JPH03206466A - Production of toner for developing electrostatic charge image - Google Patents

Production of toner for developing electrostatic charge image

Info

Publication number
JPH03206466A
JPH03206466A JP2001102A JP110290A JPH03206466A JP H03206466 A JPH03206466 A JP H03206466A JP 2001102 A JP2001102 A JP 2001102A JP 110290 A JP110290 A JP 110290A JP H03206466 A JPH03206466 A JP H03206466A
Authority
JP
Japan
Prior art keywords
toner
powder
classification
air
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001102A
Other languages
Japanese (ja)
Other versions
JPH0679167B2 (en
Inventor
Masakichi Kato
政吉 加藤
Hitoshi Kanda
仁志 神田
Yusuke Yamada
祐介 山田
Satoshi Mitsumura
三ツ村 聡
Yasuhide Goseki
康秀 後関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001102A priority Critical patent/JPH0679167B2/en
Priority to KR1019900013516A priority patent/KR920009291B1/en
Priority to DE69027492T priority patent/DE69027492T2/en
Priority to EP90116657A priority patent/EP0417561B1/en
Publication of JPH03206466A publication Critical patent/JPH03206466A/en
Priority to US07/983,287 priority patent/US5316222A/en
Priority to US08/178,849 priority patent/US5435496A/en
Publication of JPH0679167B2 publication Critical patent/JPH0679167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To obtain the toner for developing electrostatic charge images having good performance by introducing secondary air and executing pulverization by using an impingement type pneumatic pulverizer which is provided with a supplying port for materials to be pulverized in an acceleration pipe and has a secondary introducing port between the supplying port for the materials to be pulverized and the outlet of the acceleration pipe. CONSTITUTION:The impingement type pneumatic pulverizer has the accelerating pipe 32 for transporting and accelerating powder by a high-pressure gas and a pulverizing chamber 35 and an impingement member 36 for pulverizing the powder ejected from the accelerating pipe 32 by impingement force. The impingement member 36 is provided in the pulverizing chamber 35 so as to face the outlet 34 of the accelerating pipe. The supplying port 31 for the materials to be pulverized is provided in the accelerating pipe 32 and the secondary air is introduced between the supplying port 31 for the materials to be pulverized and the outlet 34 of the accelerating pipe from the secondary air introducing port 41 to execute the pulverization. The excellent toner for developing electrostatic charge images which is stable and high in image density, has good durability, and is free from image defects, such as fogging and cleaning defects, is obtd. at the low cost in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結着樹脂を有する固体粒子の粉砕を行って静
電荷像現像用トナーを得るための製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a manufacturing method for obtaining a toner for developing electrostatic images by pulverizing solid particles having a binder resin.

[従来の技術] 電子写真法,静電写真法,静電印刷法の如き画像形成方
法では静電荷像を現像するためにトナーが使用される。
[Prior Art] In image forming methods such as electrophotography, electrostatic photography, and electrostatic printing, toner is used to develop electrostatic images.

最終製品が微細粒子であることが要求される静電荷像現
像用トナーの一般的な製造方法としては、被転写材に定
着させるための結着用樹脂、トナーとしての色味を出さ
せる各種着色剤、粒子に電荷を付与させるための荷電制
御剤、また特開昭54−42141号公報,特開昭55
−18656号公報に示されるようないわゆる一成分現
像法においては、トナー自身に搬送性等を付与するため
の各種磁性材料を用い、他に必要に応じて離型剤,流動
性付与剤を乾式混合し、しかる後ロールミル,エクスト
ルーダーなどの汎用混線装置にて溶融混練し、冷却固化
した後に、ジェット気流式粉砕機、機械衝撃式粉砕機等
の各種粉砕装置により微砕化し、各種風力分級機により
分級を行うことにより、トナーとして必要な粒径にそろ
える。これに必要に応じて流動化剤や滑剤等々を乾式混
合しトナーとする。またいわゆる2成分現像方法に用い
る場合は各種磁性キャリアと混ぜあわせた後トナーとし
て画像形成に供するわけである。
The general manufacturing method for electrostatic image developing toner, which requires the final product to be fine particles, includes a binder resin to fix it on the transfer material, and various colorants to give the toner its color. , a charge control agent for imparting charge to particles, and JP-A-54-42141, JP-A-55
In the so-called one-component development method as shown in Japanese Patent No. 18656, various magnetic materials are used to impart transportability to the toner itself, and a release agent and a fluidity imparting agent are added as needed in a dry process. After mixing, the mixture is melted and kneaded using general-purpose mixing equipment such as a roll mill or extruder, cooled and solidified, and then pulverized using various types of pulverizing equipment such as jet air flow type pulverizers and mechanical impact type pulverizers. By classifying the toner, the particle size can be adjusted to the size required for the toner. If necessary, a fluidizing agent, a lubricant, etc. are dry-mixed into the toner. When used in a so-called two-component development method, the toner is mixed with various magnetic carriers and then used for image formation.

さらに近年の複写物、印刷物等の汎用化、大量消費化に
伴い、低コストで高性能の現像剤が要求されている。
Furthermore, with the recent widespread use and mass consumption of copies, printed matter, etc., there is a demand for low-cost, high-performance developers.

上述の如く、微細粒子であるトナー粒子を得るためには
、各種粉砕装置が用いられるが、結着用樹脂を主とする
トナーの粉砕には、ジェット気流を用いたジェット気流
式粉砕機、特に衝突式気流粉砕機が好ましく用いられる
As mentioned above, various types of pulverizers are used to obtain toner particles, which are fine particles. However, for pulverizing toner mainly containing binder resin, jet airflow type pulverizers that use jet airflow, especially collision A pneumatic crusher is preferably used.

さらに、これらの粉砕機は、第6図に示したフローのよ
うに、分級機と接続して、粉砕した粒子を分級機で微細
粒子と粗粒子とに分級し、粗粒子は再び粉砕機へ戻し粉
砕を行い、微細粒子を微粉砕製品として得るという粉砕
手段として用いている。
Furthermore, these pulverizers are connected to a classifier, as shown in the flow shown in Figure 6, and the pulverized particles are classified into fine particles and coarse particles by the classifier, and the coarse particles are sent back to the pulverizer. It is used as a pulverization means to perform back-pulverization to obtain fine particles as a pulverized product.

従来、この粉砕手段として用いている分級機としては、
分級羽根の回転により強制的に旋回気流をつくり分級を
行うロータ型分級機や外部がら導入される気流により旋
回気流をつくり分級を行うスバイラル気流分級機がある
が、結着用樹脂を主とするトナーの分級には、接粉部に
可動部分のないスバイラル気流分級機が好ましく用いら
れる。
Conventionally, the classifier used as this crushing means is:
There are rotor type classifiers that classify by forcibly creating a swirling airflow by rotating classification blades, and spiral airflow classifiers that classify by creating a swirling airflow using airflow introduced from the outside. For classification, a spiral air classifier with no moving parts in the powder contacting part is preferably used.

この代表的なものとして、第7図に示したようなディス
バージョンセパレータ−( DS−UR型二日本ニュー
マチック工業社製)が一般的に用いられている。
As a typical example, a dispersion separator (DS-UR type manufactured by Nippon Pneumatic Kogyo Co., Ltd.) as shown in FIG. 7 is generally used.

しかしながら、第7図に示したようなこの種の気流分級
機の分級室への粉体材料供給部は、サイクロン状の形状
をなしており、上部カバー60の上面中央部には案内筒
50を起立状に設け、該案内筒50の上部外周面に供給
筒80が接続されている。供給筒80は、案内筒50の
外周に供給筒80を介して供給される粉体材料が案内筒
内円周接線方向に導入されるように接続されている。該
供給筒80より案内筒50内に粉体材料を供給すると、
該粉体材料は案内筒50の円周面に沿って旋回しながら
下降する。この場合粉体材料は、供給筒80より案内筒
50内周面に沿って帯状に下降するため分級室40に流
入する粉体材料の分布及び濃度が不均一となり(分級室
へ案内筒内周面の一部からのみ粉体材料は流入する)、
分散が悪い。また、処理量を大きくとると粉体材料の凝
集がいっそう起こり易く、さらに分散が十分に行われな
くなり、高精度の分級が行えないという問題点がある。
However, the powder material supply section to the classification chamber of this type of air classifier as shown in FIG. A supply cylinder 80 is connected to the upper outer peripheral surface of the guide cylinder 50. The supply cylinder 80 is connected to the outer periphery of the guide cylinder 50 so that the powder material supplied via the supply cylinder 80 is introduced into the guide cylinder in a circumferential tangential direction. When the powder material is supplied into the guide cylinder 50 from the supply cylinder 80,
The powder material descends while rotating along the circumferential surface of the guide tube 50. In this case, the powder material descends in a band shape from the supply tube 80 along the inner peripheral surface of the guide tube 50, so the distribution and concentration of the powder material flowing into the classification chamber 40 becomes uneven (the powder material flows into the classification chamber along the inner circumference of the guide tube 50). Powder material flows only from part of the surface),
Poor dispersion. Further, if the throughput is large, the powder material is more likely to aggregate, and furthermore, the dispersion is not sufficiently performed, resulting in a problem that highly accurate classification cannot be performed.

したがって、微粉砕製品は、粒度分布幅の広い粉体とな
り、その結果次工程の微粉体を除去するため分級工程に
おいて収率低下の如き現象を引き起こすという問題点が
ある。また、所望の粒径以下に粉砕された粉体の一部は
、粗粉として粉砕機へ再度循環されるため超微粉(トナ
ーとして適さない程微小な粉体)が発生しやすい。
Therefore, the finely pulverized product becomes a powder with a wide particle size distribution, and as a result, there is a problem in that it causes a phenomenon such as a decrease in yield in the classification step to remove the fine powder in the next step. In addition, a part of the powder that has been crushed to a particle size smaller than the desired size is recycled to the crusher as coarse powder, so that ultrafine powder (powder that is too fine to be suitable as a toner) is likely to be generated.

この超微粉は、粒子に対する引力が強いため、微粉体を
取り除く分級工程を用いても取り除くことが難しく、こ
のような粉体をトナーとして用いた場合、画像濃度の低
下やカブリ現象、さらには現像スリーブ上のムラ現象等
、画像品質を低下させる原因となる。
This ultra-fine powder has a strong attraction to the particles, so it is difficult to remove even with a classification process that removes the fine powder. When such powder is used as a toner, it may cause a decrease in image density, fogging, and even development. This causes unevenness on the sleeve, etc., which deteriorates image quality.

一方、ジェット気流を用いた衝突式気流粉砕機は、ジェ
ット気流で被粉砕物を搬送し、被粉砕物を衝突部材に衝
突させ、その衝撃力により粉砕するものであり、従来の
衝突式気流粉砕機は、第8図のような構成である。
On the other hand, a collision-type air-flow pulverizer using a jet stream conveys the object to be crushed by a jet stream, collides the object with a collision member, and crushes it by the impact force, which is different from the conventional collision-type air-flow crusher. The machine has a configuration as shown in Fig. 8.

高圧気体供給ノズル33を接続した加速管42の出口4
4に対向して衝突部材46を設け、前記加速管42に供
給した高圧気体の流動により、加速管42の中途に連通
させた被粉砕物供給口3lから加速管42の内部に被粉
砕物を吸引し、これを高圧気体と共に噴射して衝突部材
の衝突面47に衝突させ、その衝撃によって粉砕するよ
うにしたものである。
Outlet 4 of acceleration tube 42 connected to high pressure gas supply nozzle 33
A collision member 46 is provided opposite to the acceleration tube 42, and by the flow of the high-pressure gas supplied to the acceleration tube 42, the object to be crushed is transported into the inside of the acceleration tube 42 from the object supply port 3l communicated with the middle of the acceleration tube 42. This is sucked and injected together with high-pressure gas to collide with the collision surface 47 of the collision member, and the impact causes it to be pulverized.

しかしながら、上記従来例では、加速管内に吸引導入さ
れた被粉砕物を高圧気流中で十分に分散させることは困
難であり、加速管出口から噴出する高圧気流に被粉砕物
を載せた粒子混合気流は、被粉砕物の含有濃度の高い流
れと低い流れに分離してしまい、そのため被粉砕物は、
対向する衝突部材に部分的に集中して衝突することにな
り、衝突部材上で再凝集が生じ易く、分級機での分級精
度に悪化をきたし、また、粉砕効率が低下し処理能力の
低下を引き起こしている。
However, in the above-mentioned conventional example, it is difficult to sufficiently disperse the material to be pulverized that is suctioned into the acceleration tube in the high-pressure airflow, and the particle mixture air stream in which the material to be pulverized is placed on the high-pressure airflow ejected from the outlet of the acceleration tube. The material to be crushed is separated into a stream with a high concentration of the material to be crushed and a stream with a low concentration, so that the material to be crushed is
The collision will be partially concentrated on the opposing collision member, and reagglomeration is likely to occur on the collision member, leading to a deterioration in the classification accuracy of the classifier, as well as a decrease in crushing efficiency and processing capacity. It's causing it.

[発明が解決しようとする課題] 本発明の目的は、上述の如き欠点を解決した静電荷像現
像用トナーの製造方法を提供するものである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing a toner for developing an electrostatic image, which solves the above-mentioned drawbacks.

詳しく述べれば、本発明の目的は、精緻な粒度分布の微
粉砕製品を得ることにより、良好な性能を有する静電荷
像現像用トナーの製造方法を提供するものである。
Specifically, an object of the present invention is to provide a method for producing a toner for developing electrostatic images having good performance by obtaining a finely pulverized product with a precise particle size distribution.

さらに本発明の目的は、より小さな粒径の静電荷像現像
用トナーを効率良く製造する製造方法を提供するもので
ある。
A further object of the present invention is to provide a manufacturing method for efficiently manufacturing toner for developing electrostatic images having a smaller particle size.

〔課題を解決するための手段及び作用〕本発明の静電荷
像現像用トナーの製造方法は、分級室の底部に中央部が
高くなる傾斜状の分級板を有し、該分級室において搬送
エアーとともに供給された粉体材料を分級ルーバーを介
して流入する気流によって旋回流動させて微粉と粗粉と
に遠心分離し、微粉を分級板の中央部に設けられた排出
口に接続した微粉排出シュートへ排出させるとともに、
粗粉を分級板の外周部に形成した排出口より排出する気
流分級機であり、該分級室の上部に粉体供給筒と連通ず
る環状の案内室を設け、該案内室と該分級室との間に案
内室の内周円方向の接線方向に先端を向けた複数のルー
バーを設けた気流分級機と、高圧気体により粉体な搬送
加速するための加速管と、粉砕室と、該加速管より噴出
する粉体を衝突力により粉砕するための衝突部材とを具
備し、該衝突部材を加速管出口に対向して粉砕室内に設
けた衝突式気流粉砕機において、前記加速管に被粉砕物
供給口を設け、被粉砕物供給口と加速管出口の間に二次
空気導入口を有する衝突式気流粉砕機からなる粉砕手段
を用いて、二次空気を導入して粉砕を行うことを特徴と
する。
[Means and effects for solving the problems] The method for producing toner for developing electrostatic images of the present invention includes a classification plate having an inclined shape with a high central part at the bottom of a classification chamber, and conveying air in the classification chamber. A fine powder discharge chute connects the fine powder to a discharge port provided in the center of the classification plate. In addition to discharging
This is an airflow classifier that discharges coarse powder from a discharge port formed on the outer periphery of a classification plate, and an annular guide chamber that communicates with the powder supply tube is provided at the top of the classification chamber, and the guide chamber and the classification chamber are connected to each other. An air classifier having a plurality of louvers whose tips are oriented tangentially to the inner circumferential direction of the guide chamber between them, an acceleration tube for accelerating the conveyance of powder using high-pressure gas, a crushing chamber, and the acceleration A collision type air flow crusher is equipped with a collision member for crushing powder ejected from a tube by a collision force, and the collision member is provided in a crushing chamber facing an outlet of the acceleration tube. Grinding is carried out by introducing secondary air using a crushing means consisting of a collision type airflow crusher, which has a material supply port and a secondary air inlet between the material supply port and the acceleration tube outlet. Features.

第6図は、本発明の静電荷像現像用トナーの製造方法に
用いる粉砕手段の構成を示すフローチャートの一例であ
り、第1図及び第2図は、本発明の製造方法に用いた気
流分級機の一実施例を概略的に示した図であり、第3図
〜第5図は、衝突式気流粉砕機の一実施例を概略的に示
した図である。
FIG. 6 is an example of a flowchart showing the configuration of the crushing means used in the method for producing toner for developing electrostatic images of the present invention, and FIG. 1 and FIG. FIG. 3 is a diagram schematically showing an embodiment of the machine, and FIGS. 3 to 5 are diagrams schematically showing an embodiment of the impingement type air flow crusher.

第1図において、1は筒状の本体ケーシングな示し、2
は下部ケーシングを示し,その下部に粗粉排出用のホッ
パ−3が接続されている。本体ケーシング1の内部は、
分級室4が形成されており、この分級室4の上部は本体
ケーシング1の上部に取付けた環状の案内室5と中央部
が高くなる円錐状(傘状)の上部カバー6によって閉鎖
されている。
In Fig. 1, 1 indicates a cylindrical main body casing, 2
indicates a lower casing, to which a hopper 3 for discharging coarse powder is connected. The inside of the main body casing 1 is
A classification chamber 4 is formed, and the upper part of the classification chamber 4 is closed by an annular guide chamber 5 attached to the upper part of the main casing 1 and a conical (umbrella-shaped) upper cover 6 whose central part is raised. .

分級室4と案内室5の間の仕切壁に円周方向に配列する
複数のルーパー7を設け、案内室5に送り込まれた粉体
材料とエアーを各ルーパー7の間より分級室4に旋回さ
せて流入させる。
A plurality of loopers 7 arranged in the circumferential direction are provided on the partition wall between the classification chamber 4 and the guide chamber 5, and the powder material and air sent into the guide chamber 5 are swirled into the classification chamber 4 from between each looper 7. Let it flow.

本体ケーシング1の下部には円周方向に配列する分級ル
ーパー9を設け、外部から分級室4へ旋回流を起こす分
級エアーを分級ルーパー9を介して取り入れている。
Classifying loopers 9 arranged in the circumferential direction are provided in the lower part of the main body casing 1, and classified air that causes a swirling flow is introduced into the classifying chamber 4 from the outside through the classifying loopers 9.

分級室4の底部に、中央部が高くなる円錐状(傘状)の
分級板lOを設・け、該分級板lOの外周囲に粗粉排出
口11を形成する。また、分級板lOの中央部には微粉
排出シュートl2を接続し、該シュート12の下端部を
L字形に屈曲し、この屈曲端部を下部ケーシング2の側
壁より外部に位置させる。
At the bottom of the classification chamber 4, a conical (umbrella-shaped) classification plate 1O with a high central portion is provided, and a coarse powder discharge port 11 is formed around the outer periphery of the classification plate 1O. Further, a fine powder discharge chute 12 is connected to the center of the classification plate 1O, and the lower end of the chute 12 is bent into an L-shape, and this bent end is located outside the side wall of the lower casing 2.

さらに該シュートはサイクロンや集塵機のような微粉回
収手段を介して吸引ファンに接続しており、該吸引ファ
ンにより分級室4に吸引力を作用させ、該ルーパー9間
より分級室4に流入する吸引エアーによって分級に要す
る旋回流を起こしている。
Further, the chute is connected to a suction fan via a fine powder collection means such as a cyclone or a dust collector, and the suction fan applies suction force to the classification chamber 4, and the suction flows into the classification chamber 4 from between the loopers 9. The air creates the swirling flow required for classification.

気流分級機は上記の構造から成り、供給筒8より案内筒
5内に、(衝突式気流粉砕機より、粉砕された粉体材料
と粉砕に用いられたエアー及び新たに供給された粉砕原
料からなる)粉体材料を含むエアーを供給すると、この
粉体材料を含むエアーは、案内室5から各ルーパー7間
を通過して分級室4に旋回しながら均一の濃度で分散さ
れながら流入する。
The air classifier has the above-mentioned structure. When the air containing the powder material is supplied, the air containing the powder material passes from the guide chamber 5 between the loopers 7 and flows into the classification chamber 4 while being dispersed at a uniform concentration while swirling.

分級室4内に旋回しながら流入した粉体材料は、微粉排
出シュートl2に接続した吸引ファンにより、分級室下
部の分級ルーパー9間より流入する吸引エアー流にのっ
て旋回を増し、各粒子に作用する遠心力によって粗粉と
微粉とに遠心分離され、分級室4内の外周部を旋回する
粗粉は粗粉排出口11より排出され、下部のホッパ−3
より排出され再び衝突式気流粉砕機に供給される。
The powder material flowing into the classification chamber 4 is swirled by the suction fan connected to the fine powder discharge chute 12, and the swirling of the powder material is increased by the suction air flow flowing from between the classification loopers 9 at the bottom of the classification chamber. The coarse powder is centrifuged into coarse powder and fine powder by the centrifugal force acting on the classification chamber 4, and the coarse powder swirling around the outer periphery of the classification chamber 4 is discharged from the coarse powder discharge port 11 and transferred to the lower hopper 3.
The waste is discharged from the airflow crusher and fed again to the impingement type air flow crusher.

また、分級板lOの上部傾斜面に沿って中央部へと移行
する微粉は微粉排出シュートl2により、微粉回収手段
へ微粉砕製品として排出される。
Further, the fine powder moving toward the center along the upper inclined surface of the classification plate IO is discharged as a finely pulverized product to the fine powder collecting means by the fine powder discharge chute 12.

分級室4に粉体材料とともに流入するエアーはすべて旋
回流となって流入するため、分級室4内で旋回する粒子
の中心向きの速度は遠心力に比べ相対的に小さくなり、
分級室4において分離粒子径の小さな分級が行われ、粒
子径の非常に小さな微粉を微粉排出シュート12に排出
させることができる。しかも、粉体材料がほぼ均一な濃
度で分級室に流入するため精緻な分布の粉体として得る
ことができる。
All the air that flows into the classification chamber 4 together with the powder material flows in the form of a swirling flow, so the velocity toward the center of the particles swirling within the classification chamber 4 is relatively small compared to the centrifugal force.
In the classification chamber 4, classification into small separated particles is performed, and fine powder with a very small particle size can be discharged to the fine powder discharge chute 12. Furthermore, since the powder material flows into the classification chamber at a substantially uniform concentration, it is possible to obtain powder with a fine distribution.

したがって、微粉砕製品として精緻な分布の粉体として
得ることができるため、前述の如く、超微粉が発生せず
、最終製品としたときに結果として良好な性能を有する
トナーを得ることができる。
Therefore, since it can be obtained as a finely pulverized product as a powder with a fine distribution, as described above, ultrafine powder is not generated, and as a result, a toner having good performance when made into a final product can be obtained.

また、第3図において、粉砕されるべき粉体材料45は
、加速管32に設けられた被粉砕物供給口3lより、加
速管32に供給される。加速管32には圧縮空気の如き
圧縮気体が、圧縮気体供給ノズル33から導入されてお
り、加速管32に供給された被粉砕物45は、瞬時に加
速されて、高速度を有するようになる。さらに、加速管
32の被粉砕物供給口3lと加速管出口34との間に設
けた二次空気導入口4lより、二次空気を導入すること
により、加速管内の被粉砕物を分散し、加速管出口34
から被粉砕物をより均一に噴出させ、対向する衝突部材
36の衝突面37に効率良く衝突させることにより粉砕
性を従来より向上することができる。ここで導入される
二次空気は、加速管内を高速移動する被粉砕物の凝集を
解きほぐし、分散させるために寄与している。また、加
速管内で加速気体流速分布の遅い部分である加速管内壁
に沿う流れを加速する効果がある。
Further, in FIG. 3, the powder material 45 to be crushed is supplied to the acceleration tube 32 from the object supply port 3l provided in the acceleration tube 32. A compressed gas such as compressed air is introduced into the acceleration tube 32 from a compressed gas supply nozzle 33, and the material to be crushed 45 supplied to the acceleration tube 32 is instantly accelerated to have a high velocity. . Further, by introducing secondary air from the secondary air introduction port 4l provided between the material to be crushed supply port 3l of the acceleration tube 32 and the acceleration tube outlet 34, the material to be crushed in the acceleration tube is dispersed. Accelerator tube outlet 34
By ejecting the material to be crushed more uniformly and causing it to collide efficiently with the collision surface 37 of the opposing collision member 36, the crushability can be improved compared to the conventional method. The secondary air introduced here contributes to loosening and dispersing the agglomeration of the material to be crushed, which is moving at high speed within the acceleration tube. Further, it has the effect of accelerating the flow along the inner wall of the acceleration tube, which is a portion where the acceleration gas flow velocity distribution is slow within the acceleration tube.

なお、衝突部材36は、第3図に示したように、衝突面
の先端部分が錐体形状になっていることが、熱可塑性樹
脂を含む材料のように、衝突部材上の極部発熱により融
着し易い材料には、融着を防ぐうえで好ましい。さらに
、衝突部材から、粉砕室壁へ二次衝突を促進し、粉砕効
率を向上させるうえで、先端部分が頂角110゜以上1
80゜未満の錐体形状を有する衝突部材がより好ましい
As shown in FIG. 3, the collision member 36 has a conical shape at the tip of the collision surface, which is caused by heat generation at the extreme part of the collision member, like a material containing thermoplastic resin. It is preferable for materials that are easily fused to prevent fusion. Furthermore, in order to promote secondary collision from the collision member to the crushing chamber wall and improve the crushing efficiency, the tip part has an apex angle of 110° or more.
Collision members having a conical shape of less than 80° are more preferred.

以上説明したように、加速管内の被粉砕物の分散が良好
なため、従来のように、粉休が凝集して過粉砕を起こす
というようなことはなく、粒度分布の精緻な粉砕品が得
られる。
As explained above, because the material to be crushed inside the accelerator tube is well dispersed, there is no possibility of powder particles agglomerating and over-grinding, which is the case with conventional methods, and a crushed product with a fine particle size distribution can be obtained. It will be done.

したがって、前述の気流分級機の効果と相乗して、最終
製品としたときに結果として良好な性能を有するトナー
を効率良く得ることができる。さらに、本発明の方法は
粒径が小さくなるほど、効果が顕著になる。
Therefore, in combination with the effect of the air classifier described above, it is possible to efficiently obtain toner having good performance as a final product. Furthermore, the effect of the method of the present invention becomes more pronounced as the particle size becomes smaller.

[実施例] 以下、本発明を実施例に基づき詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail based on examples.

実施例1 上記処方の混合物よりなるトナー原料を2軸型エクスト
ルーダーPCM−30 (池貝鉄工社製)を用い溶融混
線を行った。冷却後、ハンマーミルで0.1〜1mmの
粗粉砕物を得た。
Example 1 A toner raw material consisting of a mixture of the above formulation was melt mixed using a twin-screw extruder PCM-30 (manufactured by Ikegai Tekko Co., Ltd.). After cooling, a coarsely ground product of 0.1 to 1 mm was obtained using a hammer mill.

得られた粗粉砕物を第1図に示した気流分級機と第3図
に示した衝突式気流粉砕機(衝突部材の衝突面が頂角1
60゜の円錐形状)からなる粉砕手段(第6図に示した
フローチャートの構成)に供給して、衝突式気流粉砕機
に圧縮気体供給ノズルから4. 0Nm”/min (
5kgf/cm”)、二次空気は、第5図におけるF,
G,H,J,L,Mの6か所から各0. 05Nm”/
min (5. 5kgf/cm”)の圧縮空気を導入
して、微粉砕製品として体積平均粒径11pm (コー
ルターカウンターによる測定、以下同様)になるように
微粉砕を行った。
The obtained coarsely pulverized material is divided into the air classifier shown in Fig. 1 and the collision type air pulverizer shown in Fig. 3 (the collision surface of the collision member has an apex angle of 1
4. The compressed gas is supplied to the impingement type airflow crusher from the compressed gas supply nozzle. 0Nm”/min (
5kgf/cm”), the secondary air is F in Fig. 5,
0.0 each from 6 locations: G, H, J, L, M. 05Nm”/
Compressed air of min (5.5 kgf/cm") was introduced to perform fine pulverization so that the volume average particle size of the finely pulverized product was 11 pm (measured using a Coulter counter, the same applies hereinafter).

このときの微粉砕製品の粒度分布は、体積平均粒径11
.ogm, 6.35pm以下体積頻度12.1%, 
20.2#La+以上体積頻度0.6%であった。
The particle size distribution of the finely pulverized product at this time is a volume average particle size of 11
.. ogm, 6.35pm or less volume frequency 12.1%,
The volume frequency of 20.2#La+ or more was 0.6%.

この微粉砕製品なエルボ・ジェット分級機(日鉄鉱業社
製)により微粉を除去して、体積平均粒径11.6)z
m, 6.35H以下体積頻度2.3%, 20.2μ
m以上体積頻度0.9%の分級製品を83%の収率で得
た。この分級製品にシリカ0.4重量%を外添混合し、
トナーサンプルとした。
Fine powder is removed from this finely pulverized product using an elbow jet classifier (manufactured by Nippon Steel Mining Co., Ltd.), resulting in a volume average particle size of 11.6)
m, 6.35H or less volume frequency 2.3%, 20.2μ
A classified product with a volume frequency of 0.9% or more was obtained in a yield of 83%. Adding 0.4% by weight of silica to this classified product,
This was used as a toner sample.

比較例1 実施例1で用いた粗粉砕物を、第7図に示されるような
従来型の気流分級機DS−UR型(日本ニューマチック
工業社製)と第8図に示されるような従来型の衝突式気
流粉砕機ジェットミルPJM− I型(衝突部材の衝突
面は加速管の軸方向に対して垂直な平面)からなる粉砕
手段で4Nm”/win(5kgf/cm”)の加圧エ
アーを用いて体積平均11pmになるように微粉砕を行
った。
Comparative Example 1 The coarsely pulverized material used in Example 1 was separated using a conventional air classifier DS-UR model (manufactured by Nippon Pneumatic Kogyo Co., Ltd.) as shown in FIG. 7 and a conventional air classifier as shown in FIG. A crushing means consisting of a jet mill PJM-I type (the collision surface of the collision member is a plane perpendicular to the axial direction of the accelerator tube) pressurizes at 4Nm"/win (5kgf/cm"). Fine pulverization was performed using air to give a volume average particle size of 11 pm.

このときの微粉砕処理量(=粗粉砕物供給量)は、実施
例lの約0.6倍であり、微粉砕製品の粒度分布は、体
積平均粒径11. 1ドm, 6.35#Lm以下体積
頻度15.3%, 20.2μm以上体積頻度1.3%
であった。
At this time, the amount of finely pulverized product (=the amount of coarsely pulverized material supplied) was about 0.6 times that of Example 1, and the particle size distribution of the finely pulverized product was 11. 1 dom, 6.35 #Lm or less volume frequency 15.3%, 20.2μm or more volume frequency 1.3%
Met.

この微粉砕製品をエルボ・ジェット分級機により微粉を
除去して、体積平均径11.6Pm, 6.35pm以
下体積頻度2.7%, 20.2μm以上体積頻度1.
6%の分級品を収率74%で得た。この分級製品にシリ
カ0.4重量%を外添混合し、トナーサンプルとした。
Fine powder was removed from this finely pulverized product using an elbow jet classifier, and the volume average diameter was 11.6 Pm, the volume frequency of 6.35 pm or less was 2.7%, and the volume frequency of 20.2 μm or more was 1.
A 6% fractionated product was obtained with a yield of 74%. To this classified product, 0.4% by weight of silica was externally added and mixed to prepare a toner sample.

実施例1及び比較例1の両トナーサンプルを複写機NP
−5040  (キヤノン製)を用いて複写試験を行っ
た。23℃,65%RHの通常環境にて各々lO万枚の
耐久テストを行った結果、実施例1のトナーは初期画像
濃度1.32,耐久中の画像濃度は1.37±0.03
でほぼ均一な画像濃度を示し、トナー補給による濃度低
下は、0.05以内と画像にはほとんど影響がなかった
。また、耐久を通じてクリーニング不良、フィルミング
等は発生しなかった。
Both toner samples of Example 1 and Comparative Example 1 were transferred to a copying machine NP.
A copying test was conducted using -5040 (manufactured by Canon). As a result of an endurance test of 10,000 sheets of each in a normal environment of 23° C. and 65% RH, the initial image density of the toner of Example 1 was 1.32, and the image density during durability was 1.37±0.03.
The image density was almost uniform, and the decrease in density due to toner replenishment was within 0.05, which had almost no effect on the image. Furthermore, no cleaning defects or filming occurred during the durability test.

一方、比較例lのトナーは、初期画像濃度が1. 10
でしかなく耐久が進むにつれ1.35±0.07のレベ
ルにまで上昇したが、トナー補給時においては、再び画
像濃度が1.05にまで低下し、再度十分な画像濃度に
戻るまでにかなりの枚数を必要とした。さらに、約30
,000枚付近でクリーニング不良が発生した。また同
様の耐久テストを15℃, 10%RHの低湿環境で行
ったところ比較例1のトナーでは現像スリーブ上に波状
のムラが発生し、全面黒画像では白抜けが生じた。
On the other hand, the toner of Comparative Example 1 had an initial image density of 1. 10
However, as the durability progressed, the image density rose to a level of 1.35 ± 0.07, but when replenishing toner, the image density dropped to 1.05 again, and it took quite a while before the image density returned to a sufficient level. required the number of sheets. Furthermore, about 30
A cleaning failure occurred around ,000 sheets. When a similar durability test was conducted in a low humidity environment of 15° C. and 10% RH, the toner of Comparative Example 1 caused wavy unevenness on the developing sleeve, and white spots occurred in the all-black image.

上記処方の混合物よりなるトナー原料を実施例1と同様
の方法により粗粉砕物を得た。
A toner raw material consisting of a mixture of the above formulation was coarsely pulverized in the same manner as in Example 1.

さらに、実施例1と同様の粉砕手段を用いて微粉砕を行
った。衝突式気流粉砕機に圧縮気体供給ノズルから4.
6m”/win(6kgf/cm”) ,二次空気は、
第5図におけるF,G,H,J,L,Mの6か所から各
0. 05Nm”/win (5. 5kgf/cm”
)の圧縮空気を導入して、微粉砕製品として体積平均粒
径7μmになるように微粉砕を行った。この微粉砕製品
の粒度分布は、体積平均粒径7.Jo+ , 5.04
pm以下体積頻度20.0%, 12.7μm以上体積
頻度0.4%であった。この微粉砕製品なエルボ・ジェ
ット分級機を用いて分級し、収率79%で体積平均粒径
7.6#Lm,5.04μm以下体積頻度7.5%, 
12.7一以上、体積頻度1.0%の分級製品を得た。
Furthermore, fine pulverization was performed using the same pulverization means as in Example 1. 4. From the compressed gas supply nozzle to the collision type air flow crusher.
6m”/win (6kgf/cm”), secondary air is
0.0% each from the 6 locations F, G, H, J, L, and M in Figure 5. 05Nm”/win (5.5kgf/cm”
) was introduced to perform pulverization to obtain a pulverized product with a volume average particle size of 7 μm. The particle size distribution of this finely pulverized product has a volume average particle size of 7. Jo+, 5.04
The volume frequency was 20.0% for pm or less, and 0.4% for 12.7 μm or more. This finely pulverized product was classified using an elbow jet classifier, with a yield of 79%, a volume average particle size of 7.6 #Lm, a volume frequency of 7.5% below 5.04 μm,
A classified product with a volume frequency of 1.0% was obtained.

この分級製品にシリカ0.6重量%を外添混合し、トナ
ーサンプルとした。
To this classified product, 0.6% by weight of silica was externally added and mixed to prepare a toner sample.

比較例2 実施例2で用いた粗粉砕物を、比較例1と同様の従来の
粉砕手段で微粉砕を行った。衝突式気流粉砕機4. 6
m”/win (6kgf/cm2)の加圧エアーを供
給し、微粉砕製品として体積平均粒径7#II1になる
ように微粉砕を行った。
Comparative Example 2 The coarsely pulverized material used in Example 2 was pulverized using the same conventional pulverizing means as in Comparative Example 1. Collision type air flow crusher 4. 6
Pressurized air of m''/win (6 kgf/cm2) was supplied to perform fine pulverization so that the volume average particle size of the finely pulverized product was 7#II1.

このときの微粉砕処理量(=粗粉砕物供給量)は、実施
例2の約0.55倍であり、得られた微粉砕製品の粒度
分布は、体積平均粒径6.9μm , 5.04μm以
下体積頻度30.3%, 12.7pm以上体積頻度4
.7%であった。
At this time, the amount of finely pulverized material (=the amount of coarsely pulverized material supplied) was approximately 0.55 times that of Example 2, and the particle size distribution of the obtained pulverized product was as follows: volume average particle diameter of 6.9 μm, 5. 04μm or less volume frequency 30.3%, 12.7pm or more volume frequency 4
.. It was 7%.

この微粉砕製品をエルボ・ジェット分級機により分級し
て、体積平均粒径7.6pm , 5.04一m以下体
積頻度7.7%, 12.7H以上体積頻度1.2%の
分級製品を61%の収率で得た。この分級製品にシリカ
0.6重量%を外添混合し、トナーサンプルとした。
This finely pulverized product is classified using an elbow jet classifier to obtain classified products with a volume average particle diameter of 7.6 pm, a volume frequency of 7.7% for particles of 5.04 m or less, and a volume frequency of 1.2% for particles of 12.7 H or more. Obtained with a yield of 61%. To this classified product, 0.6% by weight of silica was externally added and mixed to prepare a toner sample.

実施例2、比較例2の各トナーサンプルを複写機NP−
4835  (キヤノン製)を用いて複写試験を行った
。通常環境において耐久枚数5万枚まで行ったところ、
実施例2のトナーは、補給時の濃度低下もなく初期の濃
度1.38を±0.05の範囲の画像濃度で維持し、ク
リーニング不良、画像汚れの現象が発生しなかったのに
対し、比較例2のトナーは、初期濃度は1.20であり
、耐久にしたがって画像濃度は上昇し、1.35±0.
07になったが、トナー補給時には、再び1.15にま
で低下してしまった。また、3万枚でクリーニング不良
が発生した。
Each toner sample of Example 2 and Comparative Example 2 was transferred to a copying machine NP-
A copying test was conducted using 4835 (manufactured by Canon). When the durability was up to 50,000 sheets under normal environment,
The toner of Example 2 maintained an image density within a range of ±0.05 from the initial density of 1.38 without any decrease in density during replenishment, and no phenomenon of poor cleaning or image staining occurred. The toner of Comparative Example 2 had an initial density of 1.20, and the image density increased with durability to 1.35±0.
07, but when replenishing toner, it dropped again to 1.15. In addition, a cleaning failure occurred after 30,000 sheets were printed.

実施例3 実施例2で用いた粗砕物を実施例1と同様の粉砕手段で
微粉砕を行った。
Example 3 The coarsely crushed material used in Example 2 was pulverized using the same pulverizing means as in Example 1.

衝突式気流粉砕機に圧縮気体供給ノズルから4.6m”
/win(6kgf/cm”) 、二次空気は、第5図
におけるF,G,H,J,L,Mの6か所から各0.0
5Nm”/min (5. 5kgf/cm”)の圧縮
空気を導入して、微粉砕製品として体積平均粒径6pm
になるように微粉砕を行った。この微粉砕製品の粒度分
布は、体積平均粒径5.9H , 4.OOpm以下体
積頻度15.2%, 10.08 1Lm以上体積頻度
1.5%であった。この微粉砕製品をエルボ・ジェット
分級機を用いて分級し、収率75%で体積平均粒径6.
5pm,  4.00pm以下体積頻度5.3%, 1
0.08 1Lrn以上体積頻度1.6%の分級製品を
得た。この分級製品にシリカ1.2重量%を外添混合し
、トナーサンプルとした。
4.6 m from the compressed gas supply nozzle to the collision type air flow crusher
/win (6kgf/cm”), secondary air is 0.0% each from 6 locations F, G, H, J, L, and M in Figure 5.
Introducing compressed air at a rate of 5 Nm"/min (5.5 kgf/cm") to produce a finely pulverized product with a volume average particle size of 6 pm.
It was finely pulverized so that The particle size distribution of this finely pulverized product is as follows: volume average particle size: 5.9H; Volume frequency below OOpm was 15.2%, and volume frequency above 10.08 1Lm was 1.5%. This finely pulverized product was classified using an elbow jet classifier, with a yield of 75% and a volume average particle size of 6.
5pm, 4.00pm or less volume frequency 5.3%, 1
A classified product with a volume frequency of 1.6% over 0.08 1Lrn was obtained. To this classified product, 1.2% by weight of silica was externally added and mixed to prepare a toner sample.

比較例3 実施例2で用いた粗粉砕物を比較例1と同様の従来の粉
砕手段で微粉砕を行った。衝突式気流粉砕機4. 6m
”/win (6kgf/cm”)の加圧エアーを供給
し、微粉砕製品として体積平均粒径6pmになるように
微粉砕を行った。
Comparative Example 3 The coarsely pulverized material used in Example 2 was pulverized using the same conventional pulverizing means as in Comparative Example 1. Collision type air flow crusher 4. 6m
Pressurized air of "/win (6 kgf/cm") was supplied to perform pulverization so that the volume average particle size of the pulverized product was 6 pm.

このときの微粉砕処理量(=粗粉砕物供給量)は、実施
例3の約0.5倍であり、得られた微粉砕製品の粒度分
布は、体積平均粒径6.2pm , 4.OOpm以下
体積頻度15.8%, 10.08 gm以上体積頻度
3.3%であった。
The amount of finely pulverized material (=the amount of coarsely pulverized material supplied) at this time was about 0.5 times that of Example 3, and the particle size distribution of the obtained pulverized product was as follows: volume average particle diameter of 6.2 pm, 4. The volume frequency below OOpm was 15.8%, and the volume frequency above 10.08 gm was 3.3%.

この微粉砕製品をエルボ・ジェット分級機により分級し
て、体積平均粒径6.7pm , 4.OOpm以下体
積頻度5.6%, 10.081zm以上体積頻度2.
4%の分級製品を65%の収率で得た。この分級製品に
シリカ1.2重量%を外添混合し、トナーサンプルとし
た。
This finely pulverized product was classified using an elbow jet classifier to obtain a volume average particle size of 6.7 pm.4. OOpm or less volume frequency 5.6%, 10.081zm or more volume frequency 2.
A 4% classified product was obtained with a yield of 65%. To this classified product, 1.2% by weight of silica was externally added and mixed to prepare a toner sample.

実施例3、及び比較例3の各トナーサンプルを複写機N
P−4835  (キヤノン製)を用いて複写試験を行
った。通常環境において耐久枚数5万枚まで行ったとこ
ろ、実施例3のトナーは、補給時の濃度低下もなく初期
の濃度1.25を±0.05の範囲の画像濃度で維持し
、クリーニング不良、画像汚れの現象が発生しなかった
のに対し、比較例3のトナーは、初期濃度は1.05で
あり、耐久にしたがって画像濃度は上昇し、1.20±
0.07になったが、トナー補給時には再びl.05に
まで低下してしまった。また、2万枚でクリーニング不
良が発生した。
Each toner sample of Example 3 and Comparative Example 3 was transferred to a copying machine N.
A copying test was conducted using P-4835 (manufactured by Canon). When the toner of Example 3 was subjected to durability up to 50,000 sheets in a normal environment, there was no decrease in density during replenishment, and the image density was maintained within the range of ±0.05 from the initial density of 1.25. While the phenomenon of image staining did not occur, the initial density of the toner of Comparative Example 3 was 1.05, and the image density increased with durability to 1.20±.
0.07, but when replenishing toner the l. It has dropped to 05. Further, cleaning failure occurred after 20,000 sheets were printed.

さらに低湿環境下では、比較例3のトナーは、実施例3
に比ベカブリが悪かった. [発明の効果] 以上説明したように、本発明のトナー製造方法を用いる
ことにより、従来法に比べ、画像濃度が安定して高く、
耐久性が良く、カブリ、クリーニング不良等の画像欠陥
のない優れた静電荷像現像用トナーが、低コストで得ら
れる。また,より小さな粒子径の静電荷像現像用トナー
を効果的に得ることができる等の利点がある。
Furthermore, in a low humidity environment, the toner of Comparative Example 3 was
The fogging was poor compared to that of the previous model. [Effects of the Invention] As explained above, by using the toner manufacturing method of the present invention, the image density is stably high compared to the conventional method.
An excellent toner for developing electrostatic images that has good durability and is free from image defects such as fog and poor cleaning can be obtained at a low cost. Further, there is an advantage that an electrostatic image developing toner having a smaller particle size can be effectively obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造方法に用いる気流分級機の一実
施例の概略断面図であり、第2図は、第1図のA−A’
断面図である。 第3図は、本発明の製造方法に用いる衝突式気流粉砕機
の一実施例の概略断面図であり、第4図,第5図は、そ
れぞれ第3図のB−B′c−c’断面図である。 第6図は、本発明の製造方法に用いる粉砕手段の構成を
示すフローチャートである。 第7図,第8図は、それぞれ従来の気流分級機,衝突式
気流粉砕機の概略図である。 4・・・分級室       5・・・案内室8・・・
供給筒       7・・・ルーパー9・・・分級ル
ーパー    lO・・・分級板3l・・・被粉砕物供
給口   32・・・加速管33・・・圧縮気体供給ノ
ズル 34・・・加速管出口35・・・粉砕室    
   36・・・衝突部材37・・・衝突部材の衝突面
  39・・・排出口4l・・・二次空気供給口
FIG. 1 is a schematic sectional view of one embodiment of the air classifier used in the manufacturing method of the present invention, and FIG. 2 is a schematic sectional view taken along the line AA' in FIG.
FIG. FIG. 3 is a schematic cross-sectional view of one embodiment of the collision type air flow crusher used in the manufacturing method of the present invention, and FIGS. 4 and 5 are B-B'c-c' in FIG. 3, respectively. FIG. FIG. 6 is a flowchart showing the configuration of the crushing means used in the manufacturing method of the present invention. FIG. 7 and FIG. 8 are schematic diagrams of a conventional air classifier and an impingement type air current crusher, respectively. 4... Classification room 5... Information room 8...
Supply cylinder 7... Looper 9... Classifying looper lO... Classifying plate 3l... Material to be crushed supply port 32... Accelerator tube 33... Compressed gas supply nozzle 34... Accelerator tube outlet 35 ...Crushing chamber
36... Collision member 37... Collision surface of collision member 39... Discharge port 4l... Secondary air supply port

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも結着樹脂及び着色剤を含有する組成物
を溶融混練し、混練物を冷却固化し、固化物を気流分級
機と衝突式気流粉砕機を有する粉砕手段により粉砕して
トナーを得る製造方法において、該気流分級機が、分級
室の底部に中央部が高くなる傾斜状の分級板を有し、該
分級室において搬送エアーとともに供給された粉体材料
を分級ルーバーを介して流入する気流によって旋回流動
させて微粉と粗粉とに遠心分離し、微粉を分級板の中央
部に設けられた排出口に接続した微粉排出シュートへ排
出させるとともに、粗粉を分級板の外周部に形成した排
出口より排出する気流分級機であり、該分級室の上部に
粉体供給筒と連通する環状の案内室を設け、該案内室と
該分級室との間に案内室の内周円方向の接線方向に先端
を向けた複数のルーバーを設けた気流分級機であり、該
衝突式気流粉砕機が、高圧気体により粉体を搬送加速す
るための加速管と、粉砕室と、該加速管より噴出する粉
体を衝突力により粉砕するための衝突部材とを具備し、
該衝突部材を加速管出口に対向して粉砕室内に設けた衝
突式気流粉砕機において、前記加速管に被粉砕物供給口
を設け、被粉砕物供給口と加速管出口の間に二次空気導
入口を有する衝突式気流粉砕機であり、二次空気を導入
させて粉砕を行うことを特徴とする静電荷像現像用トナ
ーの製造方法。
(1) A composition containing at least a binder resin and a colorant is melt-kneaded, the kneaded material is cooled and solidified, and the solidified material is pulverized by a pulverizing means having an air classifier and an impact type air pulverizer to obtain a toner. In the manufacturing method, the air classifier has an inclined classification plate with a high central part at the bottom of the classification chamber, and the powder material supplied together with conveying air flows into the classification chamber through a classification louver. It is centrifuged into fine powder and coarse powder by swirling with air current, and the fine powder is discharged to the fine powder discharge chute connected to the discharge port provided in the center of the classification plate, and the coarse powder is formed on the outer periphery of the classification plate. This is an airflow classifier that discharges the air from a discharge port, and an annular guide chamber is provided at the top of the classification chamber that communicates with the powder supply tube, and between the guide chamber and the classification chamber there is a This is an airflow classifier equipped with a plurality of louvers whose tips are oriented in the tangential direction of and a collision member for pulverizing powder ejected by collision force,
In a collision-type air flow crusher in which the collision member is provided in a crushing chamber facing an accelerating tube outlet, a to-be-pulverized material supply port is provided in the accelerating tube, and secondary air is provided between the to-be-pulverized material supply port and the accelerating tube outlet. A method for producing toner for developing an electrostatic image, comprising using an impact-type airflow pulverizer having an inlet, and performing pulverization by introducing secondary air.
(2)該粉砕手段が、衝突部材の衝突面の先端部分が頂
角110゜以上180゜未満の錐体形状を有している衝
突式気流粉砕機であることを特徴とする請求項(1)記
載の静電荷像現像用トナーの製造方法。
(2) Claim (1) characterized in that the crushing means is a collision type air flow crusher in which the tip of the collision surface of the collision member has a conical shape with an apex angle of 110° or more and less than 180°. ) The method for producing a toner for developing electrostatic images.
JP2001102A 1989-08-30 1990-01-09 Method for producing toner for developing electrostatic image Expired - Fee Related JPH0679167B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001102A JPH0679167B2 (en) 1990-01-09 1990-01-09 Method for producing toner for developing electrostatic image
KR1019900013516A KR920009291B1 (en) 1989-08-30 1990-08-30 Collision type gas current pulverizer and method for pulverizing powders
DE69027492T DE69027492T2 (en) 1989-08-30 1990-08-30 Device and method for impact jet grinding of powdery solids
EP90116657A EP0417561B1 (en) 1989-08-30 1990-08-30 Collision-type gas current pulverizer and method for pulverizing powders
US07/983,287 US5316222A (en) 1989-08-30 1992-11-30 Collision type gas current pulverizer and method for pulverizing powders
US08/178,849 US5435496A (en) 1989-08-30 1994-01-07 Collision-type gas current pulverizer and method for pulverizing powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102A JPH0679167B2 (en) 1990-01-09 1990-01-09 Method for producing toner for developing electrostatic image

Publications (2)

Publication Number Publication Date
JPH03206466A true JPH03206466A (en) 1991-09-09
JPH0679167B2 JPH0679167B2 (en) 1994-10-05

Family

ID=11492123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102A Expired - Fee Related JPH0679167B2 (en) 1989-08-30 1990-01-09 Method for producing toner for developing electrostatic image

Country Status (1)

Country Link
JP (1) JPH0679167B2 (en)

Also Published As

Publication number Publication date
JPH0679167B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
EP0417561B1 (en) Collision-type gas current pulverizer and method for pulverizing powders
JPH06230606A (en) Production of toner and producing equipment system used therefor
JPH09187732A (en) Preparation of toner
JPH0534977A (en) Production of electrostatic charge image developing toner
JP3740202B2 (en) Toner production method
JPH03206466A (en) Production of toner for developing electrostatic charge image
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JPH03287173A (en) Production of electrostatically charged image developing toner
JPH0359676A (en) Manufacture of toner for electrostatic charge image development
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP3091281B2 (en) Collision type air crusher
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP2851872B2 (en) Method for producing toner for developing electrostatic images
JP2704787B2 (en) Powder material grinding method
JPH09187733A (en) Air current-utilizing type classifying apparatus
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH1119531A (en) Collision type air flow crusher and manufacture of toner
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees