JPH0679167B2 - Method for producing toner for developing electrostatic image - Google Patents
Method for producing toner for developing electrostatic imageInfo
- Publication number
- JPH0679167B2 JPH0679167B2 JP2001102A JP110290A JPH0679167B2 JP H0679167 B2 JPH0679167 B2 JP H0679167B2 JP 2001102 A JP2001102 A JP 2001102A JP 110290 A JP110290 A JP 110290A JP H0679167 B2 JPH0679167 B2 JP H0679167B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- chamber
- air
- classification
- toner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Disintegrating Or Milling (AREA)
- Developing Agents For Electrophotography (AREA)
- Combined Means For Separation Of Solids (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、結着樹脂を有する固体粒子の粉砕を行って静
電荷像現像用トナーを得るための製造方法に関する。TECHNICAL FIELD The present invention relates to a production method for pulverizing solid particles having a binder resin to obtain a toner for developing an electrostatic image.
[従来の技術] 電子写真法,静電写真法,静電印刷法の如き画像形成方
法では静電荷像を現像するためにトナーが使用される。[Prior Art] In an image forming method such as an electrophotography method, an electrostatic photography method, and an electrostatic printing method, a toner is used to develop an electrostatic charge image.
最終製品が微細粒子であることが要求される静電荷像現
像用トナーの一般的な製造方法としては、被転写材に定
着させるための結着用樹脂、トナーとしての色味を出さ
せる各種着色剤、粒子に電荷を付与させるための電荷制
御剤、また特開昭54−42141号公報,特開昭55−18656号
公報に示されるようないわゆる一成分現像法において
は、トナー自身に搬送性等を付与するための各種磁性材
料を用い、他に必要に応じて離型剤,流動性付与剤を乾
式混合し、しかる後ロールミル,エクストルーダーなど
の汎用混練装置にて溶融混練し、冷却固化した後に、ジ
ェット気流式粉砕機、機械衝撃式粉砕機等の各種粉砕装
置により微砕化し、各種風力分級機により分級を行うこ
とにより、トナーとして必要な粒径にそろえる。これに
必要に応じて流動化剤や滑剤等々を乾式混合しトナーと
する。またいわゆる2成分現像方法に用いる場合は各種
磁性キャリアと混ぜあわせた後トナーとして画像形成に
供するわけである。As a general method for producing a toner for developing an electrostatic image which requires that the final product be fine particles, a binding resin for fixing the toner on a transfer material, and various colorants for producing a tint of the toner are used. , A charge control agent for imparting an electric charge to particles, and a so-called one-component developing method as disclosed in JP-A-54-42141 and JP-A-55-18656. Using various magnetic materials for imparting, a dry release agent and a fluidity-imparting agent are optionally dry-mixed, and then melt-kneaded by a general-purpose kneading device such as a roll mill and an extruder, and then cooled and solidified. After that, the particles are pulverized by various pulverizers such as a jet stream type pulverizer and a mechanical impact type pulverizer, and classified by various air classifiers, so that the toner has a required particle size. If necessary, a fluidizing agent, a lubricant and the like are dry mixed to obtain a toner. When it is used in a so-called two-component developing method, it is used as an image forming toner after being mixed with various magnetic carriers.
さらに近年の複写物、印刷物等の汎用化、大量消費化に
伴い、低コストで高性能の現像剤が要求されている。Further, with the recent generalization and mass consumption of copied materials, printed materials, etc., low-cost, high-performance developers have been demanded.
上述の如く、微細粒子であるトナー粒子を得るために
は、各種粉砕装置が用いられるが、結着用樹脂を主とす
るトナーの粉砕には、ジェット気流を用いたジェット気
流式粉砕機、特に衝突式気流粉砕機が好ましく用いられ
る。As described above, various crushing devices are used to obtain the toner particles that are fine particles, but the crushing of the toner mainly composed of the binder resin is performed by a jet airflow crusher using a jet airflow, particularly a collision. Type airflow mills are preferably used.
さらに、これらの粉砕機は、第6図に示したフローのよ
うに、分級機と接続して、粉砕した粒子を分級機で微細
粒子と粗粒子とに分級し、粗粒子は再び粉砕機へ戻し粉
砕を行い、微細粒子を微粉砕製品として得るという粉砕
手段として用いている。Further, these crushers are connected to a classifier to classify the crushed particles into fine particles and coarse particles by the classifier as shown in the flow chart of FIG. 6, and the coarse particles are returned to the crusher again. It is used as a pulverizing means for carrying out re-pulverization to obtain fine particles as a finely pulverized product.
従来、この粉砕手段として用いている分級機としては、
分級羽根の回転により強制的に旋回気流をつくり分級を
行うロータ型分級機や外部から導入される気流により旋
回気流をつくり分級を行うスパイラル気流分級機がある
が、結着用樹脂を主とするトナーの分級には、接粉部に
可動部分のないスパイラル気流分級機が好ましく用いら
れる。この代表的なものとして、第7図に示したような
ディスパージョンセパレーター(DS−UR型:日本ニュー
マチック工業社製)が一般に用いられている。Conventionally, as a classifier used as this crushing means,
There are rotor type classifiers that forcibly create a swirling airflow by rotating the classifying blades and a spiral airflow classifier that creates a swirling airflow by an airflow introduced from the outside, but toner mainly composed of binder resin For classification, a spiral airflow classifier having no moving part in the powder contact part is preferably used. As a typical example thereof, a dispersion separator (DS-UR type: manufactured by Nippon Pneumatic Mfg. Co., Ltd.) as shown in FIG. 7 is generally used.
しかしながら、第7図に示したようなこの種の気流分級
機の分級室への粉体材料供給部は、サイクロン状の形状
をなしており、上部カバー60の上面中央部には案内筒50
を起立状に設け、該案内筒50の上部外周面に供給筒80が
接続されている。供給筒80は、案内筒50の外周に供給筒
80を介して供給される粉体材料が案内筒内円周接線方向
に導入されるように接続されている。該供給筒80より案
内筒50内に粉体材料を供給すると、該粉体材料は案内筒
50の内周面に沿って旋回しながら下降する。この場合粉
体材料は、供給筒80より案内筒50内周面に沿って帯状に
下降するため分級室40に流入する粉体材料の分布及び濃
度が不均一となり(分級室へ案内筒内周面の一部からの
み粉体材料は流入する)、分散が悪い。また、処理量を
大きくとると粉体材料の凝集がいっそう起こり易く、さ
らに分散が十分に行われなくなり、高精度の分級が行え
ないという問題点がある。However, the powder material supply part to the classification chamber of this type of airflow classifier as shown in FIG. 7 has a cyclone shape, and the guide cylinder 50 is provided at the center of the upper surface of the upper cover 60.
Is provided upright, and the supply cylinder 80 is connected to the upper outer peripheral surface of the guide cylinder 50. The supply cylinder 80 is provided on the outer circumference of the guide cylinder 50.
The powder material supplied via 80 is connected so as to be introduced in the circumferential tangential direction in the guide cylinder. When the powder material is supplied from the supply cylinder 80 into the guide cylinder 50, the powder material is supplied to the guide cylinder 50.
It descends while turning along the inner surface of 50. In this case, the powder material descends in a strip shape from the supply cylinder 80 along the inner peripheral surface of the guide cylinder 50, so that the distribution and concentration of the powder material flowing into the classification chamber 40 become non-uniform (to the classification chamber inner circumference of the guide cylinder 50). Powder material flows in only from a part of the surface), and the dispersion is poor. Further, when the treatment amount is large, there is a problem that the powder material is more likely to agglomerate, the dispersion is not sufficiently performed, and highly accurate classification cannot be performed.
したがって、微粉砕製品は、粒度分布幅の広い粉体とな
り、その結果次工程の微粉体を除去するための分級工程
において収率低下の如き現象を引き起こすという問題点
がある。また、所望の粒径以下に粉砕された粉体の一部
は、粗粉として粉砕機へ再度循環されるため超微粉(ト
ナーとして適さない程微小な粉体)が発生しやすい。Therefore, the finely pulverized product becomes a powder having a wide particle size distribution, and as a result, there is a problem that a phenomenon such as a decrease in yield occurs in a classification process for removing the fine powder in the next process. In addition, since a part of the powder pulverized to a desired particle size or less is recirculated to the pulverizer as coarse powder, ultrafine powder (fine powder that is unsuitable as a toner) is likely to be generated.
この超微粉は、粒子に対する引力が強いため、微粉体を
取り除く分級工程を用いても取り除くことが難しく、こ
のような粉体をトナーとして用いた場合、画像濃度の低
下やカブリ現象、さらには現像スリーブ上のムラ現象
等、画像品質を低下させる原因となる。Since this ultrafine powder has a strong attractive force to particles, it is difficult to remove it even by using a classifying process for removing fine powder.When such powder is used as a toner, a decrease in image density, fog phenomenon, and further development This causes deterioration of image quality such as unevenness on the sleeve.
一方、ジェット気流を用いた衝突式気流粉砕機は、ジェ
ット気流で被粉砕物を搬送し、被粉砕物を衝突部材に衝
突させ、その衝突力により粉砕するものであり、従来の
衝突式気流粉砕機は、第8図のような構成である。On the other hand, a collision type air flow crusher using a jet airflow conveys an object to be crushed by a jet airflow, collides the object to be crushed with a collision member, and crushes by the collision force. The machine has a structure as shown in FIG.
高圧気体供給ノズル33を接続した加速管42の出口44に対
抗して衝突部材46を設け、前記加速管42に供給した高圧
気体の流動により、加速管42の中途に連通させた被粉砕
物供給口31から加速管42の内部に被粉砕物を吸引し、こ
れを高圧気体と共に噴射して衝突部材の衝突面47に衝突
させ、その衝撃によって粉砕するようにしたものであ
る。A collision member 46 is provided opposite to the outlet 44 of the acceleration tube 42 connected to the high-pressure gas supply nozzle 33, and the flow of the high-pressure gas supplied to the acceleration tube 42 causes the object to be crushed to communicate with the middle of the acceleration tube 42. The object to be crushed is sucked from the mouth 31 into the accelerating pipe 42, is jetted together with the high-pressure gas, collides against the collision surface 47 of the collision member, and is crushed by the impact.
しかしながら、上記従来例では、加速管内に吸引導入さ
れた被粉砕物を高圧気流中で十分に分散させることは困
難であり、加速管出口から噴出する高圧気流に被粉砕物
を載せた粒子混合気流は、被粉砕物の含有濃度の高い流
れと低い流れに分離してしまい、そのため被粉砕物は、
対向する衝突部材に部分的に集中して衝突することにな
り、衝突部材上で再凝集が生じ易く、分級機での分級精
度に悪化をきたし、また、粉砕効率が低下し処理能力の
低下を引き起こしている。However, in the above conventional example, it is difficult to sufficiently disperse the object to be pulverized sucked and introduced into the acceleration tube in the high-pressure airflow, and the particle mixture airflow in which the object to be pulverized is placed in the high-pressure air stream ejected from the acceleration tube outlet. Is separated into a high concentration content stream and a low concentration content stream.
As a result, the particles collide with each other on the opposing collision member partially, and re-aggregation easily occurs on the collision member, degrading the classification accuracy in the classifier, and lowering the pulverization efficiency and the processing capacity. Is causing.
[発明が解決しようとする課題] 本発明の目的は、上述の如き欠点を解決した静電荷像現
像用トナーの製造方法を提供するものである。[Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing a toner for developing an electrostatic charge image, which solves the above-mentioned drawbacks.
詳しく述べれば、本発明の目的は、精緻な粒度分布の微
粉砕製品を得ることにより、良好な性能を有する静電荷
像現像用トナーの製造方法を提供するものである。More specifically, an object of the present invention is to provide a method for producing a toner for developing an electrostatic charge image having good performance by obtaining a finely pulverized product having a fine particle size distribution.
さらに本発明の目的は、より小さな粒径の静電荷像現像
用トナーを効率良く製造する製造方法を提供するもので
ある。A further object of the present invention is to provide a manufacturing method for efficiently manufacturing a toner for developing an electrostatic charge image having a smaller particle size.
[課題を解決するための手段及び作用] 本発明は、 少なくとも結着樹脂及び着色剤を含有する組成物を溶融
混練し、混練物を冷却固化し、固化物を粉砕して調製し
た粉体材料を、気流分級機及び該気流分級機と連通して
いる衝突式気流粉砕機を具備している粉砕手段により粉
砕して静電荷像現像用トナーを得る製造方法において、 該粉体材料を、該気流分級機内において、搬送エアーと
ともに分級室の上部に配置された供給筒に供給し、 該供給筒と連通する環状の案内室から、該案内室と該分
級室との間に設けられている、該案内室の内周円方向の
接線方向に先端を向けた複数のルーバー間を通って、搬
送エアーとともに該粉体材料を旋回下降させながら該分
級室の中央部へ分散導入し、 該ルーバー間から該分級室内に導入された該粉体材料の
旋回速度を、該分級室の周囲に設けられている複数の分
級ルーバー間から吸引導入された分級エアーで更に加速
し、 該分級室の底部に配置されている中央部が高くなるよう
に形成された傾斜状の分級板上で、該分級エアーにより
該粉体材料を遠心分離することによって粗粉と微粉とに
分級し、 分級された微粉を該分級板の中央部に設けられた微粉排
出口から微粉排出シュートへ排出してトナー粒子を生成
するために使用し、 分級された粗粉を該分級板の外周囲に設けられた粗粉排
出口より排出し、 排出された粗粉を該衝突式粉砕機に導入し、 該衝突式粉砕機内において、導入された粗粉を加速管内
の高圧気体で加速し、 該加速管の被粉砕物供給口と加速管出口の間に設けられ
ている二次空気導入口から導入される空気によって加速
管内の粗粉を分散し、 該加速管から噴出された粗粉を粉砕室に設けられている
衝突部材に衝突させて粉砕し、 粉砕された該粗粉を該気流分級機に導入する ことを特徴とする静電荷像現像用トナーの製造方法に関
する。[Means and Actions for Solving Problems] The present invention relates to a powder material prepared by melt-kneading a composition containing at least a binder resin and a colorant, cooling and solidifying the kneaded product, and pulverizing a solidified product. In a method for producing an electrostatic charge image developing toner by pulverizing the powder material with a pulverizing means equipped with an air stream classifier and a collision type air stream pulverizer in communication with the air stream classifier. In the air flow classifier, the carrier air is supplied to a supply cylinder arranged in the upper part of the classification chamber, and an annular guide chamber communicating with the supply cylinder is provided between the guide chamber and the classification chamber. The powder material is swirlingly descended together with the conveying air into the central portion of the classifying chamber while passing through a plurality of louvers whose tips are directed in the tangential direction of the inner circumferential circle of the guide chamber, and the louvers are introduced between the louvers. The powder introduced into the classification chamber from The swirling speed of the material is further accelerated by the classifying air sucked and introduced from between the plurality of classifying louvers provided around the classifying chamber so that the central portion located at the bottom of the classifying chamber becomes higher. On the formed inclined classifying plate, the powder material is centrifugally separated by the classifying air to classify into coarse powder and fine powder, and the classified fine powder is fine powder provided in the central portion of the classifying plate. Used to generate toner particles by discharging from the discharge port to a fine powder discharge chute, the classified coarse powder is discharged from the coarse powder discharge port provided on the outer periphery of the classifying plate, and the discharged coarse powder is discharged. It is introduced into the collision type crusher, and the coarse powder introduced is accelerated in the collision type crusher by the high pressure gas in the accelerating pipe, and is provided between the crushed object supply port and the accelerating pipe outlet of the accelerating pipe. Accelerating tube by the air introduced from the secondary air inlet The coarse powder inside is dispersed, the coarse powder ejected from the accelerating pipe is crushed by colliding with a collision member provided in the crushing chamber, and the crushed coarse powder is introduced into the airflow classifier. The present invention relates to a method for producing a toner for developing an electrostatic charge image.
第6図は、本発明の静電荷像現像用トナーの製造方法に
用いる粉砕手段の構成を示すフローチャートの一例であ
り、第1図及び第2図は、本発明の製造方法に用いた気
流分級機の一実施例を概略的に示した図であり、第3図
〜第5図は、衝突式気流粉砕機の一実施例を概略的に示
した図である。FIG. 6 is an example of a flow chart showing the constitution of the pulverizing means used in the method for producing an electrostatic image developing toner of the present invention, and FIGS. 1 and 2 are the air flow classification used in the production method of the present invention. FIG. 3 is a view schematically showing an embodiment of a machine, and FIGS. 3 to 5 are views schematically showing an embodiment of a collision type airflow crusher.
第1図において、1は筒状の本体ケーシングを示し、2
は下部ケーシングを示し、その下部に粗粉排出用のホン
パー3が接続されている。本体ケーシング1の内部は、
分級室4が形成されており、この分級室4の上部は本体
ケーシング1の上部に取付けた環状の案内室5と中央部
が高くなる円錐状(傘状)の上部カバー6によって閉鎖
されている。In FIG. 1, reference numeral 1 denotes a cylindrical main body casing, 2
Indicates a lower casing, and a homper 3 for discharging coarse powder is connected to the lower portion thereof. Inside the main body casing 1,
A classifying chamber 4 is formed, and the upper part of the classifying chamber 4 is closed by an annular guide chamber 5 attached to the upper part of the main body casing 1 and a conical (umbrella) upper cover 6 whose central portion is higher. .
分級室4と案内室5の間の仕切壁に円周方向に配列する
複数のルーバー7を設け、案内室5に送り込まれた粉体
材料とエアーを各ルーバー7の間より分級室4に旋回さ
せて流入させる。A plurality of louvers 7 arranged in the circumferential direction are provided on the partition wall between the classification chamber 4 and the guide chamber 5, and the powder material and air sent into the guide chamber 5 are swirled into the classification chamber 4 from between the louvers 7. Let it flow in.
本体ケーシング1の下部には円周方向に配列する分級ル
ーバー9を設け、外部から分級室4へ旋回流を起こす分
級エアーを分級ルーバー9を介して取り入れている。A classification louver 9 arranged in the circumferential direction is provided in the lower portion of the main body casing 1, and classification air that causes a swirling flow to the classification chamber 4 from outside is taken in through the classification louver 9.
分級室4の底部に、中央部が高くなる円錐状(傘状)の
分級板10を設け、該分級板10の外周囲に粗粉排出口11を
形成する。また、分級板10の中央部には微粉排出シュー
ト12を接続し、該シュート12の下端部をL字形に屈曲
し、この屈曲端部を下部ケーシング2の側壁より外部に
位置させる。さらに該シュートはサイクロンや集塵機の
ような微粉回収手段を介して吸引ファンに接続してお
り、該吸引ファンにより分級室4に吸引力を作用させ、
該ルーバー9間より分級室4に流入する吸引エアーによ
って分級に要する旋回流を起こしている。A conical (umbrella) classifying plate 10 having a high central portion is provided at the bottom of the classifying chamber 4, and a coarse powder discharge port 11 is formed on the outer periphery of the classifying plate 10. A fine powder discharge chute 12 is connected to the center of the classifying plate 10, the lower end of the chute 12 is bent into an L shape, and the bent end is located outside the side wall of the lower casing 2. Further, the chute is connected to a suction fan through a fine powder collecting means such as a cyclone or a dust collector, and a suction force is applied to the classification chamber 4 by the suction fan.
The swirling flow required for classification is caused by the suction air flowing into the classification chamber 4 from between the louvers 9.
気流分級機は上記の構造から成り、供給筒8より案内筒
5内に、(衝突式気流粉砕機より、粉砕された粉体材料
と粉砕に用いられたエアー及び新たに供給された粉砕原
料からなる)粉体材料を含むエアーを供給すると、この
粉体材料を含むエアーは、案内室5から各ルーバー7間
を通過して分級室4に旋回しながら均一の濃度で分散さ
れながら流入する。The airflow classifier has the above-mentioned structure, and is supplied from the supply cylinder 8 into the guide cylinder 5 (from the powder material crushed by the collision-type airflow crusher, the air used for crushing, and the newly supplied crushing raw material. When the air containing the powder material is supplied, the air containing the powder material passes from the guide chamber 5 between the louvers 7 and swirls into the classification chamber 4 while being dispersed at a uniform concentration.
分級室4内に旋回しながら流入した粉体材料は、微粉排
出シュート12に接続した吸引ファンにより、分級室下部
の分級ルーバー9間より流入する吸引エアー流にのって
旋回を増し、各粒子に作用する遠心力によって粗粉と微
粉とに遠心分離され、分級室4内の外周部を旋回する粗
粉は粗粉排出口11より排出され、下部のホッパー3より
排出され再び衝突式気流粉砕機に供給される。The powder material flowing into the classifying chamber 4 while swirling is swirled by a suction fan connected to the fine powder discharging chute 12 along with a suction air flow flowing between the classification louvers 9 in the lower part of the classifying chamber, so that each particle The coarse powder, which is centrifugally separated into coarse powder and fine powder by the centrifugal force that acts on, swirls around the outer periphery of the classification chamber 4, is discharged from the coarse powder discharge port 11 and is discharged from the lower hopper 3 again to collide airflow grinding. Supplied to the machine.
また、分級板10の上部傾斜面に沿って中央部へと移行す
る微粉は微粉排出シュート12により、微粉回収手段へ微
粉砕製品として排出される。Further, the fine powder that moves to the central portion along the upper inclined surface of the classification plate 10 is discharged as a finely pulverized product to the fine powder collecting means by the fine powder discharge chute 12.
分級室4に粉体材料とともに流入するエアーはすべて旋
回流となって流入するため、分級室4内で旋回する粒子
の中心向きの速度は遠心力に比べ相対的に小さくなり、
分級室4において分離粒子径の小さな分級が行われ、粒
子径の非常に小さな微粉を微粉排出シュート12に排出さ
せることができる。しかも、粉体材料がほぼ均一な濃度
で分級室に流入するため精緻な分布の粉体として得るこ
とができる。Since all the air flowing into the classification chamber 4 together with the powder material flows as a swirl flow, the velocity of the particles swirling in the classification chamber 4 toward the center becomes relatively smaller than the centrifugal force,
In the classification chamber 4, classification with a small particle size is performed, and fine powder with a very small particle size can be discharged to the fine powder discharge chute 12. Moreover, since the powder material flows into the classification chamber at a substantially uniform concentration, it is possible to obtain a powder having a fine distribution.
したがって、微粉砕製品として精緻な分布の粉体として
得ることができるため、前述の如く、超微粉が発生せ
ず、最終製品としたときに結果として良好な性能を有す
るトナーを得ることができる。Therefore, a finely pulverized product can be obtained as a finely-divided powder, so that, as described above, no ultrafine powder is generated, and as a final product, a toner having good performance can be obtained.
また、第3図において、粉砕されるべき粉体材料45は、
加速管32に設けられた被粉砕物供給口31より、加速管32
に供給される。加速管32には圧縮空気の如き圧縮気体
が、圧縮気体供給ノズル33から導入されており、加速管
32に供給された被粉砕物45は、瞬時に加速されて、高速
度を有するようになる。さらに、加速管32の被粉砕物供
給口31と加速管出口34との間に設けた二次空気導入口41
より、二次空気を導入することにより、加速管内の被粉
砕物を分散し、加速管出口34から被粉砕物をより均一に
噴出させ、対向する衝突部材36の衝突面37に効率良く衝
突させることにより粉砕性を従来より向上することがで
きる。ここで導入される二次空気は、加速管内を高速移
動する被粉砕物の凝集を解きほぐし、分散させるために
寄与している。また、加速管内で加速気体流速分布の遅
い部分である加速管内壁に沿う流れを加速する効果があ
る。Further, in FIG. 3, the powder material 45 to be crushed is
From the crushed object supply port 31 provided in the acceleration tube 32, the acceleration tube 32
Is supplied to. Compressed gas such as compressed air is introduced into the accelerating pipe 32 from the compressed gas supply nozzle 33.
The pulverized material 45 supplied to 32 is instantly accelerated and has a high speed. Further, a secondary air introduction port 41 provided between the crushed object supply port 31 of the acceleration tube 32 and the acceleration tube outlet 34.
Further, by introducing the secondary air, the crushed object in the acceleration tube is dispersed, the crushed object is ejected from the acceleration tube outlet 34 more uniformly, and the collision surface 37 of the opposing collision member 36 is efficiently collided. As a result, the pulverizability can be improved as compared with the conventional one. The secondary air introduced here contributes to deaggregate and disperse the agglomerates of the object to be pulverized that move at high speed in the acceleration tube. In addition, there is an effect of accelerating the flow along the inner wall of the accelerating pipe, which is a portion where the accelerating gas flow velocity distribution is slow in the accelerating pipe.
なお、衝突部材36は、第3図に示したように、衝突面の
先端部分が錐体形状になっていることが、熱可塑性樹脂
を含む材料のように、衝突部材上の極部発熱により融着
し易い材料には、融着を防ぐうえで好ましい。さらに、
衝突部材から、粉砕室壁へ二次衝突を促進し、粉砕効率
を向上させるうえで、先端部分が頂角110゜以上180゜未
満の錐体形状を有する衝突部材がより好ましい。It should be noted that, as shown in FIG. 3, the collision member 36 has a cone-shaped tip portion on the collision surface, which is caused by extreme heat generation on the collision member like a material containing a thermoplastic resin. A material that is easily fused is preferable in terms of preventing fusion. further,
In order to promote the secondary collision from the collision member to the wall of the crushing chamber and improve the crushing efficiency, it is more preferable to use a collision member having a conical shape whose tip portion has an apex angle of 110 ° or more and less than 180 °.
以上説明したように、加速管内の被粉砕物の分散が良好
なため、従来のように、粉体が凝集して過粉砕を起こす
というようなことはなく、粒度分布の精緻な粉砕品が得
られる。As explained above, since the material to be crushed in the accelerating tube is well dispersed, it is possible to obtain a finely crushed product with a fine particle size distribution without causing the powder to agglomerate and cause excessive crushing. To be
したがって、前述の気流分級機の効果と相乗して、最終
製品としたときに結果として良好な性能を有するトナー
を効率良く得ることができる。さらに、本発明の方法は
粒径が小さくなるほど、効果が顕著になる。Therefore, synergistically with the effect of the airflow classifier described above, a toner having good performance can be efficiently obtained as a final product. Furthermore, the effect of the method of the present invention becomes more remarkable as the particle size becomes smaller.
[実施例] 以下、本発明を実施例に基づき詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail based on Examples.
実施例1 上記処方の混合物よりなるトナー原料を2軸型エクスト
ルーダーPCM−30(池貝鉄工社製)を用い溶融混練を行
った。冷却後、ハンマーミルで0.1〜1mmの粗粉砕物を得
た。Example 1 The toner raw material composed of the mixture of the above formulation was melt-kneaded using a twin-screw extruder PCM-30 (manufactured by Ikegai Tekko KK). After cooling, a hammer mill was used to obtain 0.1 to 1 mm of coarsely pulverized material.
得られた粗粉砕物を第1図に示した気流分級機と第3図
に示した衝突式気流粉砕機(衝突部材の衝突面が頂角16
0゜の円錐形状)からなる粉砕手段(第6図に示したフ
ローチャートの構成)に供給して、衝突式気流粉砕機に
圧縮気体供給ノズルから4.0Nm3/min(5kgf/cm2)、二次
空気は、第5図におけるF,G,H,J,L,Mの6か所から各0.0
5Nm3/min(5.5kgf/cm2)の圧縮空気を導入して、微粉砕
製品として体積平均粒径11μm(コールターカウンター
による測定、以下同様)になるように微粉砕を行った。The obtained coarsely pulverized material was subjected to an air flow classifier shown in FIG. 1 and a collision type air flow pulverizer shown in FIG.
It is supplied to a crushing means (a flow chart shown in FIG. 6) having a 0 ° conical shape), and is fed to a collision type air flow crusher through a compressed gas supply nozzle at 4.0 Nm 3 / min (5 kgf / cm 2 ). The next air is 0.0 from each of the six locations of F, G, H, J, L, and M in FIG.
By introducing compressed air of 5 Nm 3 / min (5.5 kgf / cm 2 ), finely pulverized product was pulverized so as to have a volume average particle diameter of 11 μm (measured by Coulter counter, the same applies below).
このときの微粉砕製品の粒度分布は、体積平均粒径11.0
μm、6.35μm以下体積頻度12.1%,20.2μm以上体積
頻度0.6%であった。The particle size distribution of the finely pulverized product at this time is 11.0 volume average particle size.
The volume frequency was 12.1% for μm and 6.35 μm or less, and 0.6% for 20.2 μm or more.
この微粉砕製品をエルボ・ジェット分級機(日鉄鉱業社
製)により微粉を除去して、体積平均粒径11.6μm,6.35
μm以下体積頻度2.3%,20.2μm以上体積頻度0.9%の
分級製品を83%の収率で得た。この分級製品にシリカ0.
4重量%を外添混合し、トナーサンプルとした。This finely pulverized product was removed of fine powder with an elbow jet classifier (manufactured by Nittetsu Mining Co., Ltd.) to obtain a volume average particle size of 11.6 μm, 6.35.
A classified product having a volume frequency of 2.3 μm or less and a volume frequency of 0.9% or more 20.3 μm was obtained with a yield of 83%. Silica 0.
4% by weight was externally added and mixed to obtain a toner sample.
比較例1 実施例1で用いた粗粉砕物を、第7図に示されるような
従来型の気流分級機DS−UR型(日本ニューマチック工業
社製)と第8図に示されるような従来型の衝突式気流粉
砕機ジェットミルPJM−I型(衝突部材の衝突管は加速
面の軸方向に対して垂直な平面)からなる粉砕手段で4N
m3/min(5kgf/cm2)の加圧エアーを用いて体積平均11μ
mになるように微粉砕を行った。Comparative Example 1 The coarsely pulverized product used in Example 1 was replaced with a conventional airflow classifier DS-UR type (manufactured by Nippon Pneumatic Mfg. Co., Ltd.) as shown in FIG. 7 and a conventional type as shown in FIG. Type collision type air flow crusher Jet mill PJM-I type (collision tube of the collision member is a plane perpendicular to the axial direction of the acceleration surface)
Volume average 11μ using pressurized air of m 3 / min (5kgf / cm 2 )
Fine pulverization was performed so as to obtain m.
このときの微粉砕処理量(=粗粉砕物供給量)は、実施
例1の約0.6倍であり、微粉砕製品の粒度分布は、体積
平均粒径11.1μm,6.35μm以下体積頻度15.3%,20.2μ
m以上体積頻度1.3%であった。The fine pulverization processing amount (= coarse pulverized material supply amount) at this time is about 0.6 times that of Example 1, and the particle size distribution of the finely pulverized product has a volume average particle diameter of 11.1 μm, 6.35 μm or less and a volume frequency of 15.3%, 20.2μ
The volume frequency was 1.3% or more.
この微粉砕製品をエルボ・ジェット分級機により微粉を
除去して、体積平均径11.6μm,6.35μm以下体積頻度2.
7%,20.2μm以上体積頻度1.6%の分級品を収率74%で
得た。この分級製品にシリカ0.4重量%を外添混合し、
トナーサンプルとした。The fine powder is removed from this finely pulverized product by an elbow jet classifier, and the volume average diameter is 11.6 μm, 6.35 μm or less. Volume frequency 2.
A classified product with a volume frequency of 7%, 20.2 μm or more and a volume frequency of 1.6% was obtained with a yield of 74%. 0.4% by weight of silica is externally added and mixed to this classified product,
It was used as a toner sample.
実施例1及び比較例1の両トナーサンプルを複写機NP−
5040(キャノン製)を用いて複写試験を行った。23℃,6
5%RHの通常環境にて各々10万枚の耐久テストを行った
結果、実施例1のトナーは初期画像濃度1.32,耐久中の
画像濃度は1.37±0.03でほぼ均一な画像濃度を示し、ト
ナー補給による濃度低下は、0.05以内と画像にはほとん
ど影響がなかった。また、耐久を通じてクリーニング不
良、フィルミング等は発生しなかった。Both toner samples of Example 1 and Comparative Example 1 were copied by a copying machine NP-
A copying test was conducted using 5040 (manufactured by Canon). 23 ° C, 6
As a result of carrying out a durability test on 100,000 sheets in a normal environment of 5% RH, the toner of Example 1 had an initial image density of 1.32, and an image density during running of 1.37 ± 0.03, showing substantially uniform image density. The decrease in density due to replenishment was within 0.05, which had almost no effect on the image. In addition, no cleaning failure or filming occurred during the durability test.
一方、比較例1のトナーは、初期画像濃度が1.10でしか
なく耐久が進むにつれ1.35±0.07のレベルにまで上昇し
たが、トナー補給時においては、再び画像濃度が1.05に
まで低下し、再度十分な画像濃度に戻るまでにかなりの
枚数を必要とした。さらに、約30,000枚付近でクリーニ
ング不良が発生した。また同様の耐久テストを15℃,10
%RHの低湿環境で行ったところ比較例1のトナーでは現
像スリーブ上に波状のムラが発生し、全面黒画像では白
抜けが生じた。On the other hand, the toner of Comparative Example 1 had an initial image density of only 1.10 and rose to a level of 1.35 ± 0.07 as the durability progressed, but at the time of toner replenishment, the image density again decreased to 1.05, and was again sufficient. It took a considerable number of sheets to return to a proper image density. In addition, cleaning failure occurred around 30,000 sheets. A similar durability test was performed at 15 ℃, 10
When it was carried out in a low humidity environment of% RH, the toner of Comparative Example 1 had wavy unevenness on the developing sleeve, and white spots occurred on the entire black image.
実施例2 上記処方の混合物よりなるトナー原料を実施例1と同様
の方法により粗粉砕物を得た。Example 2 A toner raw material composed of the mixture having the above formulation was subjected to the same method as in Example 1 to obtain a coarsely pulverized product.
さらに、実施例1と同様の粉砕手段を用いて微粉砕を行
った。衝突式気流粉砕機に圧縮気体供給ノズルから4.6N
m3/min(6kgf/cm2)、二次空気は、第5図におけるF,G,
H,J,L,Mの6か所から各0.05Nm3/min(5.5kgf/cm2)の圧
縮空気を導入して、微粉砕製品として体積平均粒径7μ
mになるように微粉砕を行った。この微粉砕製品の粒度
分布は、体積平均粒径7.0μm,5.04μm以下体積頻度20.
0%,12.7μm以上体積頻度0.4%であった。この微粉砕
製品をエルボ・ジェット分級機を用いて分級し、収率79
%で体積平均粒径7.6μm,5.04μm以下体積頻度7.5%,1
2.7μm以上、体積頻度1.0%の分級製品を得た。この分
級製品にシリカ0.6重量%を外添混合し、トナーサンプ
ルとした。Further, fine pulverization was performed using the same pulverizing means as in Example 1. 4.6N from compressed gas supply nozzle to collision type airflow crusher
m 3 / min (6 kgf / cm 2 ), secondary air is F, G,
Compressed air of 0.05 Nm 3 / min (5.5 kgf / cm 2 ) was introduced from each of H, J, L, and M, and the volume average particle size was 7μ as a finely pulverized product.
Fine pulverization was performed so as to obtain m. The particle size distribution of this finely pulverized product has a volume average particle size of 7.0 μm, 5.04 μm or less and a volume frequency of 20.
The volume frequency was 0%, 12.7 μm or more and 0.4%. This finely pulverized product was classified using an elbow jet classifier, and the yield was 79
% Average volume particle size 7.6 μm, 5.04 μm or less Volume frequency 7.5%, 1
A classified product having a volume frequency of 1.0% of 2.7 μm or more was obtained. To this classified product, 0.6% by weight of silica was externally added and mixed to obtain a toner sample.
比較例2 実施例2で用いた粗粉砕物を、比較例1と同様の従来の
粉砕手段で微粉砕を行った。衝突式気流粉砕機4.6Nm3/m
in(6kgf/cm2)の加圧エアーを供給し、微粉砕製品とし
て体積平均粒径7μmになるように微粉砕を行った。Comparative Example 2 The coarsely pulverized product used in Example 2 was finely pulverized by the same conventional pulverizing means as in Comparative Example 1. Collision type air flow crusher 4.6 Nm 3 / m
A pressurized air of in (6 kgf / cm 2 ) was supplied, and finely pulverized as a finely pulverized product so as to have a volume average particle size of 7 μm.
このときの微粉砕処理量(=粗粉砕物供給量)は、実施
例2の約0.55倍であり、得られた微粉砕製品の粒度分布
は、体積平均粒径6.9μm,5.04μm以下体積頻度30.3%,
12.7μm以上体積頻度4.7%であった。The fine pulverization processing amount (= coarse pulverized material supply amount) at this time is about 0.55 times that of Example 2, and the particle size distribution of the obtained fine pulverized product is volume average particle size 6.9 μm, 5.04 μm or less and volume frequency. 30.3%,
The volume frequency was 12.7 μm or more and 4.7%.
この微粉砕製品をエルボ・ジェット分級機により分級し
て、体積平均粒径7.6μm,5.04μm以下体積頻度7.7%,1
2.7μm以上体積頻度1.2%の分級製品を61%の収率で得
た。この分級製品にシリカ0.6重量%を外添混合し、ト
ナーサンプルとした。This finely pulverized product is classified by an elbow jet classifier, and the volume average particle size is 7.6 μm, 5.04 μm or less Volume frequency 7.7%, 1
A classified product having a volume frequency of 2.7 μm or more and 1.2% was obtained with a yield of 61%. To this classified product, 0.6% by weight of silica was externally added and mixed to obtain a toner sample.
実施例2、比較例2の各トナーサンプルを複写機NP−48
35(キャノン製)を用いて複写試験を行った。通常環境
において耐久枚数5万枚まで行ったところ、実施例2の
トナーは、補給時の濃度低下もなく初期の濃度1.38を±
0.05の範囲の画像濃度で維持し、クリーニング不良、画
像汚れの現像が発生しなかったのに対し、比較例2のト
ナーは、初期濃度は1.20であり、耐久にしたがって画像
濃度は上昇し、1.35±0.07になったが、トナー補給時に
は、再び1.15にまで低下してしまった。また、3万枚で
クリーニング不良が発生した。The toner samples of Example 2 and Comparative Example 2 were prepared by using a copying machine NP-48.
A copying test was conducted using 35 (manufactured by Canon). When the number of durable sheets was increased to 50,000 in a normal environment, the toner of Example 2 had an initial density of 1.38 ±
While the image density was maintained in the range of 0.05 and the cleaning failure and the development of the image stain did not occur, the toner of Comparative Example 2 had an initial density of 1.20 and the image density increased with the endurance of 1.35. It became ± 0.07, but when it was replenished with toner, it fell to 1.15 again. In addition, cleaning failure occurred at 30,000 sheets.
実施例3 実施例2で用いた粗砕物を実施例1と同様の粉砕手段で
微粉砕を行った。Example 3 The coarsely pulverized product used in Example 2 was finely pulverized by the same pulverizing means as in Example 1.
衝突式気流粉砕機に圧縮気体供給ノズルから4.6Nm3/min
(6kgf/cm2)、二次空気は、第5図におけるF,G,H,J,L,
Mの6か所から各0.05Nm3/min(5.5kgf/cm2)の圧縮空気
を導入して、微粉砕製品として体積平均粒径6μmにな
るように微粉砕を行った。この微粉砕製品の粒度分布
は、体積平均粒径5.9μm,4.00μm以下体積頻度15.2%,
10.08μm以上体積頻度1.5%であった。この微粉砕製品
をエルボ・ジェット分級機を用いて分級し、収率75%で
体積平均粒径6.5μm,4.00μm以下体積頻度5.3%,10.08
μm以上体積頻度1.6%の分級製品を得た。この分級製
品にシリカ1.2重量%を外添混合し、トナーサンプルと
した。4.6Nm 3 / min from compressed gas supply nozzle to collision type airflow crusher
(6 kgf / cm 2 ), the secondary air is F, G, H, J, L,
Compressed air of 0.05 Nm 3 / min (5.5 kgf / cm 2 ) was introduced from each of 6 locations of M, and finely pulverized as a finely pulverized product so that the volume average particle diameter was 6 μm. The particle size distribution of this finely pulverized product is as follows: volume average particle size 5.9 μm, 4.00 μm or less Volume frequency 15.2%,
The volume frequency was 10.08 μm or more and 1.5%. This finely pulverized product is classified using an elbow jet classifier, yield 75%, volume average particle size 6.5 μm, 4.00 μm or less, volume frequency 5.3%, 10.08
A classified product having a volume frequency of 1.6 μm or more was obtained. 1.2% by weight of silica was externally added to and mixed with this classified product to obtain a toner sample.
比較例3 実施例2で用いた粗粉砕物を比較例1と同様の従来の粉
砕手段で微粉砕を行った。衝突式気流粉砕機4.6Nm3/min
(6kgf/cm2)の加圧エアーを供給し、微粉砕製品として
体積平均粒径6μmになるように微粉砕を行った。Comparative Example 3 The coarsely pulverized product used in Example 2 was finely pulverized by the same conventional pulverizing means as in Comparative Example 1. Collision type airflow crusher 4.6Nm 3 / min
(6 kgf / cm 2 ) of pressurized air was supplied and finely pulverized as a finely pulverized product so that the volume average particle diameter was 6 μm.
このときの微粉砕処理量(=粗粉砕物供給量)は、実施
例3の約0.5倍であり、得られた微粉砕製品の粒度分布
は、体積平均粒径6.2μm,4.00μm以下体積頻度15.8%,
10.08μm以上体積頻度3.3%であった。The amount of finely pulverized product (= amount of coarsely pulverized material supplied) at this time is about 0.5 times as large as that in Example 3, and the particle size distribution of the obtained finely pulverized product has a volume average particle size of 6.2 μm, 4.00 μm or less and volume frequency. 15.8%,
The volume frequency was 10.08 μm or more and 3.3%.
この微粉砕製品をエルボ・ジェット分級機により分級し
て、体積平均粒径6.7μm,4.00μm以下体積頻度5.6%,1
0.08μm以上体積頻度2.4%の分級製品を65%の収率で
得た。この分級製品にシリカ1.2重量%を外添混合し、
トナーサンプルとした。This finely pulverized product is classified by an elbow jet classifier, and the volume average particle size is 6.7 μm, 4.00 μm or less. Volume frequency 5.6%, 1
A classified product having a volume frequency of 2.4% of 0.08 μm or more was obtained in a yield of 65%. 1.2 weight% silica is externally added to this classified product and mixed,
It was used as a toner sample.
実施例3、及び比較例3の各トナーサンプルを複写機NP
−4835(キャノン製)を用いて複写試験を行った。通常
環境において耐久枚数5万枚まで行ったところ、実施例
3のトナーは、補給時の濃度低下もなく初期の濃度1.25
を±0.05の範囲の画像濃度で維持し、クリーニング不
良、画像汚れの現像が発生しなかったのに対し、比較例
3のトナーは、初期濃度は1.05であり、耐久にしたがっ
て画像濃度は上昇し、1.20±0.07になったが、トナー補
給時には再び1.05にまで低下してしまった。また、2万
枚でクリーニング不良が発生した。The toner samples of Example 3 and Comparative Example 3 were copied to the copying machine NP.
A copy test was performed using -4835 (manufactured by Canon). When the number of durable sheets was increased to 50,000 in a normal environment, the toner of Example 3 showed an initial density of 1.25 without any decrease in density during replenishment.
Was maintained at an image density in the range of ± 0.05, and cleaning failure and development of image stain did not occur, whereas the toner of Comparative Example 3 had an initial density of 1.05, and the image density increased with durability. , 1.20 ± 0.07, but it dropped to 1.05 again when toner was replenished. Also, cleaning failure occurred after 20,000 sheets.
さらに低湿環境下では、比較例3のトナーは、実施例3
に比べカブリが悪かった。Further, in a low humidity environment, the toner of Comparative Example 3 was
Fog was worse than
[発明の効果] 以上説明したように、本発明のトナー製造方法を用いる
ことにより、従来法に比べ、画像濃度が安定して高く、
耐久性が良く、カブリ、クリーニング不良等の画像欠陥
のない優れた静電荷像現像用トナーが、低コストで得ら
れる。また、より小さな粒子径の静電荷像現像用トナー
を効果的に得ることができる等の利点がある。[Effect of the Invention] As described above, by using the toner manufacturing method of the present invention, the image density is stable and high as compared with the conventional method.
An excellent electrostatic charge image developing toner having good durability and free from image defects such as fog and cleaning failure can be obtained at low cost. Further, there is an advantage that an electrostatic charge image developing toner having a smaller particle diameter can be effectively obtained.
第1図は、本発明の製造方法に用いる気流分級機の一実
施例の概略断面図であり、第2図は、第1図のA−A′
断面図である。 第3図は、本発明の製造方法に用いる衝突式気流粉砕機
の一実施例の概略断面図であり、第4図,第5図は、そ
れぞれ第3図のB−B′,C−C′断面図である。 第6図は、本発明の製造方法に用いる粉砕手段の構成を
示すフローチャートである。 第7図,第8図は、それぞれ従来の気流分級機,衝突式
気流粉砕機の概略図である。 4……分級室、5……案内室 8……供給筒、7……ルーバー 9……分級ルーバー、10……分級板 31……被粉砕物供給口、32……加速管 33……圧縮気体供給ノズル、34……加速管出口 35……粉砕室、36……衝突部材 37……衝突部材の衝突面、39……排出口 41……二次空気供給口FIG. 1 is a schematic cross-sectional view of one embodiment of an air classifier used in the manufacturing method of the present invention, and FIG. 2 is AA ′ of FIG.
FIG. FIG. 3 is a schematic sectional view of an embodiment of a collision type air flow crusher used in the manufacturing method of the present invention, and FIGS. 4 and 5 are BB ′ and CC of FIG. 3, respectively. ′ It is a cross-sectional view. FIG. 6 is a flowchart showing the structure of the crushing means used in the manufacturing method of the present invention. FIG. 7 and FIG. 8 are schematic views of a conventional airflow classifier and a collision type airflow crusher, respectively. 4 …… Classification room, 5 …… Guide room 8 …… Supply cylinder, 7 …… Louver 9 …… Classification louver, 10 …… Classification plate 31 …… Grinding object supply port, 32 …… Acceleration tube 33 …… Compression Gas supply nozzle, 34 ...... Accelerator pipe outlet 35 …… Grinding chamber, 36 …… Collision member 37 …… Collision member collision surface, 39 …… Discharge port 41 …… Secondary air supply port
───────────────────────────────────────────────────── フロントページの続き (72)発明者 三ツ村 聡 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 後関 康秀 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 平1−207152(JP,A) 実開 昭60−189377(JP,U) 実開 昭58−13956(JP,U) 特公 平5−78392(JP,B2) 実公 昭57−20298(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Mitsumura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yasuhide Goseki 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non-Co. Ltd. (56) Reference Japanese Unexamined Patent Publication No. 1-207152 (JP, A) Actually opened 60-189377 (JP, U) Actually opened 58-13956 (JP, U) JP-B 5-78392 (JP , B2) Sukeko 57-20298 (JP, Y2)
Claims (2)
組成物を溶融混練し、混練物を冷却固化し、固化物を粉
砕して調製した粉体材料を、気流分級機及び該気流分級
機と連通している衝突式気流粉砕機を具備している粉砕
手段により粉砕して静電荷像現像用トナーを得る製造方
法において、 該粉体材料を、該気流分級機内において、搬送エアーと
ともに分級室の上部に配置された供給筒に供給し、 該供給筒と連通する環状の案内室から、該案内室と該分
級室との間に設けられている、該案内室の内周円方向の
接線方向に先端を向けた複数のルーバー間を通って、搬
送エアーとともに該粉体材料を旋回下降させながら該分
級室の中央部へ分散導入し、 該ルーバー間から該分級室内に導入された該粉体材料の
旋回速度を、該分級室の周囲に設けられている複数の分
級ルーバー間から吸引導入された分級エアーで更に加速
し、 該分級室の底部に配置されている中央部が高くなるよう
に形成された傾斜状の分級板上で、該分級エアーにより
該粉体材料を遠心分離することによって粗粉と微粉とに
分級し、 分級された微粉を該分級板の中央部に設けられた微粉排
出口から微粉排出シュートへ排出してトナー粒子を生成
するために使用し、 分級された粗粉を該分級板の外周囲に設けられた粗粉排
出口より排出し、 排出された粗粉を該衝突式粉砕機に導入し、 該衝突式粉砕機内において、導入された粗粉を加速管内
の高圧気体で加速し、 該加速管の被粉砕物供給口と加速管出口の間に設けられ
ている二次空気導入口から導入される空気によって加速
管内の粗粉を分散し、 該加速管から噴出された粗粉を粉砕室に設けられている
衝突部材に衝突させて粉砕し、 粉砕された該粗粉を該気流分級機に導入する ことを特徴とする静電荷像現像用トナーの製造方法。1. A powder material prepared by melt-kneading a composition containing at least a binder resin and a colorant, cooling and solidifying the kneaded material, and pulverizing a solidified product, using an air stream classifier and the air stream classifier. In a manufacturing method for obtaining a toner for developing an electrostatic charge image by pulverizing with a pulverizing means equipped with a collision type air flow pulverizer communicating with the powder material, the powder material is classified in the air flow classifier together with a conveying air into a classification chamber. Tangential line in the inner circumferential direction of the guide chamber, which is provided between the guide chamber and the classification chamber from an annular guide chamber which is supplied to the supply cylinder disposed in the upper part of the guide chamber and communicates with the supply cylinder. The powder material is dispersed and introduced into the central portion of the classification chamber while swirling and descending with the conveying air through a plurality of louvers whose ends are oriented in the direction, and the powder introduced into the classification chamber from between the louvers. The rotation speed of the body material is set around the classification chamber. Is further accelerated by the classification air sucked and introduced from between the plurality of classification louvers, and the classification is performed on the inclined classifying plate formed so that the central part located at the bottom of the classifying chamber becomes higher. The powder material is classified into coarse powder and fine powder by centrifuging with air, and the classified fine powder is discharged from a fine powder discharge port provided in the center of the classifying plate to a fine powder discharge chute to remove toner particles. Used to generate, the classified coarse powder is discharged from a coarse powder discharge port provided on the outer periphery of the classifying plate, and the discharged coarse powder is introduced into the collision type crusher to perform the collision type crushing. In the machine, the introduced coarse powder is accelerated by the high pressure gas in the accelerating tube, and is accelerated by the air introduced from the secondary air introducing port provided between the crushed material supply port of the accelerating tube and the accelerating tube outlet. Coarse powder in the tube is dispersed and ejected from the acceleration tube. The coarse powder was pulverized by colliding the collision member provided in the grinding chamber, milled method for producing a toner for developing electrostatic images, characterized in that the crude powder is introduced into the gas stream classifier.
分が頂角110゜以上180゜未満の錐体形状を有している衝
突式気流粉砕機であることを特徴とする請求項(1)記
載の静電荷像現像用トナーの製造方法。2. The crushing means is a collision type airflow crusher in which a tip portion of a collision surface of a collision member has a cone shape with an apex angle of 110 ° or more and less than 180 °. (1) A method for producing a toner for developing an electrostatic image as described in (1).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001102A JPH0679167B2 (en) | 1990-01-09 | 1990-01-09 | Method for producing toner for developing electrostatic image |
DE69027492T DE69027492T2 (en) | 1989-08-30 | 1990-08-30 | Device and method for impact jet grinding of powdery solids |
KR1019900013516A KR920009291B1 (en) | 1989-08-30 | 1990-08-30 | Collision type gas current pulverizer and method for pulverizing powders |
EP90116657A EP0417561B1 (en) | 1989-08-30 | 1990-08-30 | Collision-type gas current pulverizer and method for pulverizing powders |
US07/983,287 US5316222A (en) | 1989-08-30 | 1992-11-30 | Collision type gas current pulverizer and method for pulverizing powders |
US08/178,849 US5435496A (en) | 1989-08-30 | 1994-01-07 | Collision-type gas current pulverizer and method for pulverizing powders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001102A JPH0679167B2 (en) | 1990-01-09 | 1990-01-09 | Method for producing toner for developing electrostatic image |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03206466A JPH03206466A (en) | 1991-09-09 |
JPH0679167B2 true JPH0679167B2 (en) | 1994-10-05 |
Family
ID=11492123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001102A Expired - Fee Related JPH0679167B2 (en) | 1989-08-30 | 1990-01-09 | Method for producing toner for developing electrostatic image |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0679167B2 (en) |
-
1990
- 1990-01-09 JP JP2001102A patent/JPH0679167B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03206466A (en) | 1991-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5111998A (en) | Process for producing toner for developing electrostatic image and apparatus system therefor | |
US8096492B2 (en) | Pulverizing and coarse powder classifying apparatus and fine powder classifying apparatus | |
JP3101416B2 (en) | Collision type airflow pulverizer and method for producing toner for electrostatic image development | |
EP0417561B1 (en) | Collision-type gas current pulverizer and method for pulverizing powders | |
JPH06230606A (en) | Production of toner and producing equipment system used therefor | |
JPH09187732A (en) | Preparation of toner | |
JPH0534977A (en) | Production of electrostatic charge image developing toner | |
JPH0679167B2 (en) | Method for producing toner for developing electrostatic image | |
JP3740202B2 (en) | Toner production method | |
JP3110965B2 (en) | Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same | |
JP2654989B2 (en) | Powder grinding method | |
JPH0679166B2 (en) | Method for producing toner for developing electrostatic image | |
JPH08103685A (en) | Impact type pneumatic pulverizer and production of electrostatic charge image developing toner | |
JP2663046B2 (en) | Collision type air flow crusher and crushing method | |
JPH03287173A (en) | Production of electrostatically charged image developing toner | |
JPH08182936A (en) | Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same | |
JP2805332B2 (en) | Grinding method | |
JPH0792735A (en) | Manufacture of toner and device for manufacturing the same | |
JP2704777B2 (en) | Collision type air flow crusher and crushing method | |
JP2704787B2 (en) | Powder material grinding method | |
JP2851872B2 (en) | Method for producing toner for developing electrostatic images | |
JP3302270B2 (en) | Manufacturing method of toner | |
JPH08117633A (en) | Production of impact pneumatic pulverizer and static charge developing toner | |
JP3220918B2 (en) | Method and apparatus for manufacturing toner | |
JPH0985741A (en) | Method and device to manufacture spherical toner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071005 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |