JPH0359676A - Manufacture of toner for electrostatic charge image development - Google Patents

Manufacture of toner for electrostatic charge image development

Info

Publication number
JPH0359676A
JPH0359676A JP1195625A JP19562589A JPH0359676A JP H0359676 A JPH0359676 A JP H0359676A JP 1195625 A JP1195625 A JP 1195625A JP 19562589 A JP19562589 A JP 19562589A JP H0359676 A JPH0359676 A JP H0359676A
Authority
JP
Japan
Prior art keywords
chamber
classification
powder
toner
classification chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1195625A
Other languages
Japanese (ja)
Other versions
JPH0679166B2 (en
Inventor
Masakichi Kato
政吉 加藤
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1195625A priority Critical patent/JPH0679166B2/en
Publication of JPH0359676A publication Critical patent/JPH0359676A/en
Publication of JPH0679166B2 publication Critical patent/JPH0679166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To obtain a fine pulverized product with a fine grading distribution by providing an annular guide chamber which communicates with a powder supply cylinder above a classification chamber and providing plural louvers which have tips in the tangential direction of the inner circumferential direction of a guide chamber between a guide chamber and the classification chamber. CONSTITUTION:The upper part of the classification chamber 4 is closed with the annular guide chamber 5 fitted above a main body casing 1 and a conic (umbrella-shaped) upper cover 6 which is high at the center part. Then a partition wall between the classification chamber 4 and guide chamber 5 is provided with louvers 7 arrayed on the partition wall between the classification chamber 4 and guide chamber 5 in the circumferential direction and a powder material and air which are sent in the guide chamber 5 are rotated and supplied into the classification chamber 4 through between the respective louvers 7. Consequently, the powder material flows in the classification chamber 4 with nearly uniform concentration, so the powder having the fine distribution is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、結着樹脂を有する固体粒子の粉砕を行って静
電荷像現像用トナーを得るための製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a manufacturing method for obtaining a toner for developing an electrostatic image by pulverizing solid particles having a binder resin.

〔背景技術〕[Background technology]

電子写真法、静電写真法、静電印刷法の如き画像形成方
法では静電荷像を現像するためにトナーが使用される。
In image forming methods such as electrophotography, electrostatography, and electrostatic printing, toners are used to develop electrostatic images.

最終製品が微細粒子であることが要求される静電荷像現
像用トナーの一般的な製造方法としては、被転写材に定
着させるための結着用樹脂、トナーとしての色味を出さ
せる各種着色剤、粒子に電荷を付与させるための荷電制
御剤、また特開昭54−42141号公報、特開昭55
−18656号公報に示されるようないわゆる一成分現
像法においては、トナー自身に搬送性等を付与するため
の各種磁性材料を用い、他に必要に応じて離型剤、流動
性付与剤を乾式混合し、しかる後ロールミル、エクスト
ルーダなどの汎用混練装置にて溶融混練し、冷却固化し
た後に、ジェット気流式粉砕機、機械衝撃式粉砕機等の
各種粉砕装置により微砕化し、各種風力分級機により分
級を行うことにより、トナーとして必要な粒径にそろえ
る。これに必要に応じて流動化剤や滑剤等々を乾式混合
しトナーとする。またいわゆる2成分現像方法に用いる
場合は各種磁性キャリアと混ぜあわせた後トナーとして
画像形成に供するわけである。
The general manufacturing method for electrostatic image developing toner, which requires the final product to be fine particles, includes a binder resin to fix it on the transfer material, and various colorants to give the toner its color. , a charge control agent for imparting charge to particles, and JP-A-54-42141, JP-A-55
In the so-called one-component development method as shown in Japanese Patent No. 18656, various magnetic materials are used to impart transportability to the toner itself, and a release agent and a fluidity imparting agent are added as needed in a dry process. After mixing, the mixture is melted and kneaded using general-purpose kneading equipment such as a roll mill or extruder, cooled and solidified, and then pulverized using various types of pulverizing equipment such as jet air flow type pulverizers and mechanical impact type pulverizers, and then pulverized using various types of wind classifiers. By performing classification, the particle size can be adjusted to the size required for toner. If necessary, a fluidizing agent, a lubricant, etc. are dry-mixed into the toner. When used in a so-called two-component development method, the toner is mixed with various magnetic carriers and then used for image formation.

さらに近年の複写物、印刷物等の汎用化、大量消費化に
伴い、低コストで高性能の現像剤が要求されている。
Furthermore, with the recent widespread use and mass consumption of copies, printed matter, etc., there is a demand for low-cost, high-performance developers.

上述の如く、微細粒子であるトナー粒子を得るためには
、各種粉砕装置が用いられるが、結着用樹脂を主とする
トナーの粉砕には、ジェット気流を用いたジェット気流
式粉砕機が一般的に用いられる。
As mentioned above, various types of pulverizers are used to obtain toner particles, which are fine particles, but a jet airflow type pulverizer that uses a jet airflow is generally used to grind toner containing mainly binder resin. used for.

さらに、これらの粉砕機は、第3図に示したフローのよ
うに、分級機と接続して、粉砕した粒子を分級機で微細
粒子と粗粒子とに分級し、粗粒子は再び粉砕機へ戻し粉
砕を行い、微細粒子を微粉砕製品として得るという粉砕
手段として用いている。
Furthermore, these pulverizers are connected to a classifier, as shown in the flow shown in Figure 3, and the pulverized particles are classified into fine particles and coarse particles by the classifier, and the coarse particles are sent back to the pulverizer. It is used as a pulverization means to perform back-pulverization to obtain fine particles as a pulverized product.

従来、この粉砕手段として用いている分級機としては、
分級羽根の回転により強制的に旋回気流をつくり分級を
行うロータ型分級機や外部から導入される気流により旋
回気流をつくり分級を行うスパイラル気流分級機がある
が、結着用樹脂を主とするトナーの分級には、接粉部に
可動部分のないスパイラル気流分級機が好ましく用いら
れる。この代表的なものとして第4図に示したようなデ
ィスバージョンセパレーター(DS−UR型:日本ニュ
ーマチック工業社製)が一般に用いられている。
Conventionally, the classifier used as this crushing means is:
There are rotor type classifiers that classify by forcibly creating a swirling airflow by rotating classification blades, and spiral airflow classifiers that classify by creating a swirling airflow using airflow introduced from the outside. For classification, a spiral air classifier with no moving parts in the powder contacting part is preferably used. As a typical example of this, a dispersion separator (DS-UR type: manufactured by Nippon Pneumatic Kogyo Co., Ltd.) as shown in FIG. 4 is generally used.

しかしながら、第4図に示したようなこの種の気流分級
機の分級室への粉体材料供給部は、サイクロン状の形状
をなしており、上部カバー60の上面中央部には案内筒
50を起立状に設け、該案内筒50の上部外周面に供給
筒80が接続されている。供給筒80は、案内筒50の
外周に供給筒80を介して供給される粉砕材料が案内筒
円周接線方向に導入されるように接続されている。該供
給筒80より案内筒50内に粉体材料を供給すると、該
粉体材料は案内筒50の内周面に沿って旋回しながら下
降する。
However, the powder material supply section to the classification chamber of this type of air classifier as shown in FIG. A supply cylinder 80 is connected to the upper outer peripheral surface of the guide cylinder 50. The supply cylinder 80 is connected to the outer periphery of the guide cylinder 50 so that the crushed material supplied via the supply cylinder 80 is introduced in a tangential direction to the circumference of the guide cylinder. When the powder material is supplied into the guide tube 50 from the supply tube 80, the powder material descends while rotating along the inner peripheral surface of the guide tube 50.

この場合粉体材料は、供給筒80より案内筒50内周面
に沿って帯状に下降するため分級室40に流入する粉体
材料の分布及び濃度が不均一となり(分級室へ案内筒内
周面の一部からのみ粉体材料は流入する)、分散が悪い
。また、処理量を大きくとると粉体材料の凝集がいっそ
う起こり易く、さらに分散が十分に行われなくなり、高
精度の分級が行えないという問題点がある。
In this case, the powder material descends in a band shape from the supply tube 80 along the inner peripheral surface of the guide tube 50, so the distribution and concentration of the powder material flowing into the classification chamber 40 becomes uneven (the powder material flows into the classification chamber along the inner circumference of the guide tube 50). Powder material flows only from part of the surface), resulting in poor dispersion. Further, if the throughput is large, the powder material is more likely to aggregate, and furthermore, the dispersion is not sufficiently performed, resulting in a problem that highly accurate classification cannot be performed.

したがって、微粉砕製品は、粒度分布幅の広い粉体とな
り、その結果次工程の微粉体を除去するため分級工程に
おいて収率低下の如き現象を引き起こすという問題点が
ある。また所望の粒径以下に粉砕された粉体の一部は、
粗粉として粉砕機へ再度循環されるため超微粉(トナー
として適さない程微小な粉体)が発生しやすい。この超
微粉は°、粒子に対する引力が強いため、微粉体を取り
除く分級工程を用いても取り除くことが難しく、このよ
うな粉体をトナーとして用いた場合、画像濃度の低下や
カプリ現象、さらには現像スリーブ上のムラ現象等画像
品質を低下させる原因となる。
Therefore, the finely pulverized product becomes a powder with a wide particle size distribution, and as a result, there is a problem in that it causes a phenomenon such as a decrease in yield in the classification step to remove the fine powder in the next step. In addition, some of the powder that has been crushed to a size smaller than the desired particle size is
Since it is recirculated to the pulverizer as a coarse powder, ultrafine powder (powder too small to be suitable as a toner) is likely to be generated. This ultra-fine powder has a strong attraction to the particles, so it is difficult to remove even with a classification process that removes the fine powder. When such powder is used as a toner, it may cause a decrease in image density, capri phenomenon, and even This causes deterioration of image quality such as unevenness on the developing sleeve.

また、より大量に微粉砕製品を得るためや、より微小な
微粉砕製品を得るためには、ジェット気流粉砕機として
は、供給高圧気体量を増大させることが有効な手段であ
るが、このような気流分級機では、分級室に流入するエ
アーの量が多くなるため分級室において旋回する粒子の
中心向き速度が大きくなり、分離粒子径(微粉砕製品の
粒径)が大きくなるという問題点があり、当初の目的を
達することができない。
In addition, in order to obtain a larger amount of finely pulverized products or to obtain finer pulverized products, increasing the amount of high-pressure gas supplied is an effective means for jet stream pulverizers. With airflow classifiers, the problem is that as the amount of air flowing into the classification chamber increases, the velocity of particles swirling in the classification chamber toward the center increases, resulting in an increase in the separated particle size (particle size of the finely pulverized product). Therefore, the original purpose cannot be achieved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の如き欠点を解決した静電荷像現
像用トナーの製造方法を提供するものである。
An object of the present invention is to provide a method for producing a toner for developing electrostatic images, which solves the above-mentioned drawbacks.

詳しく述べれば、本発明の目的は、静緻な粒度分布の微
粉砕製品を得ることにより、良好な性能を有する静電荷
像現像用トナーの製造方法を提供するものである。
Specifically, an object of the present invention is to provide a method for producing a toner for developing electrostatic images that has good performance by obtaining a finely pulverized product with a fine particle size distribution.

さらに本発明の目的は、より小さな粒径の静電荷像現像
用トナーを効率良く製造する製造方法を提供するもので
ある。
A further object of the present invention is to provide a manufacturing method for efficiently manufacturing toner for developing electrostatic images having a smaller particle size.

〔発明の概要〕[Summary of the invention]

本発明の静電荷像現像用トナーの製造方法に用いる粉砕
手段は、分級室の底部に中央部が高くなる傾斜状の分級
板を有し、該分級室において搬送エアーとともに供給さ
れた粉体材料を分級ルーパーを介して流入する気流によ
って旋回流動させて微粉と粗粉とに遠心分離し、微粉を
分級板の中央部に設けられた排出口に接続した微粉排出
シュートへ排出させるとともに、粗粉を分級板の外周部
に形成した排出口より排出する気流分級機であり、該分
級室の上部に粉体供給筒と連通する環状の案内室を設け
、該案内室と該分級室との間に案内室の内周円方向の接
線方向に先端を向けた複数のルーパーを設けた気流分級
機とジェット気流粉砕機とを例えば第3図に示したフロ
ーチャートのように接続したものを用いる。
The pulverizing means used in the method for producing toner for developing electrostatic images of the present invention has a slanted classification plate with a high central part at the bottom of a classification chamber, and the powder material is supplied together with conveying air in the classification chamber. is swirled by the airflow flowing through the classification looper and centrifuged into fine powder and coarse powder, and the fine powder is discharged to the fine powder discharge chute connected to the discharge port provided in the center of the classification plate, and the coarse powder is This is an air classifier that discharges the powder from an outlet formed on the outer periphery of the classification plate, and an annular guide chamber that communicates with the powder supply tube is provided in the upper part of the classification chamber, and between the guide chamber and the classification chamber. For example, an air classifier equipped with a plurality of loopers whose tips are oriented tangentially to the inner circumferential direction of the guide chamber and a jet air crusher are connected as shown in the flowchart shown in FIG. 3.

〔発明の詳細な説明〕[Detailed description of the invention]

第3図は、本発明の静電荷像現像用トナーの製造方法に
用いる粉砕手段の構成を示すフローチャートであり、第
1図及び第2図は、本発明の製造方法に用いた気流分級
機の一実施例を概略的に示した図である。
FIG. 3 is a flowchart showing the configuration of the crushing means used in the method for producing toner for developing electrostatic images of the present invention, and FIGS. 1 and 2 show the configuration of the air classifier used in the production method of the present invention. 1 is a diagram schematically illustrating an embodiment; FIG.

第1図において、lは筒状の本体ケーシングを示し、2
は下部ケーシングを示し、その下部に粗粉排出用のホッ
パー3が接続されている。本体ケーシング1の内部は、
分級室4が形成されており、この分級室4の上部は本体
ケーシングlの上部に取付けた環状の案内室5と中央部
が高くなる円錐状(傘状)の上部カバー6によって閉鎖
されている。
In FIG. 1, l indicates a cylindrical main casing, and 2
indicates a lower casing, to which a hopper 3 for discharging coarse powder is connected. The inside of the main body casing 1 is
A classification chamber 4 is formed, and the upper part of the classification chamber 4 is closed by an annular guide chamber 5 attached to the upper part of the main body casing l and a conical (umbrella-shaped) upper cover 6 whose central part is raised. .

分級室4と案内室5の間の仕切壁に円周方向に配列する
複数のルーパー7を設け、案内室5に送り込まれた粉体
材料とエアーを各ルーパー7の間より分級室4に旋回さ
せて流入させる。
A plurality of loopers 7 arranged in the circumferential direction are provided on the partition wall between the classification chamber 4 and the guide chamber 5, and the powder material and air sent into the guide chamber 5 are swirled into the classification chamber 4 from between each looper 7. Let it flow.

本体ケーシングlの下部には円周方向に配列する分級ル
ーパー9を設け、外部から分級室4へ旋回流を起こす分
級エアーを分級ルーパー9を介して取り入れている。
Classifying loopers 9 arranged in the circumferential direction are provided in the lower part of the main body casing 1, and classified air that causes a swirling flow is introduced into the classification chamber 4 from the outside through the classifying loopers 9.

分級室4の底部に、中央部が高くなる円錐状(傘状)の
分級板10を設け、該分級板10の外周囲に粗粉排出口
11を形成する。また、分級板10の中央部には微粉排
出シュート12を接続し、該シュート12の下端部をL
字形に屈曲し、この屈曲端部を下部ケーシング2の側壁
より外部に位置させる。さらに該シュートはサイクロン
や集塵機のような微粉回収手段を介して吸引ファンに接
続しており、該吸引ファンにより分級室4に吸引力を作
用させ、該ルーパー9間より分級室4に流入する吸引エ
アーによって分級に要する旋回流を起こしている。
A conical (umbrella-shaped) classification plate 10 with a high central portion is provided at the bottom of the classification chamber 4, and a coarse powder discharge port 11 is formed around the outer periphery of the classification plate 10. In addition, a fine powder discharge chute 12 is connected to the center of the classification plate 10, and the lower end of the chute 12 is connected to the L
The bent end portion is located outside the side wall of the lower casing 2. Further, the chute is connected to a suction fan via a fine powder collection means such as a cyclone or a dust collector, and the suction fan applies suction force to the classification chamber 4, and the suction flows into the classification chamber 4 from between the loopers 9. The air creates the swirling flow required for classification.

気流分級機は上記の構造から成り、供給筒8より案内筒
5内に(ジェットミルより粉砕された粉体材料と粉砕に
用いられたエアー及び新たに供給された粉砕原料からな
る)粉体材料を含むエアーを供給すると、この粉体材料
を含むエアーは、案内室5から各ルーパー7間を通過し
て分級室4に旋回しながら均一の濃度で分散されながら
流入する。
The air classifier has the above-mentioned structure, and the powder material (consisting of the powder material pulverized from the jet mill, the air used for pulverization, and the newly supplied pulverized raw material) is supplied from the supply cylinder 8 into the guide cylinder 5. When the air containing the powder material is supplied, the air containing the powder material passes from the guide chamber 5 between the loopers 7 and flows into the classification chamber 4 while being swirled and dispersed at a uniform concentration.

分級室4内に旋回しながら流入した粉体材料は、微粉排
出シュート12に接続した吸引ファンにより、分級室下
部の分級ルーパー9間より流入する吸引エアー流にのっ
て旋回を増し、各粒子に作用する遠心力によって粗粉と
微粉とに遠心分離され、分級室4内の外周部を旋回する
粗粉は粗粉排出口11より排出され、下部のホッパー3
より排出され再びジェットミルに供給される。また、分
級板10の上部傾斜面に沿って中央部へと移行する微粉
は微粉排出シュート12により、微粉回収手段へ微粉砕
製品として排出される。
The powder material flowing into the classification chamber 4 while swirling is rotated by the suction fan connected to the fine powder discharge chute 12, and the swirl is increased by the suction air flow flowing from between the classification loopers 9 at the bottom of the classification chamber. The coarse powder swirling around the outer periphery of the classification chamber 4 is centrifugally separated into coarse powder and fine powder by the centrifugal force acting on the classification chamber 4, and the coarse powder is discharged from the coarse powder discharge port 11 and transferred to the hopper 3 at the bottom.
It is then discharged from the jet mill and fed again to the jet mill. Further, the fine powder moving toward the center along the upper inclined surface of the classification plate 10 is discharged as a finely pulverized product to the fine powder collecting means by the fine powder discharge chute 12.

分級室4に粉体材料とともに流入するエアーはすべて旋
回流となって流入するため、分級室4内で旋回する粒子
の中心向きの速度は遠心力に比べ相対的に小さくなり、
分級室4において分離粒子径の小さな分級が行われ、粒
子径の非常に小さな微粉を微粉排出シュート12に排出
させることができる。
All of the air that flows into the classification chamber 4 together with the powder material flows in the form of a swirling flow, so the velocity toward the center of the particles swirling within the classification chamber 4 is relatively small compared to the centrifugal force.
In the classification chamber 4, classification into small separated particles is performed, and fine powder with a very small particle size can be discharged to the fine powder discharge chute 12.

しかも、粉体材料がほぼ均一な濃度で分級室に流入する
ため精緻な分布の粉体として得ることができる。
Moreover, since the powder material flows into the classification chamber at a substantially uniform concentration, it is possible to obtain powder with a fine distribution.

したがって、微粉砕製品として精緻な分布の粉体として
得ることができるため、前述の如(、超微粉が発生せず
、最終製品としたときに結果として良好な性能を有する
トナーを得ることができる。
Therefore, it is possible to obtain a finely pulverized product as a powder with a fine distribution, so that ultrafine powder is not generated as described above, and as a result, a toner with good performance can be obtained when it is made into a final product. .

同時に、微粉砕処理能力の向上に適している。At the same time, it is suitable for improving pulverization processing capacity.

また、ジェットミルの処理量を多くする場合や、粒子径
の小さな粉砕品を得る場合には、粉砕に供する高圧気体
の圧力を高くすることや、大型のジェットミルを用いる
など、ジェットミルで使用される粉砕に供する高圧気体
の量を多くすることが有効であるが、この場合、ジェッ
トミルから分級機に供給されるエアー量(供給筒8から
流入するエアー量)が多くなるため、上記の効果がより
顕著になる。
In addition, when increasing the throughput of a jet mill or obtaining pulverized products with small particle sizes, it is necessary to increase the pressure of the high-pressure gas used for pulverization or use a large jet mill. It is effective to increase the amount of high-pressure gas used for pulverization, but in this case, the amount of air supplied from the jet mill to the classifier (the amount of air flowing in from the supply tube 8) increases, so the above-mentioned The effect becomes more noticeable.

以下、本発明を実施例に基づき詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

実施例1 上記処方の混合物よりなるトナー原料を2軸型工クスト
ルーダーPCM−30(池貝鉄工社製)を用い溶融混線
を行った。冷却後、ハンマーミルでO81〜1mmの粗
粉砕物を得た。
Example 1 A toner raw material consisting of a mixture of the above formulation was melt mixed using a two-screw type extruder PCM-30 (manufactured by Ikegai Tekko Co., Ltd.). After cooling, a coarsely pulverized product of O81 to 1 mm was obtained using a hammer mill.

得られた粗粉砕物をジェットミルPJM−1型(日本ニ
ューマチック工業社製)と第1図に示した気流分級機か
らなる粉砕手段(第3図に示したフローチャートの構成
)に供給して、ジェットミルに4Ni /min (5
kgf/ c rrr)の加圧エアーを供給し、微粉砕
製品として体積平均粒径11μm(コールタ−カウンタ
ーによる測定:以下同様)になるように微粉砕を行った
The obtained coarsely pulverized material was supplied to a pulverizing means (configuration shown in the flow chart shown in Fig. 3) consisting of a jet mill PJM-1 type (manufactured by Nippon Pneumatic Kogyo Co., Ltd.) and an air classifier shown in Fig. 1. , 4Ni/min (5
kgf/c rrr) of pressurized air was supplied to perform fine pulverization so that the volume average particle size of the finely pulverized product was 11 μm (measured using a Coulter counter; the same applies hereinafter).

このときの微粉砕製品の粒度分布は、体積平均粒径11
.0 μm、 6.35 μm以下体積頻度12.8%
、20.2μm以上体積頻度0.8%であった。
The particle size distribution of the finely pulverized product at this time is a volume average particle size of 11
.. 0 μm, 6.35 μm or less volume frequency 12.8%
, the volume frequency of 20.2 μm or more was 0.8%.

この微粉砕製品をエルボ−ジェット分級機(8鉄鉱業社
製)により微粉を除去して、体積平均粒径11.6 μ
m、 6.35 μm以下体積頻度2.4%、20.2
μm以上体積頻度1.0%の分級製品を81%の収率で
得た。この分級製品にシリカ0.4重量%を外添混合し
、トナーサンプルとした。
Fine powder was removed from this finely pulverized product using an elbow jet classifier (manufactured by 8 Iron Mining Co., Ltd.), and the volume average particle size was 11.6 μm.
m, 6.35 μm or less volume frequency 2.4%, 20.2
A classified product with a volume frequency of 1.0% of μm or more was obtained with a yield of 81%. To this classified product, 0.4% by weight of silica was externally added and mixed to prepare a toner sample.

比較例1 実施例1で用いた粗粉砕物を実施例1と同じ供給量で、
第4図に示されるような従来型の気流分級機DS−UR
型(日本ニューマチック工業社製)とジェットミルPJ
M−1型からなる粉砕手段で実施例1と同様に4N r
rr/min (5kgf/c rtr)の加圧エアー
を用いて体積平均11μmになるように微粉砕を行った
Comparative Example 1 The coarsely ground material used in Example 1 was fed in the same amount as in Example 1,
Conventional air classifier DS-UR as shown in Figure 4
Mold (manufactured by Nippon Pneumatic Kogyo Co., Ltd.) and jet mill PJ
Similar to Example 1, 4N r was
Fine pulverization was performed using pressurized air at rr/min (5 kgf/crtr) to give a volume average of 11 μm.

このときの微粉砕製品の粒度分布は、体積平均粒径11
.1 μm、 6.35 μm以下体積頻度15.3%
、20.2μm以上体積頻度1.3%であった。
The particle size distribution of the finely pulverized product at this time is a volume average particle size of 11
.. 1 μm, 6.35 μm or less volume frequency 15.3%
, the volume frequency of 20.2 μm or more was 1.3%.

この微粉砕製品をエルボ−ジェット分級機により微粉を
除去して、体積平均径11.6μm、5.35μm以下
体積頻度2.7%、20.2μm以上体積頻度1.6%
の分級製品を収率74%で得た。この分級製品にシリカ
0.4重量%を外添混合し、トナーサンプルとした。
Fine powder was removed from this finely pulverized product using an elbow jet classifier, and the volume average diameter was 11.6 μm, the volume frequency of 5.35 μm or less was 2.7%, and the volume frequency of 20.2 μm or more was 1.6%.
A classified product with a yield of 74% was obtained. To this classified product, 0.4% by weight of silica was externally added and mixed to prepare a toner sample.

実施例1及び比較例1の両トナーサンプルを複写機NP
−5040(キャノン製)を用いて複写試験を行った。
Both toner samples of Example 1 and Comparative Example 1 were transferred to a copying machine NP.
A copying test was conducted using -5040 (manufactured by Canon).

23℃、65%RHの通常環境にて各々lO万枚の耐久
テストを行った結果、実施例1のトナーは初期画像濃度
1.32.耐久中の画像濃度は1.37±0.03でほ
ぼ均一な画像濃度を示し、トナー補給による濃度低下は
、0.05以内と画像にはほとんど影響がなかった。ま
た、耐久を通じてクリーニング不良、フィルミング等は
発生しなかった。
As a result of a durability test of 10,000 sheets of each in a normal environment of 23° C. and 65% RH, the toner of Example 1 had an initial image density of 1.32. The image density during durability was 1.37±0.03, showing a substantially uniform image density, and the decrease in density due to toner replenishment was within 0.05, which had almost no effect on the image. Furthermore, no cleaning defects or filming occurred during the durability test.

一方、比較例1のトナーは、初期画像濃度が1゜10で
しかなく、耐久が進むにつれ1.35±0.07のレベ
ルにまで上昇したが、トナー補給時においては、再び画
像濃度が1.05にまで低下し、再度十分な画像濃度に
戻るまでにかなりの枚数を必要とした。さらに約30,
000枚付近でクリーニング不良が発生した。また同様
の耐久テストを15℃、  10%RHの低湿環境で行
ったところ比較例1のトナーでは現像スリーブ上に波状
のムラが発生し、全面黒画像では、白抜けが生じた。
On the other hand, the toner of Comparative Example 1 had an initial image density of only 1°10, which rose to a level of 1.35±0.07 as the durability progressed, but when the toner was replenished, the image density returned to 1°10. The image density decreased to .05, and a considerable number of sheets were required to return to a sufficient image density again. Approximately 30 more
A cleaning failure occurred around 000 sheets. When a similar durability test was conducted in a low humidity environment of 15° C. and 10% RH, the toner of Comparative Example 1 caused wavy unevenness on the developing sleeve, and white spots occurred in the all-black image.

実施例2 実施例1で用いた粗粉砕物を実施例1と同様の粉砕手段
で微粉砕を行った。ジェットミルに6rrf/min(
8kgf/crrr)の加圧エアーを供給し、微粉砕製
品として体積平均粒径11μmになるように微粉砕を行
った。このときの微粉砕処理量(=粗粉砕物供給量)は
、実施例1の約1.5倍であり、得られた微粉砕製品の
粒度分布は、体積平均粒径11.0μm、 6.35 
μm以下体積頻度13.0%、20.2 μm以上体積
頻度0.9%であった。
Example 2 The coarsely pulverized material used in Example 1 was pulverized using the same pulverizing means as in Example 1. 6rrf/min (
Pressurized air of 8 kgf/crrr) was supplied to perform pulverization so that the volume average particle size of the pulverized product was 11 μm. The amount of finely pulverized material (=the amount of coarsely pulverized material supplied) at this time was about 1.5 times that of Example 1, and the particle size distribution of the obtained pulverized product was 11.0 μm in volume average particle size.6. 35
The volume frequency of 20.2 μm or more was 13.0% and 0.9%, respectively.

