세선용 연강선재의 제조방법에 있어서, 중량%로, 탄소(C):0.003-0.05%, 망간(Mn):0.1-0.3%, 인(P):0.02%이하, 황(S):0.02% 이하, 알루미늄(Al):0.03-0.08% 잔부:Fe 및 불가피한 불순물로 조성되는 강의 빌렛(billet)을 선재로 제조한 후, 신선하고 630-680℃의 온도 범위에서 소둔 열처리한 다음, 최종 신선하여 신선가공성이 우수한 연강선재를 제조하는 방법에 관한 것이다.In the manufacturing method of the ultra-fine stranded steel wire rod, the weight%, carbon (C): 0.003-0.05%, manganese (Mn): 0.1-0.3%, phosphorus (P): 0.02% or less, sulfur (S) : Less than 0.02%, aluminum (Al): 0.03-0.08% balance: Fe and a billet of steel composed of inevitable impurities are made of wire rod, and then freshly annealed and heat-treated at a temperature range of 630-680 ° C. The present invention relates to a method for producing a mild steel wire rod having excellent drawing property by drawing.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기한 본 발명의 목적은 강의 성분및 소둔 열처리온도를 상기와 같이 제어하므로서, 극세선 신선가공시 신선가공성에 유해한 산화물계 비금속 개재물의 분포를 감소시키고, 소둔열처리시 결정립 조대화, 이상결정립의 생성및 성장을 억제하는 것이 가능하게되어 그 해결이 가능하다.The above object of the present invention is to control the composition of the steel and the annealing heat treatment temperature as described above, to reduce the distribution of oxide-based non-metallic inclusions that are harmful to the drawability during ultra-fine wire drawing, coarsening grains, annealing grains during annealing heat treatment And it becomes possible to suppress growth, and the solution is possible.

본 발명에서 탄소함량은 0.003-0.005중량% (이하 '%'라 한다)범위로 제한하는 것이 바람직한데, 그 이유는 0.003%이하에서는 소재의 충분한 강도를 확보하기 어렵기 때문이며, 0.05%이상에서는 강도 증가에 따른 인성 및 연성을 저하시키기 때문이다.In the present invention, the carbon content is preferably limited to the range of 0.003-0.005% by weight (hereinafter referred to as '%'), because it is difficult to secure sufficient strength of the material at 0.003% or less, and strength at 0.05% or more. This is because the toughness and ductility decrease with increasing.

망간함량은 0.1-0.3%로 제한하는 것이 바람직한데, 그 이유는 0.1%이하에서는 탈산 효과를 기대하기 어렵기 때문이며, 0.3%이상에서는 신선가공시 가공경화로 인하여 최종 신선후 목표 강도를 확보하기가 어렵기 때문이다.It is preferable to limit the manganese content to 0.1-0.3% because it is difficult to expect deoxidation effect below 0.1%, and above 0.3%, it is difficult to secure the target strength after final drawing due to work hardening during drawing processing. Because it is difficult.

인(P)은 결정입계에 편석되어 인성을 저하시키기 때문에 그 상한을 0.02%로 제한하는 것이 바람직하며, 황(S)은 인성을 저하시키고 유화물을 형성시켜 극세선 신선가공시 신선가공성에 유해한 영향을 미치기 때문에 그 상한을 0.02%로 제한하는 것이 바람직하다.It is preferable to limit the upper limit to 0.02% because phosphorus (P) is segregated at grain boundaries and degrades toughness. Sulfur (S) is detrimental in toughness and forms an emulsion, which is detrimental to freshness during ultrafine wire drawing. It is preferable to limit the upper limit to 0.02% because

알루미늄은 탈산제로서 본 발명강에서는 용강중의 산소함량을 감소시키므로서 산화물계 비금속개재물의 분포를 저감시키는 원소로서 그 함량을 0.03-0.08%로 제한하는 것이 바람직한데, 그 이유는 0.03%이하에서는 탈산효과가 미흡하여 산화물계 비금속 개재물의 분포를 저감시키기 어렵기 때문이며, 0.08%에서는 탈산효과가 포화되고 제강시 조대한 산화물계 비금속 개재물을 형성할 가능성이 커서 오히려 신선가공성에 유해한 영향을 미칠수 있기 때문이다.Aluminum is a deoxidizer and an element that reduces the distribution of oxide-based nonmetallic inclusions while reducing the oxygen content of molten steel in the present invention, and the content thereof is preferably limited to 0.03-0.08% because the deoxidation effect is less than 0.03%. This is because it is difficult to reduce the distribution of oxide nonmetallic inclusions, and at 0.08%, the deoxidation effect is saturated and the possibility of forming coarse oxide nonmetallic inclusions during steelmaking is high, which may adversely affect the fresh workability. .

한편, 본 발명에서는 상기와 같이 강을 조성한 후, 이와 같은 강의 빌렛을 선재로 제조한후 신선(1차 신선가공)하고 630-680℃의 온도범위에서 소둔열처리 한 다음, 최종 신선(2차신선가공)하여 극세선용 연강선재를 제조함이 바람직한데, 그 이유는 다음과 같다.On the other hand, in the present invention, after forming the steel as described above, after manufacturing the billet of the steel such as wire rod drawing (primary drawing) and annealing heat treatment in the temperature range of 630-680 ℃, and then the final drawing (secondary drawing Processing) to produce a fine steel wire rod for the fine wire, the reason is as follows.

1차 신선가공후 2차 신선가공전 소둔 열처리 온도를 630-680℃범위로 제한한 것은 열처리 온도가 630℃이하에서는 재결정이 완전히 완료되지 않고 신선조직이 잔존하여 극세선 신선가공시 모재조직의 불균질 변형에 영향을 미쳐 신선가공성에 유해한 영향을 미칠수 있기 때문이며, 680℃이상에서는 Al계 석출물들이 결정입계(grain boundary)또는 전위 셀(dislocation cell)등에서 불균질하게 석출이 되어 결정립 조대화 및 이상 결정립의 생성및 성장을 초래하여 신선가공성에 유해한 영향을 미치기 때문이다.The annealing temperature after the first drawing is limited to the range of 630-680 ℃ before the second drawing. The recrystallization is not completely completed when the heat treatment temperature is below 630 ℃. This is because it may affect the homogeneous deformation and deleteriously affect the freshness. Above 680 ° C, Al-based precipitates are unevenly deposited at grain boundaries or dislocation cells, resulting in grain coarsening and abnormality. This is because it causes the formation and growth of grains, which adversely affects fresh workability.

여기서, 선재는 통상 5.5mm의 것을 말하며, 1차신선은 1.2mm∼1.6mm의 범위까지 신선하는 것을, 2차 신선은 0.4mm까지 신선하는 것을 말한다.Here, the wire rod is usually 5.5mm Primary wire is 1.2mm ~ 1.6mm To fresh up to the range of, the secondary fresh is 0.4mm It says to be fresh.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

하기표 1과 같이 조성되는 빌렛을 1100℃에서 2시간 유지후 지름 5.5mm의 선재로 고속압연한후, 압연된 지름 5.5mm의 선재제품을 880℃로 물분사에 의해 급속 냉각하여 권취하고 500℃까지 1.2℃/sec의 평균 냉각속도로 서냉한후, 공냉하여 제조하였다.After holding the billet formed as shown in Table 1 at 1100 ° C. for 2 hours and rapidly rolling with a wire rod of 5.5 mm in diameter, the rolled wire rod product having a diameter of 5.5 mm was rapidly cooled to 880 ° C. by water spraying and wound up at 500 ° C. It was prepared by slow cooling after cooling to an average cooling rate of 1.2 ℃ / sec until.

이어 상기와 같이 제조된 직경 5.5mm의 선재를 직경 1.2mm까지 1차 신선한 다음, 발명재(1,2)의 경우는 650℃에서, 비교재(1,2)의 경우는 750℃에서 각각 4시간씩 소둔열처리한후, 직경 0.4mm까지 500m/min의 최종신선속도로 2차 신선가공(최종신선)하였다.Subsequently, the wire rod having a diameter of 5.5 mm manufactured as described above was firstly freshened to a diameter of 1.2 mm, and then 4 at 650 ° C. for the inventive materials (1, 2) and 750 ° C. for the comparative materials (1, 2). After the annealing heat treatment by time, the secondary drawing (final drawing) at the final drawing speed of 500m / min to 0.4mm in diameter.

이와같이, 신선된 선재의 선재상태에서의 인장특성, 신선가공후 인장특성, 신선전 및 소둔열처리후의 페라이트 입자크기(Ferrite Grain Size:이하, 'FGS'라 한다) 를 측정하고 그 결과를 하기표 2에 나타내었다.As such, the tensile properties in the wire state of the wire rods, the tensile properties after the wire processing, and the ferrite grain size (hereinafter referred to as 'FGS') after drawing and annealing heat treatment were measured and the results are shown in Table 2 below. Shown in

하기표 2에서 발명재(1,2) 및 비교재(1,2)의 선재상태에서의 인장특성 및 신선가공후의 인장특성은 인장시험기를 이용하여 조사한 것이다. FGS는 소둔열처리시 결정립 성장거동을 조사하기 위한 것으로 신선전 선재상태의 FGS및 신선후 소둔열처리한 상태의 FGS를 측정한 것이며, 이때 측정방법은 선형 인터셉트법(Iinear intercept methed)을 사용하였으며 관찰 방향은 압연방향이었다.In Table 2, the tensile properties in the wire rod state of the inventive material (1,2) and the comparative material (1,2) and the tensile properties after the drawing process were investigated using a tensile tester. FGS is to investigate the grain growth behavior during annealing heat treatment. FGS was measured in wire rod state and FGS in annealing heat treatment state after wire drawing. The measurement method was linear intercept method (Iinear intercept method). Was the rolling direction.

상기표 2는 신선전·후 발명재(1,2) 및 비교재(1,2)의 기계적 성질 및 FGS를 조사한 것으로, 발명재(1,2)의 기계적 성질 및 FGS의 영향은 비교재(1,2)대비 별 다른 차이점은 나타나지 않았다. 그러나 발명재(1,2)들의 인장강도가 비교재(1,2)대비 약 2-4kg/mm2정도 낮고 단면 감소율이 비교재(1,2) 대비 3-6%정도 높은 수준을 보이는 것은 본 발명의 합금성분상 탄소함량이 낮기 때문인 것으로 판단된다. 이러한 결과로 볼때 본 발명의 제조건에서는 Al첨가로 인한 신선전, 후의 비교재 대비 FGS의 변화는 없음을 알수 있다.Table 2 above shows the mechanical properties and FGS of the invention material (1, 2) and the comparative material (1, 2) before and after the wire, and the mechanical properties and effects of the FGS of the invention material (1, 2) are compared with the comparative material ( There was no difference between the two groups. However, the tensile strength of the inventive materials (1,2) is about 2-4kg / mm 2 lower than that of the comparative materials (1,2) and the cross-sectional reduction rate is about 3-6% higher than that of the comparative materials (1,2). It is judged that the carbon content is low on the alloy composition of the present invention. As a result, in the case of the present invention, it can be seen that there is no change in FGS compared to the comparative material after the freshness and after the addition of Al.

[실시예 2]Example 2

극세선 신선가공시 신선가공성에 유해한 산화물계 비금속 개재물의 분포를 확인하기 위하여 상기 실시예1의 발명재(1,2) 및 비교재(1,2)에 대하여 산화물계 비금속 개재물의 분포를 조사하고, 그 결과를 하기표 3에 나타내었다.In order to confirm the distribution of oxide-based nonmetallic inclusions harmful to freshness during ultra-fine wire drawing, the distribution of oxide-based nonmetallic inclusions was investigated with respect to the inventive materials (1,2) and comparative materials (1,2) of Example 1. The results are shown in Table 3 below.

여기서, 발명재(1,2)및 비교재(1,2)의 비금속 개재물의 분포는 통상 산화물계 개재물의 분포 평가시, 통용 되고있는 SEP 1570법을 이용하여 화상 분석기로 측정하였다.Here, the distribution of the nonmetallic inclusions of the inventive material (1, 2) and the comparative material (1, 2) was usually measured by an image analyzer using the SEP 1570 method which is commonly used in evaluating the distribution of oxide-based inclusions.

상기 표 3에서 알수 있는 바와같이, 비교재(1,2)의 경우 산화물의 K(3)값이 42-48의 값을 보이는 반면, 발명재(1,2)의 경우 K(3)값이 5-7정도 수준이기 때문에 비금속 산화물계 개재물의 분포가 적음을 알 수 있다. 이는 비금속 개재물의 분포에 직접적으로 영향을 미치는 산소함량에 기인하는 것임을 알수 있다. 이때의 K(3)값은 KL Number(개재물 크기나타내며 클수록 개재물 크기가큼) 3부터 10까지 해당되는 모든 개재물에 대하여 개재물 갯수에 SEP 1570법에서 사용하는 가중치를 곱한 값이다. 따라서 K(3)값이 적을수록 비금속 개재물이 적게 분포하게 된다. 한편 황화물의 분포에서는 비교재(1,2)대비 발명재(1,2)가 적게 나타났다.As can be seen in Table 3, in the case of the comparative material (1,2), the K (3) value of the oxide shows a value of 42-48, while in the case of the invention material (1,2), the K (3) value is Since the level is about 5-7, it can be seen that the distribution of non-metal oxide inclusions is small. This is due to the oxygen content directly affecting the distribution of nonmetallic inclusions. The K (3) value at this time is the value of KL Number (the larger the inclusion size, the larger the inclusion size), and the weight of the inclusions multiplied by the weight used in the SEP 1570 method for all inclusions 3 to 10. Therefore, the smaller the K (3) value, the less nonmetallic inclusions are distributed. On the other hand, in the distribution of sulfides, the invention materials (1,2) were less than the comparative materials (1,2).

[실시예 3]Example 3

1차 신선후 선재의 소둔열처리시 소둔 열처리 온도변화에 따른 발명재와 비교재의 조직변화를 확인하기 위하여 상기 실시예1의 발명재(1)과 비교재(1)의 선재를 각각 650℃ 및 750℃의 온도에서 4시간 동안 소둔 열처리를 행하고 그 조직변화를 광학현미경으로 관찰하여 그 결과를 발명재(1)의 경우 제1도(a)에 비교재(1)의 경우 제1도(b)에 나타내었다.In order to confirm the structure change of the invention material and the comparative material according to the annealing heat treatment temperature change during the annealing heat treatment of the wire after the primary drawing, the wires of the invention material (1) and the comparative material (1) of Example 1 were 650 ° C and 750, respectively. Annealing heat treatment for 4 hours at a temperature of ℃ ℃ and observed the change in the structure with an optical microscope and the results are shown in Figure 1 (a) for the invention material (1) and Figure 1 (b) for the comparative material (1) Shown in

제 1도에서 알수 있는 바와같이, 본 발명의 열처리온도범위인 650℃에서 열처리한 경우, 발명재(1)과 비교재(1)모두 이상 결정립은 관찰되지 않았으나, 열처리온도가 본발명의 범위를 벗어난 750℃의 경우 비교재(1)은 이상 결정립의 발생이 없었으나 발명재(1)은 이상 결정립이 관찰됨을 알수 있다. 따라서 발명재(1)의 경우 본 발명의 열처리 조건인 630-680℃의 온도범위내에서는 비교재(1)와 동일한 정상조직을 확보할수 있음을 알수 있다.As can be seen in Figure 1, when the heat treatment at the heat treatment temperature range of 650 ℃ of the present invention, the crystal grains of both the invention material (1) and the comparative material (1) was not observed, but the heat treatment temperature is within the scope of the present invention In the case of the deviation of 750 ℃, the comparative material (1) did not generate abnormal grains, but the inventive material (1) can be seen that the abnormal grains are observed. Therefore, in the case of the invention material (1) it can be seen that the same normal structure as the comparative material (1) can be secured within the temperature range of 630-680 ℃ which is the heat treatment condition of the present invention.

[실시예 4]Example 4

발명재와 비교재의 신선가공성은 평가하기 위하여 상기 실시예 1의 발명재(1,2) 및 비교재(1,2)의 신선가공성을 단선율로 평가하여 그 결과를 하기표 4에 나타내었다.In order to evaluate the drawability of the inventive material and the comparative material, the drawability of the inventive material (1, 2) and the comparative material (1, 2) of Example 1 was evaluated by the disconnection rate, and the results are shown in Table 4 below.

상기 표 4에서 알 수 있는 바와같이, 본 발명의 범위를 만족하는 발명재(1,2)의 경우, 본 발명의 범위를 만족하지 못하는 비교재(1,2)의 경우에 비하여 단선율이 톤당 0.1∼0.2회인 반면, 비교재(1,2)의 경우 2∼3회로 본 발명재(1,2)의 단선율이 개선되었음을 알 수 있다. 따라서 비교재(1,2)대비 발명재(1,2)의 신선가공성이 우수함을 알 수 있다.As can be seen in Table 4, the invention material (1,2) satisfying the scope of the present invention, the disconnection rate is 0.1 per ton compared to the case of the comparative material (1,2) that does not satisfy the scope of the present invention On the other hand, in the case of the comparative material (1, 2), the disconnection rate of the present invention material (1, 2) was improved two to three times. Accordingly, it can be seen that the freshness of the inventive material (1,2) is superior to that of the comparative material (1,2).

상술한 바와같이, 본 발명은 극세선 신선시 단선 발생에 큰 영향을 미치는 유해한 비금속 개재물의 분포를 감소시키면서, 소둔 열처리시 결정립 조대화 및 이상결정립의 생성 및 성장을 함께 해결한 신선가공성이 우수한 극세선용 연강선재의 제조방법을 제공할 수 있는 효과가 있다.As described above, the present invention reduces the distribution of harmful non-metallic inclusions having a great influence on the occurrence of disconnection during the fine wire drawing, and has excellent fine workability, which solves both grain coarsening and abnormal grain formation and growth during annealing heat treatment. There is an effect that can provide a method for producing a mild steel wire rod.

Claims (1)

극세선용 연강선재의 제조방법에 있어서, 중량%로, 탄소(C):0.003-0.05%, 망간(Mn):0.1-0.3%, 인(P):0.02%이하, 황(S):0.02% 이하, 알루미늄(Al):0.03-0.08%, 잔부:Fe 및 불가피한 불순물로 조성되는 강의 빌렛(billet)을 선재로 제조한 후, 신선하고 630-680℃의 온도 범위에서 소둔 열처리한 다음, 최종신선 하는 것을 포함하여 이루어짐을 특징으로 하는 신선가공성이 우수한 연강선재의 제조방법.In the method for producing a fine steel wire rod for ultrafine wire, in weight%, carbon (C): 0.003-0.05%, manganese (Mn): 0.1-0.3%, phosphorus (P): 0.02% or less, sulfur (S): 0.02% Hereinafter, a billet of steel composed of aluminum (Al): 0.03-0.08%, balance: Fe and unavoidable impurities is prepared by wire, and then annealed and heat-treated at a temperature range of 630-680 ° C., followed by final drawing. Method for producing a mild steel wire rod excellent in drawability, characterized in that it comprises.
KR1019950030088A 1995-09-14 1995-09-14 The manufacturing method for low carbon steel wire rod with excellent wire drawing property KR100256349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950030088A KR100256349B1 (en) 1995-09-14 1995-09-14 The manufacturing method for low carbon steel wire rod with excellent wire drawing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950030088A KR100256349B1 (en) 1995-09-14 1995-09-14 The manufacturing method for low carbon steel wire rod with excellent wire drawing property

Publications (2)

Publication Number Publication Date
KR970014858A KR970014858A (en) 1997-04-28
KR100256349B1 true KR100256349B1 (en) 2000-05-15

Family

ID=19426852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950030088A KR100256349B1 (en) 1995-09-14 1995-09-14 The manufacturing method for low carbon steel wire rod with excellent wire drawing property

Country Status (1)

Country Link
KR (1) KR100256349B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180196B1 (en) 2010-12-03 2012-09-05 포항공과대학교 산학협력단 Ultrafine-grained wire rod having high strength and ductilty and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61520A (en) * 1984-06-13 1986-01-06 Nippon Steel Corp Manufacture of high-strength and high-ductility steel wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61520A (en) * 1984-06-13 1986-01-06 Nippon Steel Corp Manufacture of high-strength and high-ductility steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180196B1 (en) 2010-12-03 2012-09-05 포항공과대학교 산학협력단 Ultrafine-grained wire rod having high strength and ductilty and method for manufacturing the same

Also Published As

Publication number Publication date
KR970014858A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
KR101528441B1 (en) High-strength steel sheet and method for producing same
US10316386B2 (en) High-carbon steel wire rod and preparation method therefor
US6277220B1 (en) Steel wire rod and process for producing steel for steel wire rod
KR100309192B1 (en) Titanium killed steel sheet with good surface properties and a method of producing the same
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
KR20180089500A (en) Non-oriented electric steel sheet and manufacturing method thereof
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
US4073643A (en) Continuously cast steel slabs for steel sheets having excellent workabilities and method for production thereof
KR100256349B1 (en) The manufacturing method for low carbon steel wire rod with excellent wire drawing property
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP2007177303A (en) Steel having excellent ductility and its production method
JPS6156245A (en) Manufacture of molten galvanized steel sheet for deep drawing
JPH06340950A (en) High strength steel wire rod and high strength steel wire excellent in fatigue property
CN115491569B (en) Production method of non-oriented silicon steel and non-oriented silicon steel
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
KR100256334B1 (en) The manufacturing method for wire rod with excellent wire drawing property
JP3757633B2 (en) Steel plate for cans with excellent workability
US20240043952A1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing same
KR100276298B1 (en) The manufacturing method of wire drawing used wire rod contained manganes
KR20180072446A (en) High strength galvanized steel sheet having excellent surface property and coating adhesion and method of manufacturing the same
JP5103964B2 (en) Deep drawing steel sheet with good surface properties and method for producing the same
JP2000001742A (en) Steel sheet for deep drawing, excellent in surface characteristic and baking hardenability, and its manufacture
JP2562964B2 (en) Manufacturing method of hot rolled high strength steel sheet for heavy working
JPH0959744A (en) High carbon steel wire rod excellent in wire drawability and aging resistance and its production
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060131

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee