JPH03209869A - 容量絶縁膜の形成方法 - Google Patents

容量絶縁膜の形成方法

Info

Publication number
JPH03209869A
JPH03209869A JP2005510A JP551090A JPH03209869A JP H03209869 A JPH03209869 A JP H03209869A JP 2005510 A JP2005510 A JP 2005510A JP 551090 A JP551090 A JP 551090A JP H03209869 A JPH03209869 A JP H03209869A
Authority
JP
Japan
Prior art keywords
film
gas
insulating film
tantalum
capacitor insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005510A
Other languages
English (en)
Other versions
JP2611466B2 (ja
Inventor
Satoshi Kamiyama
聡 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005510A priority Critical patent/JP2611466B2/ja
Publication of JPH03209869A publication Critical patent/JPH03209869A/ja
Application granted granted Critical
Publication of JP2611466B2 publication Critical patent/JP2611466B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体に用いる容量絶縁膜の形成方法に関し、
特に容量絶縁膜および導電性バリア膜からなる多層構造
膜を形成する化学気相成長法に関する。
〔従来の技術〕
64Mb i tDRAM以上の超LSIメモリにおけ
る重要プロセス技術として、高誘電率容量絶縁膜と導電
性バリア膜との多層構造膜を用いる容量部の形成法があ
る。従来、これら高誘電率容量絶縁膜および導電性バリ
ア膜(以下バリア膜と略す)の成膜は別々の装置を用い
、以下に述べる方法で形成している。
高誘電率容量絶縁膜である酸化タンタル膜は、原料ガス
に有機物であるタンタルペンタエトキシド(Ta (O
C2H5) 5)あるいはタンタルペンタメトキシド(
Ta (OCH3)5 >と酸素ガスとを用いた熱化学
気相成長法により形成する。
従来の形成方法に用いた化学気相成長装置の模式的構造
図を第4図に示す。
酸素ガス、希釈用のアルゴンガスは酸素ガス導入管16
.アルゴンガス導入管5からバルブ15f、15dを通
して石英製の反応炉12aへ導入される。また、有機タ
ンタルガスは、気化室6においてヒータ7により原料の
有機タンタルを気化させ、これをキャリアガスであるア
ルゴンガスによりバルブ1.5 gを通して反応炉12
a導入される。キャリアガスであるアルゴンガスはキャ
リアガスアルゴンの導入管1からバルブ15を通して気
化室6に導入される。ヒータ8aにより石英製の反応炉
12aは熱せられており、基板ホルダ11上のウェハ1
0の表面上で導入された有機タンタルガスおよび酸素ガ
スが化学反応を起し、酸化タンタル膜が形成される。
ここで酸化タンタル膜の化学気相成長条件として、ヒー
タ7による原料の有機タンタルの加熱温度は100℃、
ヒータ8aによる反応炉12a内の加熱温度は2O0〜
600℃、酸素ガス導入管16からの酸素ガスの流量は
0.1〜5.O3LM(STD、LITER/旧NIJ
TE) 、キャリアガスであるアルゴンガスの流量は1
0〜2O0sccm (std、cc/m1nute 
) 、圧力は1O−102Paで行なうのが一般的であ
る。
ウェハ10に堆積されない未反応のガスは、反応炉12
aから真空ポンプ13により排気口14へ排気される。
一方、バリア膜である窒化チタンなどの形成方法として
は、スパッタ法が一般的に用いられている。
〔発明が解決しようとする課題〕
上述した従来の化学気相成長法による高誘電率容量絶縁
膜およびスパッタ法によるバリア膜の形成方法では、以
下に述べる問題点がある。
まず、高誘電率容量絶縁膜およびバリア膜を別々の装置
で形成するところに問題がある。化学気相成長法により
高誘電率容量絶縁膜を形成した後、スバ・ツタ法により
バリア膜を形成する過程において、ウェハの持ち運びが
行なわれる。この持ち運びにより、ゴミやパーティクル
などによりウェハ表面が汚染される。そのため、これら
の汚染を除去する洗浄工程をバリア膜形成前に行なうが
、少なからず汚染物質がウェハ表面に残留するという問
題がある。
また、従来技術としてポリシリコンやシリコン基板上に
容量絶縁膜を形成しているが、ポリシリコンやシリコン
基板上には自然酸化膜が存在しており、64MDRAM
以上の超り、SIメモリにおける容量絶縁膜においては
この自然酸化膜の存在が無視できなくなる。そのため、
この自然酸化膜を除去しなければならないという問題が
ある。
さらに、従来の酸化タンタル膜の形成方法は、例えば、
タンクルペンタエトキシドあるいはタンタルペンタメト
キシドなどの有機タンタルガスと酸素ガスとを用いた場
合、酸化タンタル膜中に多量の炭素か不純物として取り
込まれ、ストイキオメ1〜りでない酸素不足でダングリ
ングボンドが多く存在し、さらにはピンホールも多く存
在する酸化タンタル膜が形成される。これら酸化タンタ
ル膜中に多量の炭素が取り込まれ、酸素不足でダングリ
ングボンドが多く存在し、さらにはピンホールも多く存
在する酸化タンタル膜のリーク電流は大きく、TDDB
特性評価による信頼性は悪い結果になる。
一方、バリア膜形成の従来技術であるスパッタ法にはス
テップカバレッジが悪いという問題がある。このため、
微細な設計ルールを用いる超LSIには適用できない。
〔課題を解決するための手段〕
本発明は酸化タンタル容量絶縁膜を形成する工程と、基
板あるいは電極と酸化タンタル容量絶縁膜との熱処理に
よる反応を抑制するための導電性バリア膜を形成する工
程とが同一チャンバー内で連続して行なわれることによ
り酸化タンタル容量絶縁膜と導電性バリア膜とからなる
多層構造膜を形成する方法を有している。
〔実施例〕
次に本発明について図面を参照して説明する。
本発明の一実施例のプラズマ化学反応による化学気相成
長装置の模式的構造図を第1図に示す。
この装置を用いた高誘電率容量絶縁膜、バリア膜の2層
構造膜の形成方法の手順は以下の通りである。
まず、希釈用のアルゴンガスをアルゴンガス導入管5か
らバルブ15d、15eを通して反応室12に導入し、
高周波電源9をオンすることにより導入したアルゴンガ
スのプラズマ化学反応が生じ、ウェハ10おのおのの基
板表面上の自然酸化膜が除去される。
次に、ヒータ7で熱せられた気化室6で塩化タンタル(
TaCρ5)ガスは、キャリアガスアルゴンの導入管1
.バルブ15を通って導入されたキャリアガスのアルゴ
ンガスとともにバルブ15eを通って反応室12に導入
され、酸化二窒素(N2O)ガスは酸化二窒素ガス導入
管2.バルブ15a、15eを通して反応室12へ導入
される。ヒータ8により基板ホルダ11は熱せられてお
り、高周波電源9をオンすることにより導入した塩化タ
ンタルガスおよび酸化二窒素ガスのプラズマ化学反応が
生じ、ウェハ10それぞれの表面上で酸化タンタル膜が
形成される。
ウェハ10に堆積されない未反応のガスは、反応室12
から真空ポンプ13により排気口14へ排気される。
また、上記の酸化タンタル膜の形成方法において、水素
ガス導入管3.バルブ15b、15eを通して水素(H
2)ガスを成膜形成時に反応室12へ導入することによ
り、酸化タンタル膜の膜質を向上できる。これは導入し
た水素ガスにより、塩化タンタルガスの塩素(C,17
)と化学反応を起し1、水素を用いない場合と比べて酸
化タンタル膜中に含まれる塩素などの不純物を少なくす
ることができるためである。
成長条件として、ヒータ7による気化室6.塩化タンタ
ルガス配管の加熱温度は50〜2O0℃、ヒータ8によ
る反応室12内の加熱温度は100〜600℃、酸化二
窒素ガスの流量は0.1〜5.O3LM、キャリアガス
であるアルゴンガスの流量は10〜2O0sccm、圧
力は0.1〜10.0Torr、また水素ガス流量は0
.1〜3. O3LM、さらに、プラズマ化学反応を生
じさせる高周波電源の条件としては、周波数50kHz
〜13.56MHz、パワー30〜500Wで行なうの
が適しているが、他の条件でもよい。
なお、塩化タンタルガスの代りに弗化タンタル(TaF
5 )ガスを、酸化二窒素ガスの代りに酸素(02)ガ
ス、酸化窒素(No)ガスを用いてもよい。
次に、上述した方法により酸化タンタル(Ta2O3)
膜を形成した後、同一チャンバ内でバリア膜を形成する
工程について説明する。ここでは窒化タンタル膜を形成
する場合の手順について述べる。
まず、ヒータ7で熱せられた気化室6で塩化タンタル(
TaCρ5)ガスは、キャリアガスアルゴンの導入管1
.バルブ15を通って導入されたキャリアガスのアルゴ
ンガスとともにバルブ15eを通って反応室12に導入
され、アンモニア(NH8)ガスはアンモニアガス導入
管4.バルブ15c、45eを通して反応室12に導入
される。ヒータ8により基板ホルダ11は熱せられてお
り、高周波電源9をオンすることにより導入した塩化タ
ンタルガスおよびアンモニアガスのプラズマ化学反応が
生じ、ウェハ10それぞれの表面上で窒化タンタル膜が
形成される。
成長条件として、ヒータ7による気化室6.塩化タンタ
ルガス配管の加熱温度は50〜2O0℃、ヒータ8によ
る反応室12内の加熱温度は100〜600℃、アンモ
ニアガスの流量は0.1〜5.O8LM、キャリアガス
であるアルゴンガスの流量は10〜2O08ccm、圧
力は0.1〜10.0Torr、ブ、ラズマ化学反応を
生じさせる高周波電源の条件としては、周波数50kH
z〜13.56MHz、パワー30〜50oWで行なう
のが適しているが、他の条件でもよい。
なお、塩化タンタルガスの代りに弗化タンタル 10 ガスを、アンモニアガスの代りに窒素(N2)ガスを用
いてもよい。
゛この方法により形成した窒化タンタル膜は、従来技術
であるスパッタ法と比較して著しくステップカバレッジ
が良好である。
バリア膜として塩化チタン(TiC,&4)ガスとアン
モニアガスとを用いてプラズマ化学反応により窒化チタ
ン膜を形成する場合も、原料ガスとして塩化タンタルガ
スの代りに塩化チタンガスを用い、上述と同じ方法によ
り形成が可能である。
また、材料ガスとして弗化チタンガスなどのチタンガス
および窒素(N2)ガスなどを用いてもよい。
本実施例を容量デバイスの作成に適用した場合の工程順
断面図を第2図に示す。
まず、第2図(a)に示すように、Si基板17上に熱
5i02膜18を形成し、コンタクトホールを開口し、
りんをドープした容量ポリシリコン膜19を堆積、形成
する。
次に、第2図(b)に示すように、第1図に示1 したプラズマ化学気相成長装置内で、アルゴンガスを用
いて容量ポリシリコン膜19上に存在する自然酸化膜を
除去した後、前述の成長条件の下ての塩化タンタルガス
とアンモニアガスとを用いたプラズマ化学反応により、
下層バリア膜2Oとなる窒化タンタル膜を形成する。
次に、第2図(c)に示すように、下層バリア膜2Oの
形成に引続き、下層バリア膜2O上に、前述の成長条件
の下での塩化タンタルガスと酸化二窒素ガスとを用いた
プラズマ化学反応により、高誘電率容量絶縁膜21とな
る酸化タンタル膜を形成する。さらに、高誘電率容量絶
縁膜21上に、前述の成長条件の下での塩化タンタルガ
スとアンモニアガスとを用いたプラズマ化学反応により
、上1層バリア膜22となる窒化タンタル膜を形成する
。最後に、第1図に示したプラズマ化学気相成長装置内
から試料を取り出し、上層バリア膜22上にプレート電
極23としてタングステンシリサイド膜を形成する。
次に、本実施例に基すき作成したデバイスの 2 TDDBに関する特性図を、第3図に示す。
ここで、従来技術である有機タンタルガスを原料とした
熱化学気相成長法により形成した酸化タンタル膜のTD
DB特性も合せて示す。同図において、横軸は経時時間
(秒)、縦軸は故障率(%)を示す。
本実施例の適用により形成された容量デバイスのゴ’D
DB特性は従来法により形成された容量デバイスのそれ
と比較して優れている。
上述の本実施例の適用例では、高誘電率容量絶縁膜21
である酸化タンタル膜の下層バリア膜2O、上層バリア
膜22として窒化タンタル膜を形成する方法を用いたが
、バリア膜として窒化チタン膜を形成した場合にも第3
図に示しなのと同様の効果が得られる。また、プレート
電極23として、タングステンシリサイド膜の代りにタ
ングステン以外のシリサイド膜、ポリシリコン膜、ポリ
サイド膜、タングステンなどの高融点金属膜。
あるいはこれらの積層膜を用いてもよい。
〔発明の効果〕
 3− 以上説明したように本発明の一実施例では、塩化タンタ
ルガスとアンモニアガスとを用いたプラズマ化学反応に
よりバリア膜である窒化タンタル膜を形成し、続いて同
一チャンバー内で塩化タンタルガスと酸化二窒素ガスと
を用いたプラズマ化学反応により高誘電率容量絶縁膜で
ある酸化タンタル膜を形成すること、あるいは上記高誘
電率容量絶縁膜を形成後、続いて同一チャンバー内で塩
化チタンガスとアンモニアガスとを用いたプラズマ化学
反応によりバリア膜である窒化チタン膜を形成すること
により、高誘電率容量絶縁膜およびバリア膜からなる容
量絶縁膜としての多層構造膜を形成する。
その結果として、本発明では同一チャンバー内での成膜
形成方法であるため、従来のような容量絶縁膜としての
多層構造膜の形成に伴なうゴミやパーティクルによるデ
バイス表面の汚染は避けることができる。また、本発明
では、成膜の前にアルゴンガスのプラズマ化学反応によ
りデバイス表面の自然酸化膜を除去することができる。
成膜力 14 法がプラズマ化学反応であることから、バリア膜等のス
テップカバリッジは良好である。
さらに、プラズマ化学反応に用いる材料カスの成分中に
は炭素が存在しないことから、反応生成物としても炭素
は存在せず、従って本発明ては、ピンホールの発生を低
減しリーク電流の増大を防ぐことできるため、TDDB
特性の優れた信頼性の高い容量デバイスを実現すること
ができる。
以上のことから、本発明は微細な設計ルールの超LSI
に適用することが可能となる。
【図面の簡単な説明】
第1図は本発明の一実施例に用いたプラズマ化学気相成
長装置の模式的構造図、第2図(a)〜(c)は本発明
の一実施例を容量デバイスの作成に適用した工程順断面
図、第3図は本発明の一実施例を適用した容量デバイス
および従来技術による容量デバイスを比べたTDDBの
特性図、第4図は従来技術に用いたプラズマ化学気相成
長装置の模式的構造図である。 1・・・キャリアガスアルゴンの導入管、2・・・酸化
二窒素ガス導入管、3・・・水素ガス導入管、4・・・
アンモニアガス導入管、5・・・希釈用アルゴンガスの
導入管、6・・・気化室、7,8.8a・・・ヒータ、
9・・・高周波電源、10・・・ウェハ、11・・・基
板ホルダ、12・・・反応室、12a・・・石英製の反
応炉、13・・・真空ポンプ、14・・・排気口、15
.15a15b、15c、15d、15e、15f。 15g・・・バルブ、16・・・酸素ガス導入管、17
・・Si基板、18・・・熱5i02膜、19・・・容
量ポリシリコン膜、2O・・・下層バリア膜、21・・
・高誘電率容量絶縁膜、22・・・上層バリア膜、23
・・・プレート電極。

Claims (1)

  1. 【特許請求の範囲】 1、酸化タンタル容量絶縁膜を形成する工程と、基板あ
    るいは電極と前記酸化タンタル容量絶縁膜との熱処理に
    よる反応を抑制するための導電性バリア膜を形成する工
    程とが同一チャンバー内で連続して行なわれることによ
    り前記酸化タンタル容量絶縁膜と前記導電性バリア膜と
    からなる多層構造膜を形成することを特徴とする容量絶
    縁膜の形成方法。 2、前記酸化タンタル容量絶縁膜を形成する工程が塩化
    タンタル(T_aC_l_5)ガスと酸化二窒素(N_
    2_O)ガスとを用いたプラズマ化学反応であることを
    特徴とする請求項1記載の容量絶縁膜の形成方法。 3、前記導電性バリア膜を形成する工程が塩化タンタル
    (T_aC_l_5)ガスとアンモニア(NH_3)ガ
    スとを用いたプラズマ化学反応であることを特徴とする
    請求項1記載の容量絶縁膜の形成方法。
JP2005510A 1990-01-12 1990-01-12 容量絶縁膜の形成方法 Expired - Lifetime JP2611466B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005510A JP2611466B2 (ja) 1990-01-12 1990-01-12 容量絶縁膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005510A JP2611466B2 (ja) 1990-01-12 1990-01-12 容量絶縁膜の形成方法

Publications (2)

Publication Number Publication Date
JPH03209869A true JPH03209869A (ja) 1991-09-12
JP2611466B2 JP2611466B2 (ja) 1997-05-21

Family

ID=11613190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005510A Expired - Lifetime JP2611466B2 (ja) 1990-01-12 1990-01-12 容量絶縁膜の形成方法

Country Status (1)

Country Link
JP (1) JP2611466B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315567A (ja) * 1992-03-12 1993-11-26 Mitsubishi Electric Corp 半導体装置およびその製造方法
KR19990054911A (ko) * 1997-12-26 1999-07-15 김영환 반도체 장치의 커패시터 제조방법
KR20000007363A (ko) * 1998-07-02 2000-02-07 제임스 알. 데니히 탄탈 및 탄탈을 주성분으로 하는 막과 그의제조방법
WO2000065125A1 (en) * 1999-04-27 2000-11-02 Tokyo Electron Limited PECVD OF TaN FILMS FROM TANTALUM HALIDE PRECURSORS
US6146959A (en) * 1997-08-20 2000-11-14 Micron Technology, Inc. Method of forming capacitors containing tantalum
JP2001144272A (ja) * 1999-11-09 2001-05-25 Hyundai Electronics Ind Co Ltd 半導体素子のキャパシタ製造方法
US6410433B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited Thermal CVD of TaN films from tantalum halide precursors
US6410432B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
KR20020051062A (ko) * 2000-12-22 2002-06-28 박종섭 탄탈륨 옥시 나이트라이드 캐퍼시터의 형성 방법
JP2002543286A (ja) * 1999-04-27 2002-12-17 東京エレクトロン株式会社 ハロゲン化タンタル前駆体からのTa膜のPECVD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163852A (ja) * 1983-03-09 1984-09-14 Fujitsu Ltd 薄膜集積回路装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163852A (ja) * 1983-03-09 1984-09-14 Fujitsu Ltd 薄膜集積回路装置の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315567A (ja) * 1992-03-12 1993-11-26 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6146959A (en) * 1997-08-20 2000-11-14 Micron Technology, Inc. Method of forming capacitors containing tantalum
KR19990054911A (ko) * 1997-12-26 1999-07-15 김영환 반도체 장치의 커패시터 제조방법
KR20000007363A (ko) * 1998-07-02 2000-02-07 제임스 알. 데니히 탄탈 및 탄탈을 주성분으로 하는 막과 그의제조방법
US6265311B1 (en) 1999-04-27 2001-07-24 Tokyo Electron Limited PECVD of TaN films from tantalum halide precursors
WO2000065125A1 (en) * 1999-04-27 2000-11-02 Tokyo Electron Limited PECVD OF TaN FILMS FROM TANTALUM HALIDE PRECURSORS
US6410433B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited Thermal CVD of TaN films from tantalum halide precursors
US6410432B1 (en) 1999-04-27 2002-06-25 Tokyo Electron Limited CVD of integrated Ta and TaNx films from tantalum halide precursors
JP2002543286A (ja) * 1999-04-27 2002-12-17 東京エレクトロン株式会社 ハロゲン化タンタル前駆体からのTa膜のPECVD
US6900129B2 (en) 1999-04-27 2005-05-31 Tokyo Electron Limited CVD of tantalum and tantalum nitride films from tantalum halide precursors
JP4919536B2 (ja) * 1999-04-27 2012-04-18 東京エレクトロン株式会社 ハロゲン化タンタル前駆体からのTa膜のPECVD
JP2001144272A (ja) * 1999-11-09 2001-05-25 Hyundai Electronics Ind Co Ltd 半導体素子のキャパシタ製造方法
KR20020051062A (ko) * 2000-12-22 2002-06-28 박종섭 탄탈륨 옥시 나이트라이드 캐퍼시터의 형성 방법

Also Published As

Publication number Publication date
JP2611466B2 (ja) 1997-05-21

Similar Documents

Publication Publication Date Title
US5279985A (en) Semiconductor device and method of fabrication thereof
KR100323874B1 (ko) 반도체 소자의 알루미늄 산화막 형성 방법
US7816272B2 (en) Process of cleaning a semiconductor manufacturing system and method of manufacturing a semiconductor device
JP2605465B2 (ja) 容量絶縁膜の形成方法
JPH0697111A (ja) バリアメタルの形成方法
JP2000200779A (ja) エッチング方法,化学気相成長装置,化学気相成長装置のクリ―ニング方法,及び化学気相成長装置用の石英部材
JP2004207281A (ja) 多層配線構造およびその形成方法、半導体装置
JP3297291B2 (ja) 半導体装置の製造方法
US6815072B2 (en) Method to solve particle performance of FSG layer by using UFU season film for FSG process
JPH03209869A (ja) 容量絶縁膜の形成方法
JPH10214896A (ja) 半導体装置の製造方法及び製造装置
JP3957995B2 (ja) 化学気相蒸着方法
KR100395171B1 (ko) 화학적증착법에의한티타늄막형성방법
JPH02250970A (ja) 酸化タンタル膜の化学気相成長法および化学気相成長装置
JP2000058650A (ja) 半導体装置、半導体装置の製造方法、および半導体装置の製造装置
US6319856B1 (en) Methods of forming dielectric layers and methods of forming capacitors
JP2000195820A (ja) 金属窒化物膜の形成方法およびこれを用いた電子装置
JPH07201749A (ja) 薄膜形成方法
US6596629B2 (en) Method for forming wire in semiconductor device
JP2726438B2 (ja) 薄膜形成装置
US6127269A (en) Method for enhancing sheet resistance uniformity of chemical vapor deposited (CVD) tungsten silicide layers
JP4312291B2 (ja) プラズマcvdによる成膜方法
JPH0927457A (ja) 薄膜堆積方法
KR100362906B1 (ko) 고체 표면, 기판 및 반도체 제조 장치의 처리 방법 및이들을 이용한 반도체 장치의 제조 방법
JPH07235530A (ja) 絶縁膜の形成方法