JPS6156245A - Manufacture of molten galvanized steel sheet for deep drawing - Google Patents

Manufacture of molten galvanized steel sheet for deep drawing

Info

Publication number
JPS6156245A
JPS6156245A JP17513684A JP17513684A JPS6156245A JP S6156245 A JPS6156245 A JP S6156245A JP 17513684 A JP17513684 A JP 17513684A JP 17513684 A JP17513684 A JP 17513684A JP S6156245 A JPS6156245 A JP S6156245A
Authority
JP
Japan
Prior art keywords
steel
temperature
less
deep drawing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17513684A
Other languages
Japanese (ja)
Other versions
JPH06102810B2 (en
Inventor
Katsuhiko Tayama
田山 勝彦
Masataka Sakawa
酒勾 雅隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP59175136A priority Critical patent/JPH06102810B2/en
Publication of JPS6156245A publication Critical patent/JPS6156245A/en
Publication of JPH06102810B2 publication Critical patent/JPH06102810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Abstract

PURPOSE:To obtain the titled steel sheet having extremely superior secondary workability and powdering resistance, by using a steel in which trace B is added to ultralow carbon, Nb bearing steel, and combining a specified heat treatment and molten Zn plating condition, etc. with said steel. CONSTITUTION:The steel consisting of, by weight <=0.0025% C, <=0.05% Si, <=0.30% Mn, <=0.030% P, <=0.020% S, 0.015-0.080% Sol Al, <=0.0050% N, <=0.050% Nb, 0.0005-0.0015% B and the balance Fe while satisfying 5<=Nb/C<= 20 is melted. This is hot rolled at >=Ar3 finishing temp., and 650-800 deg.C winding temp., then said plate is cold rolled by >=65% draft after pickling to obtain cold rolled steel sheet. This is recrystallized at >= recrystallization temp. -850 deg.C, then molten Zn plated, held at 400-600 deg.C for >=5sec after the plating to perform alloying treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、深絞)用溶融亜鉛メッキ鋼板、特に比較的軟
質の溶融亜鉛メッキ鋼板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a hot-dip galvanized steel sheet for deep drawing, particularly a relatively soft hot-dip galvanized steel sheet.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

近年、自動車車体用防錆鋼板として合金化溶融亜鉛メッ
キ鋼板が多用さ牡てお夛、なかでも深絞シ加工の厳しい
部品については、メッキ原板たる低炭素Atキルド鋼の
冷延鋼板を、予め箱型炉で脱炭焼鈍した後、連続溶融亜
鉛メツキライン(以下CGLと称す)に通す方法、或い
は鋼の溶製時に真空脱ガス処理を行って溶鋼中の炭素を
極力除去するとともに、残留した炭素t−Ti+Nb等
の添加によって安定な炭化物として固定した冷延鋼板を
CGLに通す方法が採られている。
In recent years, alloyed hot-dip galvanized steel sheets have been widely used as rust-preventing steel sheets for automobile bodies.In particular, for parts that require deep drawing processing, cold-rolled steel sheets made of low-carbon At-killed steel, which are the base plate for plating, are used in advance. After decarburizing annealing in a box furnace, passing it through a continuous molten galvanizing line (hereinafter referred to as CGL), or performing vacuum degassing treatment during melting of steel to remove as much carbon as possible from the molten steel and remove residual carbon. A method is adopted in which a cold-rolled steel sheet fixed as a stable carbide by addition of t-Ti+Nb or the like is passed through a CGL.

しかしながらこ牡らのうち前者の場合は、ライン内に焼
鈍設備を持つCGLにあらかじめ焼鈍された冷延鋼板を
通すといつ九非効率的な方法であることから、箱型焼鈍
工程の負担を増す結果となシ好ましくない。また後者の
場合は、有力な粒界強化元素である固溶Cを安定な炭化
物として固定してしまうため、深絞り加工の厳しい成形
部品においては、深絞シ加工時あるいはその後の二次加
工て縦割れと称する脆性的々破壊が生じ易いという問題
がある。
However, in the former case, it is an inefficient method to pass pre-annealed cold-rolled steel sheets through a CGL that has annealing equipment in the line, which increases the burden on the box-type annealing process. The result is not good. In the latter case, solid solution C, which is a powerful grain boundary strengthening element, is fixed as a stable carbide, so in molded parts that require severe deep drawing, it is difficult to use during deep drawing or subsequent secondary processing. There is a problem in that brittle structural fractures called vertical cracks are likely to occur.

このようガ問題に対し、特開昭59−74232号にお
いて微量のTi、Nb、Bを含有する鋼を用い、鋼中の
NをTiNとして固定することで固溶Bを残存せしめ、
固溶Cを実質上非時効性を阻害しないitでNbでNb
Cとして固定させることで一部固溶Ct−残存せしめ、
との固溶B、固溶Cにより粒界を強化し二次加工性を改
善し、さらにBH性を付与するという提案がなされてい
る。しかしながら、T1を含有する鋼は鋼中に生成した
Ti0zやAt203のよう々非金属介在物に起因した
表面疵が発生し易い欠点がある。このため表面疵に起因
したメツキネ良や苛酷な深絞り加工でのメッキ剥離が生
じ易い。特開昭50−31531号や特開昭54−10
4417号では表面性状の改善方法が提案されてはいる
が必ずしも好ましい結果が得られず、特にTiは鋼中元
素のC以外にN、S、Oとも結合し易い元素であること
から、Nb等に較べ多量の添加を必要とし、製造コスト
のアップが避けらnftい不利がある。さらにTiミラ
有する鋼は亜鉛メッキの合金化処理において合金化が急
激に進むことによシ、Fe IJラッチ硬く脆い合金層
が厚く成長するため、メッキ層の加工性が著しく低下し
、苛酷な深絞り加工においてメッキ剥離やパウダリング
を起し易く々る。w1図はTiを含有する鋼がNbを含
有する鋼に較べ合金層が硬く脆いため深絞シ件の指標で
ある;値を著しく劣化させる一例を示している。このよ
うに従来法では、たとえ二次加工性が改善されたとして
も深絞)性の劣化やメッキ剥離あるいはパウダリングの
問題が顕在化し、十分に満足できる深絞シ用合金化亜鉛
メッキ鋼板が得られなかった。
To solve this problem, in JP-A No. 59-74232, a steel containing trace amounts of Ti, Nb, and B was used, and the N in the steel was fixed as TiN, so that solid solution B remained.
Nb with Nb in it which does not substantially inhibit the non-aging property of solid solution C
By fixing it as C, some solid solution Ct- remains,
It has been proposed that solid solution B and solid solution C are used to strengthen grain boundaries, improve secondary workability, and further impart BH properties. However, steel containing T1 has the disadvantage that surface flaws are likely to occur due to nonmetallic inclusions such as Ti0z and At203 generated in the steel. For this reason, scratchiness due to surface flaws and plating peeling during severe deep drawing are likely to occur. JP-A-50-31531 and JP-A-54-10
No. 4417 proposes a method for improving surface properties, but it does not necessarily yield favorable results.In particular, since Ti is an element that easily combines with N, S, and O in addition to C, which is an element in steel, Nb, etc. It has the disadvantage that it requires a large amount of addition compared to nft, which inevitably increases manufacturing costs. Furthermore, due to the rapid alloying of steel with Ti mirrors during the galvanizing process, the hard and brittle alloy layer of the Fe IJ latch grows thickly, which significantly reduces the workability of the plated layer and requires severe deep coating. It is easy to cause plating peeling and powdering during drawing process. The w1 diagram is an indicator of deep drawing because the alloy layer of steel containing Ti is harder and more brittle than that of steel containing Nb; it shows an example where the value deteriorates significantly. In this way, with conventional methods, even if secondary workability is improved, problems such as deterioration of deep drawing properties, peeling of plating, or powdering become apparent, and it is difficult to obtain sufficiently satisfactory alloyed galvanized steel sheets for deep drawing. I couldn't get it.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らはこのよう表欠点を解決すべく種々の実験と
検討を重ねた結果、極低炭素、刈添加鋼に微量のB′f
:含有せしめた成分系を採用し、且つと扛と特定の熱処
理及び溶融亜鉛メッキ条件等とを組み合せることによシ
、極めて優れた二次加工性と耐パウダリング性を有する
深絞り用合金化溶融亜鉛メッキ鋼板が得られることを見
い出したものである。
The inventors of the present invention have repeatedly conducted various experiments and studies to solve these surface defects, and have found that ultra-low carbon, cutting-added steel with a trace amount of B'f
: An alloy for deep drawing that has extremely excellent secondary workability and powdering resistance by adopting a component system containing the following ingredients and combining special heat treatment and hot-dip galvanizing conditions. It has been discovered that a hot-dip galvanized steel sheet can be obtained.

このような本発明の特徴とするところは、C: 0.0
025wt%以下、81 : 0.05wt%以下、M
n : 0.30 wt%以下、P : 0.030w
t%以下、S : 0.020wt%以下、5oZAZ
 : O−015〜0.080wt%、N : 0.0
050wt%以下、Nb : 0.05 Owt係以下
、B : 0.0005〜0.0015wt%、残部鉄
及び不可避的不純物からなり、且つ5 < Nb/Cく
20を満足する鋼を溶製し、こrt、t−Ar5以上の
仕上げ温度、650〜800℃の巻取温度で熱間圧延し
た後、酸洗後55チ以上の圧下率で冷間圧延し、これに
よる冷延鋼板を再結晶温度以上850℃以下の温度で再
結晶させた後、溶融亜鉛メッキを施し、該メッキ後40
0〜600℃の温度に5秒以上保持して合金化処理する
ことにある。
The feature of the present invention is that C: 0.0
025wt% or less, 81: 0.05wt% or less, M
n: 0.30 wt% or less, P: 0.030w
t% or less, S: 0.020wt% or less, 5oZAZ
: O-015~0.080wt%, N: 0.0
050 wt% or less, Nb: 0.05 wt% or less, B: 0.0005 to 0.0015 wt%, the balance consisting of iron and inevitable impurities, and satisfying 5 < Nb/C20, After hot rolling at a finishing temperature of 55°C or higher and a coiling temperature of 650 to 800°C, the cold rolled steel sheet is pickled and then cold rolled at a rolling reduction of 55cm or higher, and the resulting cold rolled steel sheet is heated to a recrystallization temperature. After recrystallizing at a temperature of above 850°C or below, hot-dip galvanizing is applied, and after the plating 40°C
The purpose is to perform alloying treatment by holding the temperature at 0 to 600°C for 5 seconds or more.

以下本発明の成分組成及び製造条件の限定理由を説明す
る。
The reasons for limiting the component composition and manufacturing conditions of the present invention will be explained below.

Cは深絞シ性の指標であるiI高くするためにはできる
だけ少ない#丘うが好オしく、またCが少なければ炭化
物(NbC)として固定するのに必要なNl)の添加量
を少なくできる。
C is an index of deep drawing properties. In order to increase iI, it is preferable to reduce # as much as possible, and if there is less C, the amount of Nl required for fixation as carbide (NbC) can be reduced. .

このような面からCは0.0025wt%以下に規制さ
れる。このような極低Cは真空脱ガス処理によ如工業的
に容易に得られる。
From this point of view, C is restricted to 0.0025 wt% or less. Such extremely low C can be easily obtained industrially by vacuum degassing treatment.

Slは本発明では少ない#ユリが好ましく 、0.05
wt % を超えるとメッキ密着性が劣化する問題があ
り、このためo、oswt*以下とする。
In the present invention, Sl is preferably #lily, with a small amount of 0.05
If it exceeds wt %, there is a problem that the plating adhesion deteriorates, so it is set to be less than o, oswt*.

Mnは深絞り性には寄与せず、下記するSとの関係等か
ら0.30wt%以下とする。また、Mnjiを大きく
低減させようとすると却ってコストの上昇を招くことか
ら、実際上は0.04Wt係が実質的な下限となる。
Mn does not contribute to deep drawability, and is set at 0.30 wt% or less due to the relationship with S described below. Further, if an attempt is made to significantly reduce Mnji, the cost will increase, so 0.04 Wt is actually the lower limit.

Pは鋼板の強度を上げるとともに二次加工性を著しく劣
化させ、またメッキ密着性をも劣化させる元素であり、
このため0.(+ 30 wtl以下とする。
P is an element that increases the strength of steel sheets, significantly deteriorates secondary workability, and also deteriorates plating adhesion.
For this reason, 0. (+30 wtl or less.

SはMnと結合してMnS’i形成し、鋼の清浄性を劣
化させるため少ない#ようが好ましく、また熱間圧延時
の熱間脆性を防止する廟味でMn/S≧5 とする必要
がある(積極添加しない場合のMnlは通常010%以
下)ことから、0.020wt%以下に規制さ扛る。
Since S combines with Mn to form MnS'i and deteriorates the cleanliness of the steel, it is preferable to have a small amount of S, and it is necessary to set Mn/S≧5 to prevent hot brittleness during hot rolling. (Mnl is normally 0.10% or less when not actively added), so it is regulated to 0.020 wt% or less.

S o tklは溶製時の脱酸剤として必要なほか歪時
効の原因となる固溶N ”i AtNとして固定するの
に少なくとも0.015wt%以上必要であるが、0.
080wt%を超えると鋼を硬化させ延性を低下させる
。このためs ou’−tは0.015〜0.080w
t%とする。
S o tkl is required as a deoxidizing agent during melting, and at least 0.015 wt% or more is required to fix it as solid solution N''i AtN, which causes strain aging.
If it exceeds 0.080 wt%, the steel will be hardened and its ductility will be reduced. Therefore, sou'-t is 0.015 to 0.080w
It is assumed to be t%.

Nは延性低下の原因となるため少ないほうが好ましく、
0.0050wt%以下に規制さrる。
Since N causes a decrease in ductility, it is preferable to have less N.
It is regulated to 0.0050wt% or less.

Bは本発明の主要元素の1つであシ、極く微量の添加で
二次加工性が著しく向上する。
B is one of the main elements of the present invention, and when added in an extremely small amount, the secondary processability is significantly improved.

すなわち、とのBは充分な二次加工性を得るためo、o
 005 wt%以上を必要とするが、0.0015w
t%を超えると延性や深絞り性を著しく低下させるため
」;限’jj0.0015%とする。さらにB添加の効
果として、メッキ密着性の向上に伴なう耐パウタリング
性の改善効果が上げらnる。この理由については十分明
確ではないが、Bはメッキ前の焼鈍中に表面濃化し易い
元素であること、Fe’Jツチな合金化の抑制効果があ
ることなどから、Fe−Zn界面に密着性を損う合金層
の発達を抑制するためであると推定さ扛る。このような
面からのB添加量は0.0005 wt%以上であ扛ば
よく、特に上限を規制する必要は々いが、上述したよう
に材質的な見地からOlo 015 wt%が上限とさ
扛る。
In other words, and B are o and o in order to obtain sufficient secondary workability.
005wt% or more is required, but 0.0015w
If it exceeds t%, the ductility and deep drawability will be significantly reduced, so the limit is set at 0.0015%. Furthermore, the effect of adding B is to improve the powdering resistance along with the improvement in plating adhesion. The reason for this is not clear enough, but B is an element that tends to concentrate on the surface during annealing before plating, and has the effect of suppressing alloying in Fe'J. It is presumed that this is to suppress the development of an alloy layer that would damage the material. From this point of view, the amount of B added should be 0.0005 wt% or more, and there is no need to particularly regulate the upper limit, but as mentioned above, from the material standpoint, Olo 015 wt% is the upper limit. to snatch

Nbも本発明における主要元素の1つであシ、鋼中のc
l炭化物(NbC)として固定することによ如深絞シ性
や延性を著しく向上させる。
Nb is also one of the main elements in the present invention, and C in steel
By fixing it as l carbide (NbC), deep drawability and ductility are significantly improved.

深絞シ性に必要な特性を得るにはNb/C〉sで充分で
あるが、さらに安定した特性をイOるにはNb/C≧8
が望ましい。ただし必要以上にNb/Cを高くすること
は製造コストの増加と表るばかシか延性の低下を招くこ
とから0.050wt %をその上限とし且つNl)/
C≦20に規制される。また、二次加工性を重視する場
合固溶Cが残存する5 <Nb/C(8が最も望ましい
Nb/C〉s is sufficient to obtain the properties necessary for deep drawing properties, but to obtain more stable properties, Nb/C≧8
is desirable. However, increasing Nb/C more than necessary will not only increase manufacturing costs but also reduce ductility, so the upper limit is set at 0.050wt% and Nl)/
It is regulated that C≦20. Furthermore, when secondary workability is important, 5<Nb/C (8 is the most desirable) where solid solution C remains.

このよりな5 < Nb/C(8の範囲においてB添加
量金5〜15 ppmの範囲で調整することで極めて優
れた二次加工性が得ら扛る。Nb/C(8で二次加工性
が著しく優れるのは固溶Cと固溶Bの相乗効果によるも
のである。
In this range of 5 < Nb/C (8), extremely excellent secondary workability can be obtained by adjusting the B addition amount in the range of 5 to 15 ppm. The extremely excellent properties are due to the synergistic effect of solid solution C and solid solution B.

第2図は合金化溶融亜鉛メッキ鋼板について粒度m(A
STMN[l)と縦割rし限界温度(二次加工性)の関
係を示したものである。ここでの縦割れ限界温度は、供
試材のすべてが容易に成形できる絞シ比2. lで50
ダのカップ絞シヲ行い、このカップを低温浴に3分間浸
漬し、開角60の円錐形コーンを押し込みカップ側壁に
脆性的な縦割れが生じる限界の温度で示した。この図に
示すように粒度随が大きい程、すなわち結晶粒径が小さ
い程、縦割れ限界温度は低温側に移行する。この際の縦
割れ限界温度におよぼす結晶粒径の影響は、粒度随が1
番増すごとに縦割扛限界温度が約−10℃低温側に移行
するととが実験の結果から得られている。すなわち二次
加工性金評価する場合に結晶粒径全考慮しなければなら
ない。本発明に該当するNbとBの複合添加鋼は整細粒
が得ら扛るうえ、同−粒度順で比較した場合にもB無添
加のNl)添加鋼より二次加工性に優れ、さらにT1添
加鋼に較べ極めて優れた二次加工性を有するものである
Figure 2 shows the grain size m (A
This figure shows the relationship between STMN [l] and vertically divided limit temperature (secondary workability). The vertical cracking limit temperature here is a drawing ratio of 2.0 at which all of the test materials can be easily formed. 50 in l
This cup was immersed in a low-temperature bath for 3 minutes, and a conical cone with an opening angle of 60 mm was pressed to reach the limit temperature at which brittle vertical cracks occurred on the side wall of the cup. As shown in this figure, the larger the grain size, that is, the smaller the crystal grain size, the lower the longitudinal cracking limit temperature shifts. In this case, the influence of grain size on the longitudinal cracking limit temperature is as follows:
Experimental results have shown that as the number increases, the vertical splitting limit temperature shifts to the lower side by about -10°C. In other words, when evaluating the secondary workability of gold, all grain sizes must be considered. The composite addition steel of Nb and B, which corresponds to the present invention, not only has well-organized grains, but also has superior secondary workability than Nl) addition steel without B addition when compared in the same grain size order. It has extremely superior secondary workability compared to T1-added steel.

本発明はBを微量添加し固溶Bを残存せしめるものであ
るが、そのメカニズムは次の通シである。
In the present invention, a trace amount of B is added to allow solid solution B to remain, and the mechanism thereof is as follows.

すなわち、本発明者らが実験によシ確認したところによ
扛ば、B添加量が5〜60 ppmの範囲においてBN
の析出開始温度は約900〜1100℃の温度域にib
、その析出ピークは約600〜700℃の温度域にある
。またB添加量が少ないほどBNの析出開始温度、析出
ピークは低温側に移行する。BNの析出は析出開始温度
が高いととから、熱延巻取での温度依存性が小さく、広
い温度域で析出する。またBC系化合物もBNよりも優
先的に析出するので全B量のほとんどがB(C,N)と
して析出する。本発明におけるBNの析出開始温度およ
び析出ピークは、B添加量14 pprrlにおいて、
そ扛ぞれ約900℃と約600℃近傍にあることが確め
ら扛ており、一般に知られているAtNの析出ピークよ
りも低い温度域にある。
That is, according to what the present inventors confirmed through experiments, BN
The precipitation initiation temperature of ib is in the temperature range of about 900 to 1100°C.
, its precipitation peak is in the temperature range of about 600-700°C. Furthermore, the smaller the amount of B added, the lower the BN precipitation start temperature and the precipitation peak shift to the lower temperature side. Since the precipitation initiation temperature of BN is high, the temperature dependence during hot rolling coiling is small, and precipitation occurs over a wide temperature range. Furthermore, since BC-based compounds are also precipitated preferentially over BN, most of the total B amount is precipitated as B(C,N). The precipitation start temperature and precipitation peak of BN in the present invention are as follows at a B addition amount of 14 pprrl.
It has been confirmed that these temperatures are around 900°C and 600°C, respectively, which are in a lower temperature range than the generally known precipitation peak of AtN.

本発明における熱延巻取温度650〜800℃の範囲で
は鍋中に残存する固溶NのほとんどがAtNとして優先
的に析出するため、Bの一部はBNとして析出すること
ができず固溶Bとして残存する。さらに本発明において
は、極低炭素鋼でちるためBC系化合物の析出量が少な
いことも固溶Bの増加に寄与している。
In the hot rolling coiling temperature range of 650 to 800°C in the present invention, most of the solid solution N remaining in the ladle preferentially precipitates as AtN, so some B cannot be precipitated as BN and is dissolved in solid solution. It remains as B. Furthermore, in the present invention, since the steel is made of ultra-low carbon steel, the amount of precipitated BC compounds is small, which also contributes to the increase in solid solution B.

要するに本発明では、極低炭素鋼にNbを添加すること
で固溶CのほとんどをNbCとして固定させてBC系化
合物の析出i會抑え、さらに微量のB添加によシ、BN
の析出ピークをAtHの析出ピークよシも低温側にさせ
ることでB(C,N)の析出−41Tr抑え固溶Bを多
く残存せしめているものである。この場合の固溶BJi
は3〜lOppmg度であるが、十分な二次加工性の改
善効果が確認されている。このように、本発明において
固溶Bを残存せしめるメカニズムは、前述した特開昭5
9−7423号のそれとは基本的に異るものであシ、さ
らに本発明における微量のBとNbの複合添加において
は材質劣化は僅少で十分な深絞シ性が得られる。
In short, in the present invention, most of the solid solution C is fixed as NbC by adding Nb to ultra-low carbon steel, suppressing the precipitation of BC-based compounds, and adding a small amount of B to the steel.
By making the precipitation peak of AtH lower than that of AtH, the precipitation of B(C,N) -41Tr is suppressed and a large amount of solid solution B remains. Solid solution BJi in this case
is 3 to lOppmg degree, and a sufficient improvement effect on secondary processability has been confirmed. As described above, the mechanism for allowing the solid solution B to remain in the present invention is based on the above-mentioned Japanese Patent Application Laid-open No. 5
This is fundamentally different from that of No. 9-7423, and furthermore, with the combined addition of trace amounts of B and Nb in the present invention, sufficient deep drawing properties can be obtained with minimal material deterioration.

本発明は以上のような成分組成の鋼を真空脱ガス処理等
を施して溶製し、得られたスラブについてAr1以上の
仕上温度、650〜SOO℃の巻取温度で熱間圧延した
後、酸洗後65チ以上の圧下率で冷間圧延し、これによ
る冷延銅帯ヲ凋結晶温度以上850℃以下の温度で再結
晶させた後、溶融亜鉛メッキを施し、該メッキ後400
〜600℃の温度に5秒以上保持して合金化処理を行う
In the present invention, steel having the above-mentioned composition is melted by vacuum degassing treatment, etc., and the obtained slab is hot-rolled at a finishing temperature of Ar1 or higher and a coiling temperature of 650 to SOO℃, and then After pickling, the copper strip is cold-rolled at a reduction rate of 65 inches or more, and the cold-rolled copper strip is recrystallized at a temperature above the crystallization temperature and below 850 degrees Celsius, and then hot-dip galvanized, and after the plating is
Alloying treatment is performed by holding the temperature at ~600°C for 5 seconds or more.

と扛らの製造条件の限定理由について説明すると、まず
熱間圧延において仕上げ温度をAr3以上とするのは、
と扛以下の温度では深絞υ性の指標であるr値の低下と
低温仕上げに起因する粗大粒による延性低下ならび二次
加工性の劣化が起き易いためである。
To explain the reason for limiting the manufacturing conditions, first, setting the finishing temperature to Ar3 or higher in hot rolling is because
This is because, at temperatures below 1000 yen, the r value, which is an index of deep drawability, tends to decrease, and ductility and secondary workability deteriorate due to coarse grains caused by low-temperature finishing.

巻取温度650〜800℃の範囲とするのは、歪時効の
原因となる固溶NをAtNとして固着するためと前述し
たように固溶Bを多く残存せしめるためである。
The reason why the coiling temperature is set in the range of 650 to 800° C. is to fix solid solution N, which causes strain aging, as AtN, and to allow a large amount of solid solution B to remain as described above.

冷間圧延において、圧下率65チ以上とするのは、十分
な圧延形状を得ることとr値の向上のためである。
In cold rolling, the reduction ratio is set to 65 inches or more in order to obtain a sufficient rolled shape and improve the r value.

焼鈍温度は十分な深絞り性を付方11するためには再結
晶温度以上の必要があシ、こ扛によりr値、全伸びがと
もに向上する。特に750℃以上では極めて優扛た特性
が得ら扛る。しかし850℃を超える高温域では、N1
)Cの再固溶による固溶Cの著しい増加が起シ易(、B
H性には寄与するものの時効性の劣化および深絞り性の
劣化をきたす。このようなことから焼鈍温度は再結晶温
度以上、望しくは750℃以上850℃以下とした。
The annealing temperature must be higher than the recrystallization temperature in order to have sufficient deep drawability, and this improves both the r value and the total elongation. Particularly at temperatures above 750°C, extremely excellent properties are obtained. However, in high temperature ranges exceeding 850℃, N1
) A significant increase in solid solution C is likely to occur due to redissolution of C (, B
Although it contributes to H properties, it causes deterioration in aging properties and deep drawability. For this reason, the annealing temperature was set to be at least the recrystallization temperature, preferably at least 750°C and at most 850°C.

合金化処理温度を400〜600℃と限定するのは、4
00℃未満では十分な合金化がなされず、また600℃
を超えると過合金化によシ耐パウダリング性が著しく損
なわれるためであシ、をた十分な合金化を図るためには
上記温度範囲において5秒以上の保持を必要とする。
The reason why the alloying treatment temperature is limited to 400 to 600°C is 4.
At temperatures below 00°C, sufficient alloying is not achieved, and at temperatures below 600°C,
If the temperature is exceeded, the powdering resistance will be significantly impaired due to overalloying, and in order to achieve sufficient alloying, it is necessary to hold the temperature in the above temperature range for 5 seconds or more.

以上のようにしてメッキ処理さn−h鋼板は、200℃
以下まで急冷された後、調圧又はレベリングが施される
。このように200℃まで急冷するのは二次加工性に有
害なPの粒界濃化を防止するためであシ、この場合の冷
却速度はlO℃/sec以上であれば十分である。
The n-h steel plate plated as described above was heated to 200°C.
After being rapidly cooled to below, pressure regulation or leveling is performed. The purpose of rapid cooling to 200° C. in this way is to prevent grain boundary concentration of P, which is harmful to secondary workability, and in this case, it is sufficient that the cooling rate is 10° C./sec or higher.

このようにして製造される鋼板は、深絞シ加工の厳しい
条件下において本縦割れと称する脆性的な破壊が生じ難
く極めて優れた二次加工性を有しておυ、さらに耐パウ
ダリング性にも優t′LfC,特性を有している。
The steel sheets manufactured in this way are less prone to brittle fractures called vertical cracks under the severe conditions of deep drawing, and have extremely excellent secondary workability, as well as powdering resistance. It also has excellent t'LfC characteristics.

〔実施例〕〔Example〕

第1表に示す成分組成及び製造条件によシ合金化溶融亜
鉛メッキ鋼板を製造し、その機械的性質、二次加工性及
び耐パウダリング性について調べた。その結果t−#i
2表に示す。
Alloyed hot-dip galvanized steel sheets were manufactured according to the composition and manufacturing conditions shown in Table 1, and their mechanical properties, secondary workability, and powdering resistance were investigated. As a result t-#i
It is shown in Table 2.

ガお、機械的性質は何れもJIS 5号に規定された試
験片によシ求めたものであシ、縦割れ限界温度は深絞シ
加工後の二次加工性を評価するため、供試材のすべてが
成形可能々絞シ比2,1と3.0でカップ絞シを行い、
このカップを低温浴に浸漬し開角60の円錐型コーンに
押し込み、カップ側壁に脆性的な縦割れが生ずる限界の
温度で示した。パウダリング性は90曲げテストと引抜
き速度200 wV′min 。
However, all mechanical properties were determined using test specimens specified in JIS No. 5. All of the material can be formed by cup drawing at drawing ratios of 2.1 and 3.0.
This cup was immersed in a low-temperature bath and pushed into a conical cone with an opening angle of 60 mm, and the temperature was set at the critical temperature at which brittle longitudinal cracking occurred on the side wall of the cup. Powderability is determined by a 90 bending test and a drawing speed of 200 wV'min.

ポンチ先端0.5Rの押し付は荷重500 Kgによる
ドロービードテストの2通シの方法で行い、損傷したメ
ッキ面をテープで剥離し、テープに付着した亜鉛量で評
価した。
Pressing with a 0.5R punch tip was performed using a drawbead test with a load of 500 kg in duplicate, and the damaged plated surface was peeled off with tape and evaluated by the amount of zinc attached to the tape.

穿3図は本発明材及び比較材の代表例について、絞シ比
と縦割n限界温度との関係を示したものであシ、鋼随2
がB、Nbの複合添加した本発明材、鋼階7がNb単独
添加の比較材、鋼N112がTi単独添加の比較材であ
る。深絞シ用としては一般に絞シ比3.0以上の加工性
を有している必要がある。しかし絞シ比が高いほど、す
なわち深絞シ加工が厳しいほど縦割n限界温度が高温側
に移行し、二次加工性は著しく劣化して行く。この点n
、Nby6合添加した不添加材も同様であるが、Nb単
独添加の比較材、さらにはTi単独添加材に較べた場合
絞り比の高い領埴においても優れた二次加工性を有して
いる。
Figure 3 shows the relationship between the drawing ratio and the vertical split n limit temperature for representative examples of the invention material and comparative materials.
Steel No. 7 is a comparative material of the present invention with a composite addition of B and Nb, steel No. 7 is a comparative material with a single addition of Nb, and steel N112 is a comparative material with a single addition of Ti. For deep drawing, it is generally necessary to have workability with a drawing ratio of 3.0 or more. However, the higher the drawing ratio, that is, the more severe the deep drawing process, the higher the vertical division n limit temperature shifts, and the secondary workability deteriorates significantly. This point n
The same is true for the non-additive material with the addition of Nby6, but it has excellent secondary workability even in ryohoku with a high drawing ratio when compared to the comparative material with only Nb added and even the material with only Ti added. .

第4図は絞り比3.0でのB添加による縦割れ限界温度
の影Idヲ実施例各供試材によシみたものであシ、図中
の○印が本発明材、◇印が本発明のBの範囲を高めに外
rLi比較材、e印がB無添加のNb添加比較材、△印
がTI添添加比釘材ある。本実施例から明らかなように
、Bの添加量が増加するのに伴ない縦割れ限界温度が低
温側に移行し、Bが5 pprn以上において優れた二
次加工性が得られている。
Figure 4 shows the influence of the vertical cracking limit temperature due to the addition of B at a drawing ratio of 3.0 for each sample material in the example. The range of B of the present invention is higher than the rLi comparison material, the mark e is a comparison material with Nb added without B, and the mark △ is a TI addition ratio nail material. As is clear from this example, as the amount of B added increases, the longitudinal cracking limit temperature shifts to the lower temperature side, and excellent secondary workability is obtained when B is 5 pprn or more.

妃5図はNb/Cとr値、全伸びおよび縦割れ限界温度
の関係を実施例各供試材について示したもので、第4図
と同じ記号で図示しである。優れた深絞シ性を得るには
深絞シ性の指標である7値が高いこと及び全伸びが高い
ことが望しい。Nb/Cが8.0付近でi値、全伸びが
ともに最も高い値を示し優れた深絞シ性が得られている
。Nb/C< 8.0ではi値、全伸び共に低下し始め
深絞シ性が劣化して行く。
Figure 5 shows the relationship between Nb/C, r value, total elongation, and longitudinal cracking limit temperature for each sample material of the example, and is illustrated with the same symbols as in Figure 4. In order to obtain excellent deep drawing properties, it is desirable that the 7 value, which is an index of deep drawing properties, be high and that the total elongation be high. When Nb/C is around 8.0, both the i value and the total elongation are the highest, and excellent deep drawing properties are obtained. When Nb/C<8.0, both the i value and the total elongation begin to decrease and the deep drawing properties deteriorate.

しかし縦割れ限界温度は低温側に急激に移行し、二次加
工性は著しく向上する。このことから、深絞p用として
許容できるNb/c比の下限はNb/C≧5.0である
こと、また、N′b/C≧8,0では安定した高いi値
が得らする反面全件びが徐々に低下していき、また製造
コストも上昇するためNl)/C< 20が好ましいこ
とが判る。
However, the vertical cracking limit temperature rapidly shifts to the lower temperature side, and the secondary workability improves markedly. From this, the lower limit of the Nb/c ratio that is allowable for deep drawing p is Nb/C≧5.0, and a stable high i value can be obtained when N′b/C≧8.0. On the other hand, it is clear that Nl)/C<20 is preferable because the total weight gradually decreases and the manufacturing cost also increases.

前述したように、B添加の影響は縦割れ限界温度がNb
単独添加よシも低温側に移行し著しく二次加工性が改善
されるが逆にi値、全伸びが劣化するという点にある。
As mentioned above, the effect of B addition is that the vertical cracking limit temperature is Nb
Even when added alone, the temperature shifts to the low temperature side and secondary workability is significantly improved, but the i value and total elongation deteriorate.

特にBが20 ppm以上では材質劣化が顕著であるた
め、たとえ二次加工性が改善できたとしても十分な深絞
シ性を得ることが難かしい。
In particular, when B is 20 ppm or more, material deterioration is significant, so even if secondary workability can be improved, it is difficult to obtain sufficient deep drawing properties.

Bが15 ppm以下においては材質劣化の程度が僅か
であり、深絞シ用として十分に許容できる材質が得らn
るうえ、Bが5 PI)m以上で優れた二次加工性が得
られる喪め苛酷な深絞シ加工に対して有利である。
When B is 15 ppm or less, the degree of material deterioration is slight, and a material that is sufficiently acceptable for deep drawing cannot be obtained.
Moreover, when B is 5 PI)m or more, excellent secondary workability can be obtained, which is advantageous for severe deep drawing processing.

またパウダリング性を評価する900曲け −及びドロ
ービートテストにおいても、本発明材は比較材に較べ良
好な耐パウダリング性を示していることが判る。
Furthermore, in the 900 bend test and the drawbeat test for evaluating powdering properties, it can be seen that the material of the present invention exhibits better powdering resistance than the comparative material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は極低炭素Ti添加鋼と極低炭素Nb添加鋼の深
絞如加工において、各メッキ合金層の剥離前後のi値相
互の関係を示すものである。第2図は合金化溶融亜鉛メ
ッキ鋼板について粒度陽と縦割n限界温度の関係を示し
たものである。第3図は実施例における本発明材及び比
較材の代表例について、絞シ比と縦割れ限界温度との関
係を示したものである。第4図は絞シ比3.0でのB添
加による縦割れ限界温度の影響を実施例各供試材につい
て調べたものである。15図はNb/Cとi値、全伸び
および縦割れ限界温度の関係を実施例各供試材について
調べたものである。
FIG. 1 shows the relationship between the i values before and after peeling of each plating alloy layer in deep drawing of ultra-low carbon Ti-added steel and ultra-low carbon Nb-added steel. FIG. 2 shows the relationship between grain size and vertical division n limit temperature for an alloyed hot-dip galvanized steel sheet. FIG. 3 shows the relationship between the drawing ratio and the longitudinal cracking limit temperature for representative examples of the present invention materials and comparative materials in Examples. FIG. 4 shows the influence of the addition of B on the longitudinal cracking limit temperature at a drawing ratio of 3.0 for each sample material of the example. Figure 15 shows the relationship between Nb/C, i value, total elongation, and vertical cracking limit temperature for each sample material of the example.

Claims (1)

【特許請求の範囲】 C:0.0025wt%以下、Si:0.05wt%以
下、Mn:0.30wt%以下、P:0.030wt%
以下、S:0.020wt%以下、SolAl:0.0
15〜0.080wt%、N:0.0050wt%以下
、Nb:0.050wt%以下、B:0.0005〜0
.0015wt%、残部鉄及び不可避的不純物からなり
、且つ 5≦Nb/C≦20を満足する鋼を溶製し、これをAr
_3以上の仕上げ温度、650〜800℃の巻取温度で
熱間圧延した後、酸洗後65%以上の圧下率で冷間圧延
し、これによる冷延鋼板を再結晶温度以上850℃以下
の温度で再結晶させた後、溶融亜鉛メッキを施し、該メ
ッキ後400〜600℃の温度に5秒以上保持して合金
化処理を行うことを特徴とする深絞り用溶融亜鉛メッキ
鋼板の製造方法。
[Claims] C: 0.0025wt% or less, Si: 0.05wt% or less, Mn: 0.30wt% or less, P: 0.030wt%
Below, S: 0.020wt% or less, SolAl: 0.0
15-0.080wt%, N: 0.0050wt% or less, Nb: 0.050wt% or less, B: 0.0005-0
.. 0015wt%, the balance being iron and unavoidable impurities, and satisfying 5≦Nb/C≦20 is melted, and then Ar
After hot rolling at a finishing temperature of 3 or more and a coiling temperature of 650 to 800℃, the cold rolled steel sheet is cold rolled at a rolling reduction of 65% or more after pickling. A method for producing a hot-dip galvanized steel sheet for deep drawing, which comprises recrystallizing it at a high temperature, then hot-dip galvanizing it, and after the plating, holding it at a temperature of 400 to 600°C for 5 seconds or more to perform an alloying treatment. .
JP59175136A 1984-08-24 1984-08-24 Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability Expired - Fee Related JPH06102810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175136A JPH06102810B2 (en) 1984-08-24 1984-08-24 Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175136A JPH06102810B2 (en) 1984-08-24 1984-08-24 Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability

Publications (2)

Publication Number Publication Date
JPS6156245A true JPS6156245A (en) 1986-03-20
JPH06102810B2 JPH06102810B2 (en) 1994-12-14

Family

ID=15990915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175136A Expired - Fee Related JPH06102810B2 (en) 1984-08-24 1984-08-24 Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability

Country Status (1)

Country Link
JP (1) JPH06102810B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227725A (en) * 1987-03-16 1988-09-22 Kobe Steel Ltd Production of galvanized steel sheet
JPH02163356A (en) * 1988-12-19 1990-06-22 Kawasaki Steel Corp Production of alloyed hot dip galvanized steel sheet for working having superior powdering resistance
JPH03271354A (en) * 1990-03-20 1991-12-03 Kawasaki Steel Corp Production of galvannealed steel sheet
JPH0426747A (en) * 1990-05-22 1992-01-29 Nippon Steel Corp High strength galvannealed steel sheet minimal in peeling of plating due to working and excellent in baking hardenability
US5209988A (en) * 1987-10-19 1993-05-11 Sumitomo Metal Industries, Ltd. Steel plate for the outside of automobile bodies electroplated with a zinc alloy and a manufacturing method therefor
US5240783A (en) * 1987-10-19 1993-08-31 Sumitomo Metal Industries, Ltd. Steel plate for the outside of automobile bodies electroplated with a zinc alloy and a manufacturing method therefor
JP2021508772A (en) * 2017-12-24 2021-03-11 ポスコPosco Zinc-based plated steel sheet with excellent room temperature aging resistance and shrink hardening property and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110659A (en) * 1981-12-25 1983-07-01 Nippon Kokan Kk <Nkk> Galvanized steel plate for deep drawing and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110659A (en) * 1981-12-25 1983-07-01 Nippon Kokan Kk <Nkk> Galvanized steel plate for deep drawing and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227725A (en) * 1987-03-16 1988-09-22 Kobe Steel Ltd Production of galvanized steel sheet
JPH0696749B2 (en) * 1987-03-16 1994-11-30 株式会社神戸製鋼所 Method for manufacturing steel sheet with fused zinc plating
US5209988A (en) * 1987-10-19 1993-05-11 Sumitomo Metal Industries, Ltd. Steel plate for the outside of automobile bodies electroplated with a zinc alloy and a manufacturing method therefor
US5240783A (en) * 1987-10-19 1993-08-31 Sumitomo Metal Industries, Ltd. Steel plate for the outside of automobile bodies electroplated with a zinc alloy and a manufacturing method therefor
JPH02163356A (en) * 1988-12-19 1990-06-22 Kawasaki Steel Corp Production of alloyed hot dip galvanized steel sheet for working having superior powdering resistance
JPH03271354A (en) * 1990-03-20 1991-12-03 Kawasaki Steel Corp Production of galvannealed steel sheet
JPH0426747A (en) * 1990-05-22 1992-01-29 Nippon Steel Corp High strength galvannealed steel sheet minimal in peeling of plating due to working and excellent in baking hardenability
JP2021508772A (en) * 2017-12-24 2021-03-11 ポスコPosco Zinc-based plated steel sheet with excellent room temperature aging resistance and shrink hardening property and its manufacturing method

Also Published As

Publication number Publication date
JPH06102810B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JPS6240405B2 (en)
JPH0379420B2 (en)
JPS5974232A (en) Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPH0123530B2 (en)
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPS6256209B2 (en)
JPH05255804A (en) Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JPS6156245A (en) Manufacture of molten galvanized steel sheet for deep drawing
JPS6347338A (en) Production of high tension zinc hot dip coated steel sheet
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JP3295900B2 (en) High strength alloyed hot-dip galvanized steel sheet for deep drawing with excellent secondary work brittleness resistance
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPH07102344A (en) Continuously annealed cold rolled steel sheet well balanced between deep drawability and resistance to deep drawing brittleness
JPS59166650A (en) Steel for cold rolled steel plate
JPH0762487A (en) High strength and high workability steel sheet for can producing excellent in baking hardenability, aging resistance and non-earing
JPH0987748A (en) Production of non-if steel-based nonaging dead soft cold-rolled steel sheet
JP2823974B2 (en) High-temperature cold-rolled steel sheet for non-ageing BH type drawing at room temperature and method for producing the same
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP3257715B2 (en) Method for producing high-strength galvannealed steel sheet for high working with excellent plating adhesion
JP2818319B2 (en) Non-ageing cold drawn high-strength cold-rolled steel sheet and method for producing same
JP3261043B2 (en) Cold-rolled steel sheet for deep drawing and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees