JPH0987748A - Production of non-if steel-based nonaging dead soft cold-rolled steel sheet - Google Patents

Production of non-if steel-based nonaging dead soft cold-rolled steel sheet

Info

Publication number
JPH0987748A
JPH0987748A JP24623295A JP24623295A JPH0987748A JP H0987748 A JPH0987748 A JP H0987748A JP 24623295 A JP24623295 A JP 24623295A JP 24623295 A JP24623295 A JP 24623295A JP H0987748 A JPH0987748 A JP H0987748A
Authority
JP
Japan
Prior art keywords
steel
steel sheet
dead soft
rolled steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24623295A
Other languages
Japanese (ja)
Other versions
JP3293424B2 (en
Inventor
Kenji Araki
健治 荒木
Katsumi Yamada
克美 山田
Yasuhide Ishiguro
康英 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24623295A priority Critical patent/JP3293424B2/en
Publication of JPH0987748A publication Critical patent/JPH0987748A/en
Application granted granted Critical
Publication of JP3293424B2 publication Critical patent/JP3293424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a dead soft steel sheet having excellent strain aging resistance and workability by the existing equipment using a B-added non-IF steel base dead soft steel by specifying the compsn. of a dead soft steel sheet, the coiling temp. after hot rolling and the cooling rate in continuous annealing. SOLUTION: A dead soft steel having components contg., by weight, 0.0007 to 0.0017% C, <=1.5% Si, 0.05 to 2% Mn, 0.005 to 0.15% P, 0.001 to 0.02% S, 0.04 to 0.13% Al, 0.001 to 0.003% N, 0.0005 to 0.0024% B, and the balance Fe and satisfying 0.5 to 0.8 B/N, is used. The coiling temp. after hot rolling in this steel is regulated to 400 to 590 deg.C, and the average cooling rate from 650 to 50 deg.C in the cooling stage in continuous annealing is regulated to 0.5 to 7 deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、家電製
品、建物などの分野で用いられるプレス加工に適した冷
延鋼板およびこれに防錆の目的で亜鉛あるいは合金化亜
鉛などのめっきを電気亜鉛めっきあるいは溶融亜鉛めっ
き法で施した亜鉛めっき鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet suitable for press working used in the fields of automobiles, home electric appliances, buildings and the like, and electrolytic zinc plated with zinc or alloyed zinc for the purpose of rust prevention. The present invention relates to a method for manufacturing a galvanized steel sheet that has been plated or hot dip galvanized.

【0002】[0002]

【従来の技術】従来の極低炭素冷延鋼板としては、鋼中
の侵入型固溶元素(C、N)と強い結合力を持ち、炭窒
化物を容易に形成するTiおよびNbのうち少なくとも
一種を含有させた、いわゆるIF鋼(Intersti
tial Free Steel)がよく知られてい
る。この鋼は耐歪時効性や加工性を劣化させる原因とな
る侵入型固溶元素を含まないので、非時効で極めて良好
な加工性を有する。
2. Description of the Related Art As a conventional ultra-low carbon cold-rolled steel sheet, at least Ti and Nb which have a strong bonding force with the interstitial solid solution elements (C, N) in the steel and easily form carbonitrides. A so-called IF steel (Intersti
Tial Free Steel) is well known. Since this steel does not contain an interstitial solid solution element that causes deterioration of strain aging resistance and workability, it has non-aging and extremely good workability.

【0003】近年、脱ガス技術の進歩により極低炭素鋼
の溶製が容易になったため、IF鋼はプレス加工用冷延
鋼板の主力鋼種として大量に用いられるようになった。
In recent years, the progress of degassing technology has facilitated the melting of ultra-low carbon steel, so that IF steel has come to be used in large quantities as the main grade of cold-rolled steel sheet for press working.

【0004】しかし、IF鋼は次のような問題点を有す
る。第一に、高価なTiやNbを添加するため素材コス
トが高くなる。第二に、TiやNbを添加すると再結晶
温度が高くなるので高温焼鈍が必須となる。第三に、酸
化物形成傾向の強いTiが添加された鋼においては、酸
化物系介在物に起因する表面欠陥が発生しやすい。第四
に、固溶C、Nが存在しないため結晶粒界の強度が低下
し、二次加工時に脆性割れが起こる。
However, IF steel has the following problems. First, since expensive Ti and Nb are added, the material cost increases. Secondly, when Ti or Nb is added, the recrystallization temperature becomes high, so high temperature annealing is essential. Thirdly, in a steel to which Ti having a strong tendency to form an oxide is added, surface defects due to oxide inclusions are likely to occur. Fourthly, the strength of the crystal grain boundary is reduced due to the absence of solid solution C and N, and brittle cracking occurs during secondary processing.

【0005】IF鋼のこのような問題点を解決する目的
で、例えば、特公昭58ー49622号公報や特公昭6
1ー11294号公報には、TiやNbを添加しないで
微量のBを添加した非IF鋼系極低炭素鋼が提案されて
いる。また、特開平6ー93376号公報や特開平6ー
93377号公報には、こうしたB添加の非IF鋼系極
低炭素鋼のC量に対する制約を一層厳しくすることによ
り、耐歪時効性の改善を図るとともに、Pの添加と熱延
後の冷却条件の工夫により加工性を向上させる方法が開
示されている。さらに、特開平6ー212354号公報
には、同様なB添加非IF鋼系極低炭素鋼のMnとPの
含有量を、Mn+20Pが0.3%以上となるようにコ
ントロールし、熱延仕上圧延直後の冷却速度を速めて熱
延板組織を細粒化し冷延・焼鈍後のr値の向上を図ると
ともに、熱延後高温巻取によりAlNを完全析出させて
耐歪時効性を改善する方法が提案されている。
For the purpose of solving such problems of IF steel, for example, Japanese Patent Publication No. 58-49622 and Japanese Patent Publication No.
Japanese Unexamined Patent Publication No. 11-11294 proposes a non-IF steel ultra low carbon steel to which a trace amount of B is added without adding Ti or Nb. Further, in JP-A-6-93376 and JP-A-6-93377, the strain aging resistance is improved by further tightening the restrictions on the C content of the non-IF steel ultra low carbon steel containing B. A method of improving workability by adding P and devising cooling conditions after hot rolling is disclosed. Further, in JP-A-6-212354, the contents of Mn and P of a similar B-added non-IF steel ultra-low carbon steel are controlled so that Mn + 20P is 0.3% or more, and hot rolling finish is performed. Improving the strain aging resistance by increasing the cooling rate immediately after rolling to refine the structure of the hot-rolled sheet to improve the r-value after cold rolling / annealing, and by precipitating AlN by hot coiling after hot rolling. A method has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特公昭
58ー49622号公報や特公昭61ー11294号公
報に記載の方法では、技術上の検討が十分でなく、良質
な材質を安定して得ることができない。特に、耐歪時効
性の安定度が実用に耐える水準ではない。
However, in the methods described in Japanese Patent Publication No. 58-49622 and Japanese Patent Publication No. 61-11294, technical examination is not sufficient, and a high quality material can be stably obtained. I can't. In particular, the stability of strain aging resistance is not a level that can be practically used.

【0007】特開平6ー93376号公報や特開平6ー
93377号公報に記載の方法では、実用に耐えるほど
には耐歪時効性が改善されない。また、熱延後の冷却条
件で、仕上圧延後の急冷を推奨しているが、これを実現
するには冷却設備の大改造が必要である。さらにこれら
特許公報に記載のB添加極低炭素冷延鋼板では、以下に
示すように、室温時効で、特徴的な非常に鋭敏な上降伏
点が現れるのを安定して防ぐことができない。これは、
実車プレス現場での作業性上、極めて好ましくない。
The methods described in JP-A-6-93376 and JP-A-6-93377 do not improve the strain aging resistance enough to withstand practical use. In addition, we recommend quenching after finish rolling under the cooling conditions after hot rolling, but a large modification of the cooling equipment is required to achieve this. Further, in the B-added ultra-low carbon cold-rolled steel sheets described in these patent publications, it is not possible to stably prevent the appearance of a characteristic very sharp upper yield point by aging at room temperature, as shown below. this is,
It is extremely unfavorable in terms of workability at the actual vehicle press site.

【0008】図1に、室温における軽い歪時効後の降伏
点挙動を示す。図で、(イ)は通常の冷延鋼板の降伏点
挙動であり、(ロ)はB添加した極低炭素冷延鋼板の降
伏点挙動である。通常の冷延鋼板では、降伏点伸び(以
後、YPElと呼ぶ。)の回復が0.3%程度の時効で
は鋭敏な上降伏点が現れない。B無添加すなわち単純な
極低炭素冷延鋼板の降伏点挙動も(イ)と同様である。
これに対し、B添加極低炭素冷延鋼板では、YPElの
回復が0.3%と非常に僅かな場合でも、鋭敏な上降伏
点が現われる。上降伏点と下降伏点の応力差は15MP
aにも及ぶ場合もあり、このような大きな上降伏点と下
降伏点の応力差が生じると、プレス成形の際の歪分布の
不均一化が助長される。そのため、YPElが0.3%
と非常に小さい場合でも、部品が大きい実車プレスでは
ストレッチャストレインが発生する。
FIG. 1 shows the yield point behavior after mild strain aging at room temperature. In the figure, (a) is the yield point behavior of a normal cold-rolled steel sheet, and (b) is the yield point behavior of an ultra-low carbon cold-rolled steel sheet with B added. In a normal cold-rolled steel sheet, a sharp upper yield point does not appear in aging when recovery of yield point elongation (hereinafter referred to as YPEl) is about 0.3%. The yield point behavior of B-free or simple ultra-low carbon cold-rolled steel sheet is also the same as in (a).
On the other hand, in the B-added ultra-low carbon cold-rolled steel sheet, a sharp upper yield point appears even when the recovery of YPE1 is as small as 0.3%. The stress difference between the upper and lower yield points is 15MP
When the stress difference between the upper yield point and the lower yield point is large, nonuniform strain distribution is promoted during press forming. Therefore, YPEl is 0.3%
Even if it is very small, stretcher strain occurs in a real vehicle press with large parts.

【0009】特開平6ー212354号公報では、特開
平6ー93376号公報の場合と同様、B添加極低炭素
冷延鋼板の特異な降伏点挙動に注目していないので、耐
歪時効性の改善は十分でない。また、加工性を改善する
ための熱延仕上圧延後の急冷も、冷却設備の大改造が必
要でるので好ましくない。
[0009] In JP-A-6-212354, as in the case of JP-A-6-93376, no attention is paid to the peculiar yield point behavior of the B-added ultra-low carbon cold-rolled steel sheet, so that the strain aging resistance Improvement is not enough. Further, rapid cooling after hot rolling and finish rolling for improving workability is also not preferable because a large modification of the cooling equipment is required.

【0010】本発明はこのような課題を解決するために
なされたもので、高価なTiやNbを添加しないB添加
の非IF鋼系極低炭素鋼を用い、現状設備により優れた
耐歪時効性と加工性を有する極低炭素冷延鋼板の製造方
法を提供することを目的とする。
The present invention has been made to solve the above problems, and uses a non-IF steel type ultra-low carbon steel containing B, which does not contain expensive Ti or Nb, and is superior in strain resistance aging to the existing equipment. It is an object of the present invention to provide a method for producing an ultra low carbon cold rolled steel sheet having workability and workability.

【0011】[0011]

【課題を解決するための手段】上記課題は、重量%で、
C:0.0007〜0.0017%、Si:1.5%以
下、Mn:0.05〜2%、P:0.005〜0.15
%、S:0.001〜0.02%、Al:0.04〜
0.13%、N:0.001〜0.003%、B:0.
0005〜0.0024%、残部がFeおよび不可避的
不純物からなり、かつB/N:0.5〜0.8である成
分を有することと、熱延後の巻取温度が400〜590
℃であることと、かつ連続焼鈍での冷却過程で650℃
から50℃までの平均冷却速度が0.5〜7℃/秒であ
ることを特徴とする極低炭素冷延鋼板の製造方法により
解決される。
Means for Solving the Problems The above-mentioned problems are expressed in terms of% by weight,
C: 0.0007 to 0.0017%, Si: 1.5% or less, Mn: 0.05 to 2%, P: 0.005 to 0.15
%, S: 0.001 to 0.02%, Al: 0.04 to
0.13%, N: 0.001 to 0.003%, B: 0.
0005 to 0.0024%, the balance being Fe and unavoidable impurities, and having a component of B / N: 0.5 to 0.8, and a winding temperature after hot rolling of 400 to 590.
650 ° C during the cooling process in continuous annealing.
To 50 ° C., the average cooling rate is 0.5 to 7 ° C./sec.

【0012】さらに、C:0.0007〜0.0012
%、Mn:0.05〜0.1%、P:0.005〜0.
009%、S:0.001〜0.009%にすると、耐
歪時効性が大幅に改善されるので好ましい。
Further, C: 0.0007 to 0.0012
%, Mn: 0.05 to 0.1%, P: 0.005 to 0.
009% and S: 0.001 to 0.009% are preferable because the strain aging resistance is significantly improved.

【0013】以下に、本発明の製造条件の限定理由を説
明する。 C:歪時効性に大きな影響を及ぼし、0.0017%を
超えると良好な耐歪時効性を確保できない。0.000
7%未満では製鋼での製造コストが非常に高くなる。好
ましくは0.0007〜0.0012%がよい。
The reasons for limiting the manufacturing conditions of the present invention will be described below. C: Strain aging has a great influence, and if it exceeds 0.0017%, good strain aging resistance cannot be secured. 0.000
If it is less than 7%, the manufacturing cost in steelmaking becomes very high. It is preferably 0.0007 to 0.0012%.

【0014】Si:高張力鋼板では強度を付与するため
に添加する必要があるが、1.5%を超えると加工性や
表面性状が劣化する。
Si: It is necessary to add Si for imparting strength to high-strength steel sheets, but if it exceeds 1.5%, workability and surface properties deteriorate.

【0015】Mn:赤熱脆化防止のために0.05%以
上の添加が必要である。高張力鋼板では強度を付与する
ために添加する必要があるが、2%を超えると加工性が
劣化する。0.05〜0.1%とすると耐歪時効性がさ
らに改善されるので、特に好ましい。
Mn: To prevent red hot embrittlement, addition of 0.05% or more is necessary. In a high-strength steel sheet, it is necessary to add it in order to impart strength, but if it exceeds 2%, workability deteriorates. When it is 0.05 to 0.1%, the strain aging resistance is further improved, and therefore it is particularly preferable.

【0016】P:0.005%未満にするには、製鋼で
の脱Pコストが非常に高くなる。高張力鋼板では強度を
付与するため添加する必要があるが、0.15%を超え
ると加工性や溶接性が劣化する。0.005〜0.00
9%にすると耐歪時効性がさらに改善されるので、特に
好ましい。この原因は必ずしも明確ではないが、次のよ
うに考えられる。すなわち、CとPの間にはsite
competitionが起こり、粒界に偏析しやすい
Pが存在するとCの粒界偏析量が減少する。P量が減少
するとCの粒界偏析量が増加し、粒内の固溶C量が減少
するので耐歪時効性が改善される。上記したMn量の低
下による耐歪時効性の改善の原因も、同様な現象による
と推定される。
If P is less than 0.005%, the cost for removing P in steelmaking becomes very high. In a high-strength steel sheet, it is necessary to add it in order to impart strength, but if it exceeds 0.15%, workability and weldability deteriorate. 0.005-0.00
When it is 9%, the strain aging resistance is further improved, so that it is particularly preferable. The cause is not always clear, but it is considered as follows. That is, there is a site between C and P.
If P tends to segregate at the grain boundaries due to the occurrence of competing, the amount of C segregating at the grain boundaries decreases. When the amount of P is decreased, the amount of segregation of C at grain boundaries is increased, and the amount of solute C in the grains is decreased, so that the strain aging resistance is improved. The cause of the improvement in strain aging resistance due to the decrease in the amount of Mn described above is presumed to be due to the same phenomenon.

【0017】S:0.001%未満にするには、製鋼で
の脱Sコストが非常に高くなる。0.02%を超えると
加工性が劣化する。0.001〜0.009%にする
と、Mn量を0.1%以下にすることが可能になり、そ
れにより耐歪時効性がさらに改善されるので、特に好ま
しい。
If S is less than 0.001%, the cost for removing S in steelmaking becomes very high. If it exceeds 0.02%, the workability deteriorates. If it is 0.001 to 0.009%, the amount of Mn can be made 0.1% or less, and thereby the strain aging resistance is further improved, which is particularly preferable.

【0018】Al:脱酸剤として添加されるが、本発明
では固溶NをAlNとして固定する作用もする。固溶N
は、まずBによりBNとして固定され、残った分がAl
Nとなる。0.04%未満では、BNの析出後に残る固
溶N量が少ないので焼鈍時のAlNの析出が不安定にな
り、N時効を引き起こす。0.13%を超えるとスラブ
の表面性状が劣化したり、コストアップを招く。
Al: Although added as a deoxidizing agent, in the present invention, it also acts to fix the solid solution N as AlN. Solid solution N
Is first fixed as BN by B, and the remaining part is Al
N. If it is less than 0.04%, the amount of solid solution N remaining after the precipitation of BN is small, so the precipitation of AlN during annealing becomes unstable, and N aging is caused. If it exceeds 0.13%, the surface quality of the slab is deteriorated and the cost is increased.

【0019】N:0.001%未満にするには、製鋼段
階での低N化コストが非常に高くなる。0.003%を
超えるとBNやAlNの析出量が増え、焼鈍時の結晶粒
成長が阻害される。
If N is less than 0.001%, the cost for lowering N at the steelmaking stage becomes very high. If it exceeds 0.003%, the precipitation amount of BN or AlN increases, and the grain growth during annealing is hindered.

【0020】B:添加の目的は次の三つである。(1)
熱延板組織の細粒化、(2)耐時効性や加工性などに対
する固溶Nの悪影響の軽減、(3)溶接熱影響部の強度
の確保。0.0005%未満では、この三つの効果が得
られない。0.0024%を超えると上記N量との関係
から、BNとして析出する量より過剰にBが含有される
場合が生じ、前述したようなプレス成形上好ましくない
特異な降伏点挙動を示す。
B: The purpose of addition is the following three. (1)
Fine-grained structure of hot-rolled sheet, (2) Reduction of adverse effect of solute N on aging resistance and workability, (3) Securing strength of welding heat affected zone. If it is less than 0.0005%, these three effects cannot be obtained. If it exceeds 0.0024%, due to the relationship with the above N amount, B may be contained in excess of the amount precipitated as BN, and the above-mentioned peculiar yield point behavior unfavorable for press molding is exhibited.

【0021】B/N:B添加極低炭素鋼の特異な降伏点
挙動を避け、かつ上記B添加の効果を有効に引き出すた
めに極めて重要な因子である。この値が0.5未満だ
と、上記B添加の効果が得られなくなる。すなわち、熱
延板組織の細粒化が困難になりΔrが大きくなったり、
焼鈍時に多量の微細AlNが析出して延性が低下する。
さらに、焼入れ性が低下し溶接性も劣化する。
B / N: This is an extremely important factor for avoiding the peculiar yield point behavior of B-added ultra-low carbon steel and effectively eliciting the effect of B addition. If this value is less than 0.5, the effect of adding B cannot be obtained. That is, it becomes difficult to reduce the grain size of the hot-rolled sheet structure and Δr increases,
During annealing, a large amount of fine AlN precipitates and ductility decreases.
Further, the hardenability deteriorates and the weldability also deteriorates.

【0022】上限である0.8は特異な降伏点挙動を避
けるために設けたものである。その理由は次のように考
えられる。0.8は原子比では1:1である。BはBN
として析出するが、これ以上だとB過剰になる。過剰に
なったBは粒界に偏析する。Pの場合と同様に、BとC
のsite competitionが作用する。しか
し、これだけでは鋭敏な降伏点挙動を説明できない。次
のような現象も起こっていると考えざるをえない。変形
の起点は応力の集中部である結晶粒界である。粒界から
変形が開始される場合には、変形の起点が多数存在する
ことになるので鋭敏な上降伏点は現われない。しかし、
Bが粒界に偏析しているとなんらかの理由により粒界が
変形の起点になりにくくなる。このような状態では変形
は粒内で一斉に開始されることになるので、鋭敏な上降
伏点が現われる。
The upper limit of 0.8 is provided to avoid a peculiar yield point behavior. The reason is considered as follows. 0.8 is 1: 1 in atomic ratio. B is BN
However, if it is more than this, B becomes excessive. The excess B segregates at the grain boundaries. As in P, B and C
The site composition of the above works. However, this alone cannot explain the sensitive yield point behavior. I have to think that the following phenomena are occurring. The starting point of the deformation is the grain boundary, which is the stress concentration part. When the deformation starts from the grain boundary, there are many starting points of the deformation, so that the sharp upper yield point does not appear. But,
If B is segregated at the grain boundaries, it becomes difficult for the grain boundaries to become the starting point of deformation for some reason. In such a state, the deformation is started simultaneously in the grain, so that a sharp upper yield point appears.

【0023】熱延後の巻取温度:400℃未満では、安
定した巻取作業ができない。590℃を超えると熱延板
結晶粒の粗大化を招く。なお、590℃以下で巻取る
と、次のようなメリットもある。すなわち、BNとして
析出する量より過剰な固溶Nは、巻取り時にはAlNと
して析出できず、焼鈍時に微細なAlNとして析出す
る。そしてこの微細なAlNが焼鈍での冷却過程におけ
る固溶Cの有効な析出サイトとしての役割を果たす。
Winding temperature after hot rolling: If it is less than 400 ° C., stable winding operation cannot be performed. If it exceeds 590 ° C, the crystal grains of the hot-rolled sheet are coarsened. Note that winding at 590 ° C. or lower has the following merits. That is, solid solution N in excess of the amount deposited as BN cannot be deposited as AlN during winding, but is deposited as fine AlN during annealing. The fine AlN serves as an effective precipitation site for solid solution C in the cooling process during annealing.

【0024】連続焼鈍での冷却速度:本発明の骨子の一
つであり、時効性を支配する粒内の固溶C量を低減する
ために650℃から50℃までの冷却速度を十分に緩慢
にする必要がある。しかし、0.5℃/秒未満では生産
性が著しく低下する。また、7℃/秒を超えると、冷却
中に固溶Cが粒界に拡散し偏析する時間がなくなり粒内
に残るため、耐歪時効性が劣化する。この点がIF鋼と
大きく異なる点である。
Cooling rate in continuous annealing: This is one of the gist of the present invention, and the cooling rate from 650 ° C. to 50 ° C. is sufficiently slow in order to reduce the amount of solid solution C in the grain that controls the aging property. Need to However, if it is less than 0.5 ° C./sec, the productivity is significantly reduced. On the other hand, if it exceeds 7 ° C./sec, the time period during which solid solution C diffuses into the grain boundaries and segregates during cooling and remains in the grains, resulting in deterioration of strain aging resistance. This is a point that is greatly different from IF steel.

【0025】[0025]

【発明の実施の形態】スラブは、連続鋳造後再加熱され
ることなく直接熱間圧延されても、加熱炉で再加熱後熱
延されてもよい。また、薄スラブの形で鋳造され、粗圧
延を経ずして直接仕上圧延されてもよい。加熱炉で再加
熱するときの加熱温度は通常の1000〜1250℃の
温度範囲でよいが、低い方が加熱時に形成される硫化物
が大きくなるため、焼鈍時の粒成長性がよいので望まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The slab may be directly hot-rolled without being reheated after continuous casting, or may be hot-rolled after being reheated in a heating furnace. Alternatively, it may be cast in the form of a thin slab and directly finish-rolled without undergoing rough rolling. The heating temperature at the time of reheating in the heating furnace may be a usual temperature range of 1000 to 1250 ° C., but a lower temperature is preferable because sulfides formed during heating become large, and grain growth during annealing is good.

【0026】熱延の仕上温度は通常の条件であるAr3
点以上でよい。冷延率は通常の範囲である65〜95%
でよい。
The finish temperature for hot rolling is a normal condition of Ar 3
It should be more than a point. Cold rolling rate is in the normal range 65-95%
Good.

【0027】焼鈍は、焼鈍専用設備(連続焼鈍ライン)
でも、溶融亜鉛めっきラインに含まれる焼鈍設備で行っ
てもよい。
Annealing is a dedicated equipment for annealing (continuous annealing line)
However, the annealing may be performed in the annealing equipment included in the hot dip galvanizing line.

【0028】焼鈍温度は通常の温度範囲である650〜
880℃でよい。調質圧延の伸張率は通常の範囲である
0.3〜2%でよい。
The annealing temperature is in the normal temperature range of 650 to 650.
It may be 880 ° C. The elongation of temper rolling may be in the usual range of 0.3 to 2%.

【0029】[0029]

【実施例】【Example】

(実施例1)表1に示す化学成分の鋼A〜Nを脱ガス装
置により溶製した。ついで以下の製造条件で冷延鋼板を
製造した。スラブ加熱温度:1200℃、熱延:仕上板
厚4mm、仕上温度870℃、巻取温度560℃、冷
延:仕上板厚0.8mm(冷延率80%)、連続焼鈍:
加熱速度約13℃/秒、均熱800℃×30秒、650
〜50℃における平均冷却速度2.5℃/秒、調質圧
延:伸張率0.5%。
(Example 1) Steels A to N having the chemical components shown in Table 1 were melted by a degasser. Then, a cold rolled steel sheet was produced under the following production conditions. Slab heating temperature: 1200 ° C., hot rolling: finishing plate thickness 4 mm, finishing temperature 870 ° C., winding temperature 560 ° C., cold rolling: finishing plate thickness 0.8 mm (cold rolling rate 80%), continuous annealing:
Heating rate: approx. 13 ° C / sec, soaking 800 ° C x 30 sec, 650
Average cooling rate of 2.5 ° C / sec at ~ 50 ° C, temper rolling: 0.5% elongation.

【0030】そして、時効後の引張特性や点溶接強度を
調査した。引張試験はJIS2241に従って行った。
点溶接強度は引張剪断強度で評価した。時効条件は40
℃×14日の促進時効である。点溶接条件はチップ先
端:DR型6mmφ、加圧力:200kgf、通電:1
2サイクル×8KAである。
Then, the tensile properties and spot welding strength after aging were investigated. The tensile test was performed according to JIS2241.
The spot welding strength was evaluated by tensile shear strength. The prescription condition is 40
Acceleration aging of 14 days at ℃. Spot welding conditions are: Tip of tip: DR type 6 mmφ, pressure: 200 kgf, energization: 1
2 cycles × 8 KA.

【0031】結果を表2に示す。なお、表2の鋼板A〜
Nは、それぞれ表1に示す鋼A〜Nから製造されたもの
である。
The results are shown in Table 2. In addition, steel plates A to Table 2
N is manufactured from each of the steels A to N shown in Table 1.

【0032】鋼板A、B、C、DはB/Nの影響をみた
ものである。B/Nが上限外れである鋼板A、Bには、
時効によるYPElの回復量は0.3%と小さいが、鋭
敏な降伏点が現われる。本発明鋼である鋼板Cには、鋭
敏な降伏点は現れない。B/Nが下限外れである鋼板D
には、時効上の問題はないが、点溶接強度が低く、また
Δrも大きく、溶接性や加工性に問題がある。
Steel plates A, B, C and D show the effects of B / N. Steel plates A and B whose B / N is out of the upper limit include
Although the recovery amount of YPE1 due to aging is as small as 0.3%, a sharp yield point appears. Steel plate C, which is the steel of the present invention, has no sharp yield point. Steel plate D with B / N out of the lower limit
Has no problem in aging, but has a low spot welding strength and a large Δr, and thus has a problem in weldability and workability.

【0033】鋼板E、F、G、HはC量の影響をみたも
のである。いずれも、B/Nは本発明の範囲内であるた
め時効しても鋭敏な降伏点は現われない。しかし、YP
Elの回復量にC量の影響が現われている。C量が低い
ほどYPElが小さい。C量が上限外れの鋼板Hでは、
YPElが約1%にもなり、プレス加工時にストレッチ
ャストレインなどの問題が生じる。C量の影響は加工性
にも現われており、C量が低いほど、El、r値が向上
する。
Steel plates E, F, G, and H show the influence of the amount of C. In both cases, since B / N is within the range of the present invention, no sharp yield point appears even when aged. But YP
The influence of C amount appears on the recovery amount of El. The lower the amount of C, the smaller YPE1. In the steel plate H whose C amount is out of the upper limit,
YPEl becomes about 1%, and problems such as stretcher strain occur during press working. The influence of the C content also appears in the workability, and the lower the C content, the higher the El and r values.

【0034】鋼板I、JはMn、S量の低減効果をみた
ものである。C量のほぼ等しい鋼板Fと比較すると、低
Mn化、低S化によりYPElの回復量が一層小さくな
り、El、r値が向上していることがわかる。
The steel plates I and J have the effect of reducing the amounts of Mn and S. It can be seen that compared with the steel plate F having almost the same C content, the recovery amount of YPE1 is further reduced and the El and r values are improved due to the lower Mn and lower S.

【0035】鋼板Kは、鋼板I、Jに対し、さらにC量
を下げたものである。鋼板Lは、鋼板Kに対し、さらに
P量を下げたものである。このような対策によりさらに
優れた耐歪時効性や加工性が得られる。
Steel plate K is obtained by further reducing the amount of C with respect to steel plates I and J. The steel plate L is obtained by further reducing the P amount with respect to the steel plate K. By taking such measures, more excellent strain aging resistance and workability can be obtained.

【0036】鋼板M、NはSi、Mn、Pを添加して高
強度化を図ったものである。強化元素を添加しても、本
発明による特異な降伏点挙動の抑制効果は損なわれな
い。高強度化された分だけ、加工性は劣化しているもの
の、IF鋼系高強度鋼板と同等の特性が得られる。
The steel plates M and N are made to have high strength by adding Si, Mn and P. The addition of the strengthening element does not impair the effect of suppressing the peculiar yield point behavior according to the present invention. Although the workability deteriorates due to the increased strength, the same characteristics as the IF steel-based high strength steel sheet can be obtained.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例2)表1の鋼Lを用いて、焼鈍で
の冷却速度の影響を調べた。650℃から50℃までの
平均冷却速度以外の製造条件は実施例1と同様である。
(Example 2) Using the steel L in Table 1, the influence of the cooling rate in annealing was investigated. Manufacturing conditions are the same as in Example 1 except for the average cooling rate from 650 ° C to 50 ° C.

【0040】表3に結果を示す。冷却速度の影響は主に
時効後のYPElの回復量に現われている。冷却速度が
本発明の上限外れである鋼板Lー1とLー2では、YP
Elの回復量が大きく、ストレッチャストレインなどの
問題が生じる。本発明の冷却速度である鋼板Lー3とL
ー4は実用的には非時効であると言える。特に、鋼板L
ー4はIF鋼と同様、完全非時効である。
The results are shown in Table 3. The influence of the cooling rate mainly appears on the recovery amount of YPE1 after aging. In the steel plates L-1 and L-2 whose cooling rate is outside the upper limit of the present invention, YP
The recovery amount of El is large, and problems such as stretcher strain occur. Steel plates L-3 and L, which are cooling rates of the present invention
It can be said that -4 is practically non-aging. In particular, steel plate L
-4, like IF steel, is completely non-aging.

【0041】[0041]

【表3】 [Table 3]

【0042】(実施例3)表1の鋼Kを用いて、熱延後
の巻取温度の影響を調べた。巻取温度以外の条件は実施
例1と同様である。
Example 3 Using the steel K in Table 1, the influence of the coiling temperature after hot rolling was examined. The conditions other than the winding temperature are the same as in Example 1.

【0043】表4に結果を示す。巻取温度の影響は主に
Δrに現われている。巻取温度が本発明の上限外れであ
る鋼板Kー1とKー2では、実用鋼としてはΔrが大き
く、プレス加工時に大きな耳の発生などの問題が生じ
る。本発明の巻取温度である鋼板Kー3とKー4のΔr
は通常の冷延鋼板並の値であり、このような問題を引き
起こすことはない。
The results are shown in Table 4. The influence of the winding temperature mainly appears in Δr. Steel plates K-1 and K-2 whose winding temperatures are out of the upper limits of the present invention have a large Δr as a practical steel, which causes a problem such as a large ear during press working. Δr of steel plates K-3 and K-4, which is the winding temperature of the present invention
Is a value comparable to that of a normal cold-rolled steel sheet and does not cause such a problem.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【発明の効果】本発明は以上説明したように構成されて
いるので、高価なTiやNbを添加しないB添加の非I
F鋼系極低炭素鋼を用い、現状設備により優れた耐歪時
効性と加工性を有する極低炭素冷延鋼板を製造する方法
を提供できる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to add non-I containing B without adding expensive Ti or Nb.
It is possible to provide a method for producing an ultra-low carbon cold-rolled steel sheet having excellent strain aging resistance and workability by using the existing equipment, using the F steel ultra-low carbon steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】室温における比較的短時間の歪時効後の降伏点
挙動を示す図である。
FIG. 1 is a diagram showing a yield point behavior after strain aging at room temperature for a relatively short time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.0007〜0.00
17%、Si:1.5%以下、Mn:0.05〜2%、
P:0.005〜0.15%、S:0.001〜0.0
2%、Al:0.04〜0.13%、N:0.001〜
0.003%、B:0.0005〜0.0024%、残
部がFeおよび不可避的不純物からなり、かつB/N:
0.5〜0.8である成分を有することと、 熱延後の巻取温度が400〜590℃であることと、 かつ連続焼鈍での冷却過程で650℃から50℃までの
平均冷却速度が0.5〜7℃/秒であることを特徴とす
る極低炭素冷延鋼板の製造方法。
1. C: 0.0007 to 0.00 in% by weight
17%, Si: 1.5% or less, Mn: 0.05 to 2%,
P: 0.005-0.15%, S: 0.001-0.0
2%, Al: 0.04-0.13%, N: 0.001-
0.003%, B: 0.0005 to 0.0024%, the balance being Fe and inevitable impurities, and B / N:
It has a component of 0.5 to 0.8, the coiling temperature after hot rolling is 400 to 590 ° C., and the average cooling rate from 650 ° C. to 50 ° C. in the cooling process in continuous annealing. Is 0.5 to 7 ° C./second. A method for producing an ultra low carbon cold rolled steel sheet.
【請求項2】 C:0.0007〜0.0012%、M
n:0.05〜0.1%、P:0.005〜0.009
%、S:0.001〜0.009%であることを特徴と
する請求項1に記載の極低炭素冷延鋼板の製造方法。
2. C: 0.0007 to 0.0012%, M
n: 0.05 to 0.1%, P: 0.005 to 0.009
%, S: 0.001 to 0.009%, The method for producing an ultra low carbon cold rolled steel sheet according to claim 1, wherein S: 0.001 to 0.009%.
JP24623295A 1995-09-25 1995-09-25 Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet Expired - Fee Related JP3293424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24623295A JP3293424B2 (en) 1995-09-25 1995-09-25 Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24623295A JP3293424B2 (en) 1995-09-25 1995-09-25 Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH0987748A true JPH0987748A (en) 1997-03-31
JP3293424B2 JP3293424B2 (en) 2002-06-17

Family

ID=17145483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24623295A Expired - Fee Related JP3293424B2 (en) 1995-09-25 1995-09-25 Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3293424B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233079A1 (en) * 2001-02-16 2002-08-21 Corus Staal BV Cold reduced enamelling steel sheet and an enamelled structure comprising a component of such a steel sheet
EP1336665A1 (en) * 2002-02-18 2003-08-20 Corus Staal BV Cold reduced enamelling steel sheet and an enamelled structure comprising a component of such a steel sheet
CN113106329A (en) * 2020-11-25 2021-07-13 江汉大学 440 MPa-level hot-galvanized high-strength IF steel and preparation method thereof
CN113106330A (en) * 2020-11-25 2021-07-13 江汉大学 260 MPa-grade hot-galvanized high-strength IF steel and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233079A1 (en) * 2001-02-16 2002-08-21 Corus Staal BV Cold reduced enamelling steel sheet and an enamelled structure comprising a component of such a steel sheet
EP1336665A1 (en) * 2002-02-18 2003-08-20 Corus Staal BV Cold reduced enamelling steel sheet and an enamelled structure comprising a component of such a steel sheet
CN113106329A (en) * 2020-11-25 2021-07-13 江汉大学 440 MPa-level hot-galvanized high-strength IF steel and preparation method thereof
CN113106330A (en) * 2020-11-25 2021-07-13 江汉大学 260 MPa-grade hot-galvanized high-strength IF steel and preparation method thereof

Also Published As

Publication number Publication date
JP3293424B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
US7699947B2 (en) Ultrahigh strength hot-rolled steel and method of producing bands
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH08176735A (en) Steel sheet for can and production thereof
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JPH0567684B2 (en)
JP2530338B2 (en) High strength cold rolled steel sheet with good formability and its manufacturing method
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JPH06102810B2 (en) Method for producing galvannealed steel sheet for deep drawing with excellent secondary workability
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JPH0559970B2 (en)
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JPH0756053B2 (en) Manufacturing method of galvanized hot rolled steel sheet with excellent workability
JPH01184227A (en) Production of alloyed and galvanized steel sheet for drawing
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JPH02149624A (en) Manufacture of high-tensile cold rolled steel sheet excellent in formability
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JP2818319B2 (en) Non-ageing cold drawn high-strength cold-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees