JPS63238218A - Production of austenitic stainless steel pipe - Google Patents

Production of austenitic stainless steel pipe

Info

Publication number
JPS63238218A
JPS63238218A JP7225787A JP7225787A JPS63238218A JP S63238218 A JPS63238218 A JP S63238218A JP 7225787 A JP7225787 A JP 7225787A JP 7225787 A JP7225787 A JP 7225787A JP S63238218 A JPS63238218 A JP S63238218A
Authority
JP
Japan
Prior art keywords
hot rolling
steel pipe
stainless steel
austenitic stainless
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7225787A
Other languages
Japanese (ja)
Inventor
Kunihiko Yoshikawa
吉川 州彦
Yoshiatsu Sawaragi
椹木 義淳
Atsuro Iseda
敦朗 伊勢田
Tomio Samejima
鮫島 富雄
Susumu Hirano
平野 奨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7225787A priority Critical patent/JPS63238218A/en
Publication of JPS63238218A publication Critical patent/JPS63238218A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled stainless steel pipe having excellent corrosion resistance and mechanical properties by subjecting the titled steel pipe contg. Ti and/or Nb to hot rolling at a prescribed temp. or below and quick cooling right after hot rolling, then subjecting the steel pipe to final hot rolling and further to quick cooling at a specified cooling rate or above. CONSTITUTION:The austenitic stainless steel contg. 0.1-0.6wt.% Ti and/or 0.2-1.5wt.% Nb is produced by hot working. The hot working right after the final hot working is executed by hot rolling and at <=700 deg.C and in this case, the heating temp. thereof is preferably set at (the heating temp. of the final hot rolling + 30 deg.C) - 1,280 deg.C and in succession, the quick cooling is executed. The final hot working of the above-mentioned steel pipe after the quick cooling is executed by hot rolling and the end temp. of said hot rolling is set at >=950 deg.C to allow carbide to solutionize and work strain to remain. The steel pipe after the end of such hot rolling is in succession cooled at >=500 deg.C/hr cooling rate, by which the desired austenitic stainless steel pipe having the fine-grained structure is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた耐良性と機械的性質を有し、化学
工業用プラントの配管や、熱交換器の管材などとして用
いるのに適した細粒組織のオーステナイトステンレス鋼
管の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has excellent durability and mechanical properties, and is suitable for use as pipes in chemical industrial plants, pipe materials for heat exchangers, etc. The present invention relates to a method for manufacturing an austenitic stainless steel pipe with a fine grain structure.

〔従来の技術〕[Conventional technology]

一般に、オーステナイトステンレス鋼管の製造に、J 
Is−8US304TP,SUS316TP。
Generally, J
Is-8US304TP, SUS316TP.

5US321TP、5U8347TP、およびNCF2
TPなどの多数の鋼種が用いられており、なかでもTi
およびNbのうちの1種または2種を合金成分として含
有する鋼種のものは、すぐれた耐良性と機械的性質をも
つことから広く使用されている。
5US321TP, 5U8347TP, and NCF2
Many steel types such as TP are used, among which Ti
Steels containing one or two of Nb and Nb as alloy components are widely used because they have excellent resistance and mechanical properties.

一方、これらのオーステナイトステンレス鋼管は、@1
図に概略製造工程図で示されるように、通常インゴット
からの分塊圧延ビレットや連続鋳造ビレットに、熱間押
出し製管を施した後、冷間加工を行ない、必要に応じて
軟化処理と冷間加工を施し、最終的に固溶化処理を行な
うことによって製造されている。
On the other hand, these austenitic stainless steel pipes @1
As shown in the schematic manufacturing process diagram in the figure, a blooming rolled billet or a continuous casting billet made from an ordinary ingot is subjected to hot extrusion and then cold working, followed by softening treatment and cooling if necessary. It is manufactured by performing preliminary processing and finally performing solid solution treatment.

また、この熱間押出し製管を利用する方法では、ビレッ
トのサイズに制限があり、コストが高くなる問題がある
ほか、冷間加工も生産性を低下させる原因となっている
ことから、量産効果を1ばてコスト低減をはかる目的で
、熱間押出し製管のかわりにピアサ−・圧延を行ったり
、冷間加工のかわりにホットレデューサ−・圧延を用い
る方法がある。
In addition, with this method of making hot extruded pipes, there is a limit to the size of the billet, which increases costs.In addition, cold working also reduces productivity, making mass production less effective. In order to reduce costs by making a single step, there are methods that use piercer rolling instead of hot extrusion, and hot reducer rolling instead of cold working.

さらに、オーステナイトステンレス鋼管においては、結
晶粒度の諸性質に及はす影響、例えば管内面の水蒸気酸
化に対しては細粒組織にすることによって粒界拡散が促
進されて表面に保護膜が形成されるようになり、水蒸気
酸化が抑制されるようになることや、細粒組織はど高い
降伏強さやすぐれた高温延性をもつようになることなど
が知られている。
Furthermore, in austenitic stainless steel pipes, grain size affects various properties, such as steam oxidation on the inner surface of the pipe, by creating a fine grain structure, which promotes grain boundary diffusion and forms a protective film on the surface. It is known that steam oxidation is suppressed, and that the fine grain structure has a high yield strength and excellent high-temperature ductility.

(発明が解決しようとする問題点〕 しかし、上記のように熱間押出し製管を利用する方法で
は、コスト低減および生産性の点で問題があり、またマ
ンネスマンピアサ−圧延を行なう方法では、コスト低減
および量産効果をはかれるが、いずれの方法も固溶化熱
処理を必要とし、オーステナイトステンレス鋼の固溶化
熱処理温度は高いため、熱処理コストも高くつくなどの
問題点があり、さらにいずれの方法も冷間加工工程を入
れなければ細粒組織が得られないものである。
(Problems to be Solved by the Invention) However, as mentioned above, the method using hot extrusion pipe making has problems in terms of cost reduction and productivity, and the method using Mannesmann piercer rolling has problems. Both methods reduce costs and are effective for mass production, but both methods require solution heat treatment, and since the solution heat treatment temperature for austenitic stainless steel is high, the heat treatment cost is also high. A fine grain structure cannot be obtained unless a temporary processing step is included.

〔問題点を解決するための手段S そこで、本発明者等は、上述のような観点から細粒組織
を有するオーステナイトステンレス鋼管をコスト安く、
かつ生産性高く裏遺すべく研究を行なった結果1重量悌
(以下慢は重IIsを示す)で、Ti:0.1〜0.6
鳴、およびNb:0.2〜1.5チのうちの1種または
2種を含有するオーステナイトステンレス鋼のインゴッ
トからの分塊圧延ビレット、またはこれの連続鋳造ビレ
ットからピアサ−などにより素管を製造し、ついでこの
素管に2回以上の熱間加工を施すに際して。
[Means for solving the problem S] Therefore, from the above-mentioned viewpoint, the present inventors have developed an austenitic stainless steel pipe having a fine grain structure at a low cost.
As a result of research to ensure high productivity and high productivity, Ti: 0.1 to 0.6 at 1 weight (hereinafter referred to as heavy IIs).
A blank pipe is made by a piercer or the like from a blooming rolled billet from an ingot of austenitic stainless steel containing one or two of Nb and Nb: 0.2 to 1.5 h, or a continuous casting billet thereof. When manufacturing and then subjecting this raw pipe to hot working two or more times.

その熱間加工における最終熱間加工直前の熱間加工を熱
間圧延量−て行なうと共監ユ、その熱間圧延終了温度を
700℃以下とし、この場合最終熱間加工において微細
均一な再結晶組織を得るために。
If the hot working immediately before the final hot working in the hot working is carried out with the same amount of hot rolling, the finishing temperature of the hot rolling shall be 700°C or less, and in this case, the final hot working will be fine and uniform. To obtain the crystal structure.

強圧下により加工歪を蓄積することが望ましく、加工後
、急冷し、 ついで、最終熱間加工を熱間圧延にて行なうと共に、そ
の熱間圧延終了温度を950℃以上として、炭化物の実
質的固溶化と加工歪の残存防止をはかり、 引続いて、500℃/hrI2を上の冷却速度で冷却す
ると、この後で冷間加工や固溶化熱処理を施すことなし
に、微細均一な再結晶組織、すなわち細粒組織をもった
オーステナイトステンレス鋼管が得られるよう(−なり
、しかも上記の最終熱間圧延直前の熱間圧延における加
熱温度を、(最終熱間圧延の加熱温度+30℃)〜12
80℃とすると、最終熱間圧延時に炭化物が微細に析出
するようになって結晶粒の均一微細化が一段と促進する
ようになるという知見を得たのである。
It is desirable to accumulate processing strain by strong rolling, and after processing, the material is rapidly cooled, and then the final hot working is carried out by hot rolling, and the hot rolling end temperature is set at 950°C or higher to substantially solidify the carbide. In order to prevent solutionization and processing strain from remaining, the material is subsequently cooled at a cooling rate of 500°C/hrI2, resulting in a fine and uniform recrystallized structure without subsequent cold working or solution heat treatment. That is, in order to obtain an austenitic stainless steel pipe with a fine grain structure (-), the heating temperature in the hot rolling immediately before the final hot rolling was set to (heating temperature in the final hot rolling + 30°C) to 12°C.
They found that when the temperature is 80°C, carbides are finely precipitated during final hot rolling, further promoting uniform refinement of crystal grains.

この発明は、上記知見にもとづいてなされたものであっ
て、Ti:Q、1〜0.6%およびNb:0.2〜1.
5−のうちの1種または2種を含有するオーステナイト
ステンレス鋼管を熱間加工により製造するに際して、 最終熱間加工直前の熱間加工を熱間圧延にて行なうと共
に、その熱間圧延終了温度を700C以下とし、この場
合望ましくは、その加熱温度を、(最終熱間圧延の加熱
温度+30℃)〜1280℃とし、引続いて急冷し、 ついで、最終熱間加工を熱間圧延にて行なうと共に、そ
の熱間圧延終了温度′を950’C以上として、炭化物
の実質的固溶化と加工歪みの残存防止をはかり、 引続いて、500c/hrll上の冷却速度で冷却する
ことによって、冷間加工および固溶化熱処理なしで、細
粒組織を有するオーステナイトステンレス鋼管、すなわ
ち耐水蒸気酸化性などの耐食性、並びに降伏強さや高温
延性などの機械的性質にすぐれたオーステナイトステン
レス鋼管をコスト安く製造する方法に特徴を有するもの
である。
The present invention was made based on the above findings, and includes Ti:Q of 1 to 0.6% and Nb of 0.2 to 1%.
5- When manufacturing an austenitic stainless steel pipe containing one or two of the following by hot working, the hot working immediately before the final hot working is performed by hot rolling, and the hot rolling end temperature is 700C or less, in this case, the heating temperature is preferably (heating temperature of final hot rolling + 30°C) to 1280°C, followed by rapid cooling, and then final hot working is performed by hot rolling. The hot rolling end temperature' is set at 950'C or higher to substantially solidify the carbide and prevent residual processing distortion, and then cold working is carried out by cooling at a cooling rate of over 500c/hrll. It is characterized by a method for manufacturing, at low cost, an austenitic stainless steel pipe with a fine grain structure, that is, an austenitic stainless steel pipe with excellent corrosion resistance such as steam oxidation resistance, and mechanical properties such as yield strength and high temperature ductility, without solution heat treatment. It has the following.

なお、この発明の方法において、TiおよびNbの含有
量をそれぞれTi:0,1〜0.6%、Nb:0.2〜
1.5チと限定したのは、その含有量がそれぞれTi:
0.1チ未満およびNb:0.2%未満では、これらの
炭窒化物の析出黴が不十分で、所望の耐食性および高温
強度を確保することができないばかりでなく、最終熱間
圧延時の細粒化が不十分であり、一方その含有量がTi
:0.6%およびNb:1.5%をそれぞれ越えると、
溶接金属に高温割れが発生するようになるという理由に
よるものであり、また、最終熱間圧延直前の熱間圧延の
終了温度を700t:以下と定めたのは、その熱間圧延
を700″C以下、望ましくは600℃以下で終了する
ことによって加工歪をできるだけ大きくして最終熱間圧
延後の急冷で微細均一な再結晶組織を確保するという理
由によるものであり、したがってこの場合、熱間圧延は
加工歪を大きくするために複数の圧延工程になってもよ
く、かつその田下率は大きい方が望ましく、かつこの場
合の加熱温度と最終熱間圧延における加熱温度との差は
、前者の加熱温度は組織均一性のためのソーキング効果
としては温度ができるだけ高い方がよいので、大きい方
がよいが、その温度が1280℃を越えると、表面肌が
悪くなるので避けた方がよく、しかし最終熱間圧延(:
おける微細炭化物の析出による整粒微細化効果を十分に
発揮させるためには、前記加熱温度を(最終熱間圧延の
加熱温度+30℃)よりも高くするのが望ましく、さら
に、最終熱間圧延における圧延終了温度を950℃以上
、望ましくは980℃以上と定めたのは、これによって
加工歪みの残留を防止するためであり、またこの場合の
圧延終了後の冷却速度を500c/hrll上と定めた
のは、これによってCr 2 ac6やTiC1あるい
はNbCなどの炭化物の析出が抑制されるようになると
いう理由からである。
In addition, in the method of this invention, the content of Ti and Nb is set to Ti: 0.1 to 0.6% and Nb: 0.2 to 0.6%, respectively.
The reason why the content is limited to 1.5 Ti is because the content is Ti:
If it is less than 0.1% and Nb: less than 0.2%, the precipitated mold of these carbonitrides will be insufficient, and not only will it be impossible to secure the desired corrosion resistance and high-temperature strength, but also the The grain size is insufficiently refined, and the Ti content is insufficient.
:0.6% and Nb:1.5%, respectively.
This is because high temperature cracks will occur in the weld metal, and the reason why the end temperature of hot rolling immediately before the final hot rolling is set to 700 t: or less is because the hot rolling temperature is 700"C or less. The reason for this is to desirably finish the process at 600°C or lower to increase the processing strain as much as possible and ensure a fine and uniform recrystallized structure by rapid cooling after the final hot rolling. Therefore, in this case, hot rolling In order to increase the processing strain, there may be multiple rolling steps, and it is desirable that the rolling ratio be large, and the difference between the heating temperature in this case and the heating temperature in the final hot rolling is the same as that of the former. The heating temperature should be as high as possible for the soaking effect for tissue uniformity, so the higher the temperature, the better; however, if the temperature exceeds 1280°C, the surface texture will deteriorate, so it is better to avoid it. Final hot rolling (:
In order to fully exhibit the grain size refinement effect due to the precipitation of fine carbides in the final hot rolling, it is desirable to set the heating temperature higher than (the heating temperature in the final hot rolling + 30°C). The rolling end temperature was set at 950°C or higher, preferably 980°C or higher, in order to prevent residual processing distortion, and the cooling rate after rolling in this case was set at 500c/hrll or higher. This is because this suppresses the precipitation of carbides such as Cr2ac6, TiC1, or NbC.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

通常の1Qton電気炉を用い、それぞれ第1表に示さ
れる成分組成を有するA−E鋼を溶製し、コノ場合AQ
)is US 304 、 D鋼)1sUs321゜C
鋼は5tJ8347.そしてD鋼はNCF 2にそれぞ
れ相当する組成をもつものであり、これらの溶鋼をイン
ゴットに鋳造した後、厚さ:120mのスラブに鍛造し
、ついで現場工程をシュミレートした装置にて、途中に
再加熱の工程を入れながら。
Using a normal 1Qton electric furnace, A-E steels having the respective compositions shown in Table 1 are melted, and in the case of Kono, AQ
) is US 304, D steel) 1sUs321°C
Steel is 5tJ8347. D steel has a composition corresponding to NCF 2, and after casting these molten steels into ingots, they are forged into slabs with a thickness of 120 m, and then re-cast in a device that simulates the on-site process. While adding the heating process.

ピアサ−相当工程と圧延を第2表に示される条件にて行
なうことにより本発明法1〜6および比較法1〜6をそ
れぞれ実施し、オーステナイトステンレス鋼供試材を製
造した。
Methods 1 to 6 of the present invention and comparative methods 1 to 6 were carried out by carrying out a piercer-equivalent step and rolling under the conditions shown in Table 2 to produce austenitic stainless steel specimens.

なお、比較法1〜6は、成分組成および最終熱間圧延直
前の熱間圧延の終了温度の少なくともいずれかの条件2
5トこの発明の範囲から外れたものである。
In addition, Comparative Methods 1 to 6 are based on at least one condition 2 of the component composition and the end temperature of hot rolling immediately before the final hot rolling.
5. These are outside the scope of this invention.

また、比較の目的で、第3表に示される条件にて従来法
1〜4を行ない、同じくオーステナイトステンレス鋼供
試材を製造した。
In addition, for the purpose of comparison, conventional methods 1 to 4 were carried out under the conditions shown in Table 3 to similarly produce austenitic stainless steel specimens.

ツキニ、コノ結果得られた各種のオーステナイトステン
レス鋼供試材の結晶粒度範囲および引張強さを測定した
The grain size range and tensile strength of various austenitic stainless steel specimens obtained as a result were measured.

〔発明の効果〕〔Effect of the invention〕

第2表および第3表に示される結果から、本発明法1〜
6によって製造されたオーステナイトステンレス鋼管は
、いずれも冷間加工と固溶化熱処理を行なう従来法1〜
4によって製造されたオーステナイトステンレス鋼管と
同等の細粒組織および高強度を有するばかυでなく、結
晶粒度範囲からも整粒であることがわかり、さらに本発
明法3と4の比較から、最終熱間圧延における加熱温度
よシも、その直前の熱間圧延の加熱温度を大幅に高くす
ることにより細粒化および整粒化が促進さ$3表 れるようになることがわかり、これに対して、比較法1
〜6に見られるように、鋼の成分組成あるいは最終熱間
圧延直前の熱間圧延の終了温度がこの発明の範囲から外
れると細粒組織が得られないことが明らかである。
From the results shown in Tables 2 and 3, it can be seen that methods 1 to 1 of the present invention
The austenitic stainless steel pipes manufactured by method 6 are all manufactured by conventional methods 1 to 6, which involve cold working and solution heat treatment.
It was found that the grain size range was not the same as that of the austenitic stainless steel pipe manufactured by the method 4, but the final heat Regarding the heating temperature during rolling, it was found that by significantly increasing the heating temperature in the immediately preceding hot rolling, grain refinement and grain size regulation were promoted, and $3 appeared. Comparative method 1
6, it is clear that a fine grain structure cannot be obtained if the chemical composition of the steel or the finishing temperature of the hot rolling immediately before the final hot rolling is out of the range of the present invention.

上述のよう(−1この発明の方法によれば、冷間加工お
よび固溶化熱処理を必要とすることなく、これらの工程
を必要とする従来法と同等の細粒組織、すなわちすぐれ
た耐食性と機械的性質を有するオーステナイトステンレ
ス鋼管を、コスト安く、かつ高い生産性で製造すること
ができるのである。
As mentioned above (-1), the method of the present invention does not require cold working or solution heat treatment, but has a fine grain structure equivalent to the conventional method that requires these steps, that is, excellent corrosion resistance and mechanical properties. This makes it possible to manufacture austenitic stainless steel pipes with excellent properties at low cost and with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオーステナイトステンレス鋼管の従来製造工程
を示す概略図である。
FIG. 1 is a schematic diagram showing a conventional manufacturing process of an austenitic stainless steel pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)Ti:0.1〜0.6重量%およびNb:0.2
〜1.5重量%のうちの1種または2種を含有するオー
ステナイトステンレス鋼管を熱間加工により製造するに
際して、 最終熱間加工直前の熱間加工を熱間圧延にて行なうと共
に、その熱間圧延終了温度を700℃以下とし、引続い
て急冷し、 ついで、最終熱間加工を熱間圧延にて行なうと共に、そ
の熱間圧延終了温度を950℃以上として、炭化物の実
質的固溶化と加工歪みの残存防止をはかり、 引続いて、500℃/hr以上の冷却速度で冷却するこ
とにより固溶化熱処理の省略をはかることを特徴とする
冷間加工および固溶化熱処理なしで、細粒組織を有する
オーステナイトステンレス鋼管を製造する方法。
(1) Ti: 0.1 to 0.6% by weight and Nb: 0.2
When manufacturing an austenitic stainless steel pipe containing one or two of the above 1.5% by weight by hot working, the hot working immediately before the final hot working is performed by hot rolling, and the The rolling end temperature is set to 700°C or lower, followed by rapid cooling, and then the final hot working is performed by hot rolling, and the hot rolling end temperature is set to 950°C or higher to substantially solid solutionize the carbide and process it. The fine-grain structure is formed without cold working or solution heat treatment, which is characterized by preventing residual distortion and subsequently cooling at a cooling rate of 500°C/hr or more to omit solution heat treatment. A method of manufacturing an austenitic stainless steel pipe with.
(2)最終熱間圧延直前の熱間圧延における加熱温度を
、(最終熱間圧延の加熱温度+30℃)〜1280℃と
することを特徴とする上記特許請求の範囲第(1)項記
載の冷間加工および固溶化熱処理なしで、細粒組織を有
するオーステナイトステンレス鋼管を製造する方法。
(2) The heating temperature in the hot rolling immediately before the final hot rolling is set to (heating temperature of the final hot rolling + 30°C) to 1280°C. A method of manufacturing austenitic stainless steel pipe with a fine grain structure without cold working and solution heat treatment.
JP7225787A 1987-03-26 1987-03-26 Production of austenitic stainless steel pipe Pending JPS63238218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225787A JPS63238218A (en) 1987-03-26 1987-03-26 Production of austenitic stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225787A JPS63238218A (en) 1987-03-26 1987-03-26 Production of austenitic stainless steel pipe

Publications (1)

Publication Number Publication Date
JPS63238218A true JPS63238218A (en) 1988-10-04

Family

ID=13484060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225787A Pending JPS63238218A (en) 1987-03-26 1987-03-26 Production of austenitic stainless steel pipe

Country Status (1)

Country Link
JP (1) JPS63238218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627870A (en) * 2012-08-14 2014-03-12 宝钢特钢有限公司 Heat treatment method and manufacturing method of stainless steel pipe for boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627870A (en) * 2012-08-14 2014-03-12 宝钢特钢有限公司 Heat treatment method and manufacturing method of stainless steel pipe for boiler
CN103627870B (en) * 2012-08-14 2016-02-24 宝钢特钢有限公司 A kind of heat treating method of boiler stainless steel tube and manufacture method

Similar Documents

Publication Publication Date Title
US5861070A (en) Titanium-aluminum-vanadium alloys and products made using such alloys
SU852179A3 (en) Method of making steel seamless pipes
JPH10273756A (en) Cold tool made of casting, and its production
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
CN114015847A (en) Method for producing 45 steel for direct cutting by controlled rolling and controlled cooling process
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JPH029647B2 (en)
JPH06172858A (en) Production of seamless steel tube excellent in scc resistance and having high strength and high toughness
JPS63238218A (en) Production of austenitic stainless steel pipe
JP2639798B2 (en) Manufacturing method of austenitic stainless steel
JP2525961B2 (en) Manufacturing method of high toughness seamless steel pipe with fine grain structure
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
JPH09217149A (en) Large-sized casting and forging, made of duplex stainless steel excellent in corrosion resistance and toughness, and their production
CN110284025A (en) A kind of aluminum-bronze material and preparation method thereof
JPH08199238A (en) Production of wire rod of high strength and low thermal expansion alloy
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3145515B2 (en) Manufacturing method of low yield ratio high toughness seamless steel pipe
TWI808779B (en) Automobile steel material and method of manufacturing the same
JP2000119807A (en) Deformed reinforcing bar and its manufacture
JP2001059137A (en) High carbon slab for seamless steel pipe and its production
JPS61253354A (en) Manufacture of alpha+beta type titanium alloy sheet
JPS6367549B2 (en)
JPH0364415A (en) Production of high-toughness seamless low alloy steel tube
JPS59118861A (en) Free cutting steel and its production
JPS605821A (en) Production of parts steel for cold forging