この微粉砕製品をエルボジェット分級機により微粉を除
去して、体積平均粒径11.6μm、6.35μm以下
体積頻度2.5%、20.2μm以上体積頻度1.1%
の分級製品を80%の収率で得た。この分級製品にシリ
カ0.4重量%を外添混合し、トナーサンプルとした。
Fine powder was removed from this finely pulverized product using an elbow jet classifier, and the volume average particle diameter was 11.6 μm, the volume frequency of 6.35 μm or less was 2.5%, and the volume frequency of 20.2 μm or more was 1.1%.
A classified product of 80% was obtained. To this classified product, 0.4% by weight of silica was externally added and mixed to prepare a toner sample.

このトナーを実施例1と同様に複写試験を行ったところ
実施例1と同様に良好な画像が得られた。
When this toner was subjected to a copying test in the same manner as in Example 1, good images were obtained as in Example 1.

比較例2 実施例1で用いた粗粉砕物を比較例1と同様の粉砕手段
で微粉砕を行った。ジェットミルに6 rrr / m
 i n(8kgf/crrr)の加圧エアーを供給し
、実施例2と同じ供給量(実施例1及び比較例1の1.
5倍)で粗粉砕物を供給したところ、微粉砕製品の粒度
は、体積平均粒径が13.5μmになってしまった。そ
こで、供給量を実施例1及び比較例1の1.1倍(実施
例2の22%減)にまで落すことにより、体積平均粒径
11.2 μm、 6.35 μm以下体積頻度18.
7%、20.2μm以上体積頻度2.4%の微粉砕製品
を得た。
Comparative Example 2 The coarsely pulverized material used in Example 1 was pulverized using the same pulverizing means as in Comparative Example 1. 6 rrr/m to jet mill
i n (8 kgf/crrr) of pressurized air was supplied, and the supply amount was the same as in Example 2 (1. of Example 1 and Comparative Example 1).
When the coarsely pulverized product was supplied at a rate of 5 times), the volume average particle size of the finely pulverized product was 13.5 μm. Therefore, by reducing the supply amount to 1.1 times that of Example 1 and Comparative Example 1 (22% reduction of Example 2), the volume average particle diameter was 11.2 μm, and the volume frequency was 18.
A finely pulverized product with a volume frequency of 7% and 20.2 μm or more and a volume frequency of 2.4% was obtained.

この微粉砕製品をエルボジェット分級機により微粉を除
去して体積平均粒径11.9μm、6.35μm以下体
積頻度2.3%、20.2μm以上体積頻度2.7%の
分級製品を65%の収率で得た。この分級製品にシリカ
0.4重量%を外添混合しトナーサンプルとした。
Fine powder is removed from this finely pulverized product using an elbow jet classifier to obtain a classified product with a volume average particle diameter of 11.9 μm, a volume frequency of 2.3% of 6.35 μm or less, and a volume frequency of 2.7% of 20.2 μm or more at 65%. It was obtained in a yield of . To this classified product, 0.4% by weight of silica was externally added and mixed to prepare a toner sample.

このトナーを実施例1と同様に複写試験を行ったところ
、通常環境下で初期画像濃度が1.07 t、かなく、
耐久が進むにつれ1.33±0.07のレベルにまで上
昇したが、トナー補給時においては、再び画像濃度が1
.05にまで低下し、再度十分な画像濃度に戻るまでに
かなりの枚数を必要とした。さらに約20,000枚付
近でクリーニング不良が発生した。
When this toner was subjected to a copying test in the same manner as in Example 1, the initial image density was 1.07 t under normal environment.
As durability progressed, the image density rose to a level of 1.33±0.07, but when toner was replenished, the image density decreased to 1.
.. 05, and it took a considerable number of sheets to get the image density back to a sufficient level again. Furthermore, a cleaning failure occurred around approximately 20,000 sheets.

また比較例1と同様に低湿環境下で現像スリーブ上に波
状のムラが発生した。
Further, as in Comparative Example 1, wavy unevenness occurred on the developing sleeve in a low humidity environment.

実施例3 上記処方の混合物よりなるトナー原料を実施例1と同様
の方法により粗粉砕物を得た。
Example 3 A toner raw material consisting of a mixture of the above formulation was coarsely pulverized in the same manner as in Example 1.

さらに、実施例1と同様の粉砕手段を用いて微粉砕を行
った。ジェットミルに4 rd/ min (5kgf
/crrr)の加圧エアーを供給し、微粉砕製品として
体積平均径7μmになるように微粉砕を行った。この微
粉砕製品の粒度分布は、体積平均粒径7.0μm15.
041t m以下体積頻度20.2%、12.7 μm
以上体積頻度0.4%であった。この微粉砕製品をエル
ボジェット分級機を用いて分級し、収率78%で体積平
均粒径7.6μm、5.Q4μm以下体積頻度7.5%
、12.7μm以上体積頻度1.0%の分級製品を得た
。この分級製品にシリカ0.6重量%を外添混合しトナ
ーサンプルとした。
Furthermore, fine pulverization was performed using the same pulverization means as in Example 1. 4rd/min (5kgf
/crrr) of pressurized air was supplied, and the product was pulverized to a volume average diameter of 7 μm as a pulverized product. The particle size distribution of this finely pulverized product is as follows: volume average particle size 7.0 μm15.
041t m or less volume frequency 20.2%, 12.7 μm
The volume frequency was 0.4%. This finely pulverized product was classified using an elbow jet classifier to obtain a volume average particle size of 7.6 μm with a yield of 78%.5. Q4μm or less volume frequency 7.5%
, a classified product with a volume frequency of 1.0% of 12.7 μm or more was obtained. To this classified product, 0.6% by weight of silica was externally added and mixed to prepare a toner sample.

実施例4 実施例3で用いた粗粉砕物を実施例1と同様の粉砕手段
で微粉砕を行った。ジェットミルに6rrf/min(
8kgf/crtr)の加圧エアーを供給し、微粉砕製
品として体積平均粒径11μmになるように微粉砕を行
った。このときの微粉砕処理量(=粗粉砕物供給量)は
、実施例3の約1.5倍であり、得られた微粉砕製品の
粒度分布は、体積平均粒径7.0μm15.04μm以
下体積頻度20.5%、12.7μm以上体積頻度1.
1%であった。
Example 4 The coarsely pulverized material used in Example 3 was finely pulverized using the same pulverizing means as in Example 1. 6rrf/min (
Pressurized air of 8 kgf/crtr) was supplied to perform pulverization so that the volume average particle size of the pulverized product was 11 μm. At this time, the amount of finely pulverized material (=the amount of coarsely pulverized material supplied) was about 1.5 times that of Example 3, and the particle size distribution of the obtained finely pulverized product was 7.0 μm or less in volume average particle size and 15.04 μm or less. Volume frequency 20.5%, 12.7 μm or more Volume frequency 1.
It was 1%.

この微粉砕製品をエルボジェット分級機により分級して
体積平均粒径7.6μm、5.048m以下体積頻度7
.7%、12.7μm以上体積頻度1.1%の分級製品
を80%の収率で得た。この分級製品にシリカ0.6重
量%を外添混合しトナーサンプルとした。
This finely pulverized product was classified by an elbow jet classifier to have a volume average particle size of 7.6 μm and a volume frequency of 7.048 m or less.
.. A classified product with a volume frequency of 7% and a volume frequency of 12.7 μm or more of 1.1% was obtained with a yield of 80%. To this classified product, 0.6% by weight of silica was externally added and mixed to prepare a toner sample.

比較例3 実施例3で用いた粗粉砕物を比較例1と同様の従来の粉
砕手段で微粉砕を行った。ジェットミルに4 rrf/
min (5kgf/c rrf)の加圧エアーを供給
し、微粉砕製品として体積平均粒径7μmになるように
微粉砕を行った。このときの微粉砕処理量(=粗粉砕物
供給量)は、実施例3の約0.75倍であり、得られた
微粉砕製品の粒度分布は、体積平均粒径6.9 μm、
 5.04 μm以下体積頻度30.2%、12.7μ
m以上体積頻度4.6%であった。
Comparative Example 3 The coarsely pulverized material used in Example 3 was pulverized using the same conventional pulverizing means as in Comparative Example 1. 4 rrf/ to jet mill
Min (5 kgf/c rrf) of pressurized air was supplied to perform pulverization so that the volume average particle size of the pulverized product was 7 μm. The amount of finely pulverized products (=the amount of coarsely pulverized material supplied) at this time was about 0.75 times that of Example 3, and the particle size distribution of the obtained finely pulverized products was as follows: volume average particle diameter of 6.9 μm;
5.04 μm or less volume frequency 30.2%, 12.7 μm
The volume frequency of m or more was 4.6%.

この微粉砕製品をエルボ・ジェット分級機により分級し
て体積平均粒径7.6μm、5.04μm以下体積頻度
7,7%、12.7μm以上体積頻度1.1%の分級製
品を61%の収率で得た。この分級製品にシリカ0.6
重量%を外添混合しトナーサンプルとした。
This finely pulverized product was classified using an elbow jet classifier to obtain a classified product with a volume average particle size of 7.6 μm, a volume frequency of 7.7% below 5.04 μm, and a volume frequency of 1.1% above 12.7 μm. Obtained in yield. This classified product contains 0.6 silica.
A toner sample was prepared by externally adding % by weight.

比較例4 実施例3で用いた粗粉砕物を比較例1と同様の従来の粉
砕手段で微粉砕を行った。ジェットミルに6 rrf/
min (8kgf/c rrf)の加圧エアーを供給
し、微粉砕を行ったが、粗粉砕物供給量を比較例3と同
じ実施例3の0.75倍にしても微粉砕製品の粒度は、
体積平均粒径8.6μmにまでしか小さくならず、所望
のトナーを得ることができなかった。
Comparative Example 4 The coarsely pulverized material used in Example 3 was pulverized using the same conventional pulverizing means as in Comparative Example 1. 6 rrf/ to jet mill
Fine pulverization was carried out by supplying pressurized air of ,
The volume average particle diameter was reduced to only 8.6 μm, and the desired toner could not be obtained.

実施例3.実施例4及び比較例3の各トナーサンプルを
複写機NP−4835(キャノン製)を用いて複写試験
を行った。通常環境において耐久枚数5万枚まで行った
ところ、実施例3及び実施例4のトナーは補給時の濃度
低下もなく、初期の濃度1.38を±0.05の範囲の
画像濃度で維持し、クリーニング不良、画像汚れの現象
が発生しなかったのに対し、比較例3のトナーは初期濃
度は1.20であり、耐久にしたがって画像濃度は上昇
し、1.35±0.07になったが、トナー補給時には
再び1.15にまで低下してしまった。また、3万枚で
クリーニング不良が発生した。
Example 3. A copying test was conducted on each toner sample of Example 4 and Comparative Example 3 using a copying machine NP-4835 (manufactured by Canon). When the toners of Example 3 and Example 4 were subjected to durable printing up to 50,000 sheets in a normal environment, there was no decrease in density during replenishment, and the initial density of 1.38 was maintained within a range of ±0.05. However, the toner of Comparative Example 3 had an initial density of 1.20, and the image density increased with durability to 1.35±0.07. However, when toner was replenished, the value dropped to 1.15 again. In addition, a cleaning failure occurred after 30,000 sheets were printed.

さらに低湿環境下では、比較例3のトナーは実施例3及
び実施例4に比ベカブリが悪かった。
Further, in a low humidity environment, the toner of Comparative Example 3 had worse fogging than Examples 3 and 4.

以上説明したように、本発明のトナー製造方法を用いる
ことにより、従来法に比べ、画像濃度が安定して高く、
耐久性が良く、カブリ、クリーニング不良等の画像欠陥
のない優れた静電荷像現像用トナーが低コストで得られ
る。また、より小さな粒子径の静電荷像現像用トナーを
効果的に得ることができる等の利点がある。
As explained above, by using the toner manufacturing method of the present invention, image density is stably high compared to conventional methods.
An excellent toner for developing electrostatic images that has good durability and is free from image defects such as fog and poor cleaning can be obtained at a low cost. Further, there is an advantage that an electrostatic image developing toner having a smaller particle size can be effectively obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法に用いる分級機の一実施例の
概略断面図であり、第2図は第1図のA−A断面図であ
る。 第3図は本発明の製造方法に用いる粉砕手段の構成を示
すフローチャートである。 第4図は従来の分級機の概略断面図である。
FIG. 1 is a schematic cross-sectional view of an embodiment of a classifier used in the manufacturing method of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1. FIG. 3 is a flowchart showing the configuration of the crushing means used in the manufacturing method of the present invention. FIG. 4 is a schematic cross-sectional view of a conventional classifier.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも粘着樹脂及び着色剤を含有する組成物を溶融
混練し、混練物を冷却固化し、固化物を粉砕手段により
粉砕してトナーを得る製造方法において、分級室の底部
に中央部が高くなる傾斜状の分級板を有し、該分級室に
おいて搬送エアーとともに供給された粉体材料を分級ル
ーバーを介して流入する気流によって旋回流動させて微
粉と粗粉とに遠心分離し、微粉を分級板の中央部に設け
られた排出口に接続した微粉排出シユートへ排出させる
とともに、粗粉を分級板の外周部に形成した排出口より
排出する気流分級機であり、該分級室の上部に粉体供給
筒と連通する環状の案内室を設け、該案内室と該分級室
との間に案内室の内周円方向の接線方向に先端を向けた
複数のルーバーを設けた気流分級機とジェット気流粉砕
機とを連通させた粉砕手段を有することを特徴とする静
電荷像現像用トナーの製造方法。
In a manufacturing method in which a composition containing at least an adhesive resin and a colorant is melt-kneaded, the kneaded product is cooled and solidified, and the solidified product is pulverized by a pulverizing means to obtain a toner, the bottom of the classification chamber is sloped so that the center part is higher. In the classification chamber, the powder material supplied together with the conveying air is swirled by the airflow flowing in through the classification louver, centrifugally separated into fine powder and coarse powder, and the fine powder is transferred to the classification plate. This is an air classifier that discharges fine powder to a fine powder discharge chute connected to a discharge port provided in the center, and discharges coarse powder from a discharge port formed on the outer periphery of the classification plate. Powder is supplied to the upper part of the classification chamber. An air classifier and a jet air pulverizer are provided with an annular guide chamber that communicates with the cylinder, and a plurality of louvers whose tips are oriented in a tangential direction to the inner circumferential direction of the guide chamber between the guide chamber and the classification chamber. 1. A method for producing a toner for developing an electrostatic image, comprising a pulverizing means communicated with a machine.
JP1195625A 1989-07-28 1989-07-28 Method for producing toner for developing electrostatic image Expired - Lifetime JPH0679166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1195625A JPH0679166B2 (en) 1989-07-28 1989-07-28 Method for producing toner for developing electrostatic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1195625A JPH0679166B2 (en) 1989-07-28 1989-07-28 Method for producing toner for developing electrostatic image

Publications (2)

Publication Number Publication Date
JPH0359676A true JPH0359676A (en) 1991-03-14
JPH0679166B2 JPH0679166B2 (en) 1994-10-05

Family

ID=16344283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1195625A Expired - Lifetime JPH0679166B2 (en) 1989-07-28 1989-07-28 Method for producing toner for developing electrostatic image

Country Status (1)

Country Link
JP (1) JPH0679166B2 (en)

Also Published As

Publication number Publication date
JPH0679166B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
US8096492B2 (en) Pulverizing and coarse powder classifying apparatus and fine powder classifying apparatus
JPS63101858A (en) Method and device for manufacturing electrostatically charged image developing toner
EP0417561B1 (en) Collision-type gas current pulverizer and method for pulverizing powders
JP2001232296A (en) Classifying device and toner manufacturing method
JP3352313B2 (en) Manufacturing method of toner
JPH06230606A (en) Production of toner and producing equipment system used therefor
JPH0534977A (en) Production of electrostatic charge image developing toner
JP3740202B2 (en) Toner production method
JP2004057843A (en) Classifier and production method of toner using the same
JPH0359676A (en) Manufacture of toner for electrostatic charge image development
JP2003175343A (en) Apparatus and method for classification
JPH03287173A (en) Production of electrostatically charged image developing toner
JPH03206466A (en) Production of toner for developing electrostatic charge image
JP4011279B2 (en) Classification device and toner manufacturing method using the same
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JP2851872B2 (en) Method for producing toner for developing electrostatic images
JPH08182937A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP3302270B2 (en) Manufacturing method of toner
JPH07109523B2 (en) Method for producing toner for developing electrostatic image
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3220918B2 (en) Method and apparatus for manufacturing toner
JPH09187733A (en) Air current-utilizing type classifying apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 15

EXPY Cancellation because of completion of term