JPH0319364A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0319364A
JPH0319364A JP1153993A JP15399389A JPH0319364A JP H0319364 A JPH0319364 A JP H0319364A JP 1153993 A JP1153993 A JP 1153993A JP 15399389 A JP15399389 A JP 15399389A JP H0319364 A JPH0319364 A JP H0319364A
Authority
JP
Japan
Prior art keywords
impurity
region
substrate
conductivity type
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1153993A
Other languages
Japanese (ja)
Inventor
Toshihiko Kondo
俊彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1153993A priority Critical patent/JPH0319364A/en
Publication of JPH0319364A publication Critical patent/JPH0319364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a semiconductor device of this design in electrostatic strength without increasing processes in number by a method wherein a cell of a memory part is provided with a first conductivity type substrate region and a second conductivity type first impurity region formed on the substrate region, and an input and an output section are made to have the same structure. CONSTITUTION:Conductor diffusion layers 105a and 106b whose impurity concentrations are different from that of a semiconductor substrate 101 of low concentration and diffusion layers 105a and 105b of high concentration are provided. An impurity layer 107 is formed in such a manner that its impurity is the same conductivity type with that of the substrate 101, and its impurity concentration increases slightly starting from, at least, the base of a diffusion layer between a source 106 and a drain 105 toward the surface side keeping a channel region or a part near the surface of the substrate unchanged in impurity concentration. An impurity region is provided under the diffusion layers 105 and 106 so as to improve a memory cell in stability to incident X rays. By this setup, an X-ray countermeasure is established and an impurity region 107 is formed under such a condition that a Snap back voltage is made to decrease.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の構造の改良に関する.〔従来の技
術〕 第3図(a)に従来の構造を示す. 図に於いてlは半導体基板,2はゲート絶縁膿、3はゲ
ート電極、4はサイドウ才−ル絶縁膜.5aは濃度の低
い拡散層、5bは濃度の高い拡散層である.これは5a
より5bを外側に配置することにより、拡散層5aのチ
ャンネル側への不純物の拡がりを抑えチャンネル長を確
保しようといつちのであり、スタティック動作をする半
導体素子にも適用されている, 〔発明が解決しようとする課題] かかる構造を有する半導体装置に於いて,外部との入出
力端子の入った初めの部分たとえば出力部では第3図(
b)に示す様な出力バッファのトランジスタ特に5aが
P、5bがAsからなるトランジスタにおいて、静電気
耐圧が低いという問題が発生した. 本発明はかかる問題を解決することを目的とする. [課題を解決するための手段] 本発明の半導体装置は、少なくとも一部にスタティック
動作をする記憶部分を有することを特徴とする半導体装
置に於いて、該記憶部分のセル又はその周辺の一部の構
造が第一導電型の基板領域と該基板領域上に形成された
第二導電型の第一の不純物領域と該第一の不純物領域直
下に形成された第一導電型からなり、該基板領域の不純
物濃度の高い第2の不純物領域を具備しかつ、同一の構
造を入力および出力部の一部又は全てが有することを特
徴とする半導体装置である. 〔実 施 例1 第1図に本発明の実施例を示す. 図中に於いて,10lは半導体基板、102はゲート絶
縁膜、103はゲート電極、104はサイドウォール絶
縁膜、I05a.l06aは濃度の低い半導体基板lO
lとは異なる導電体の拡散層、1 05b、106bは
濃度の高い拡散層で105はドレイン,106はソース
を示す.また107は基板101と同じ導電型の不純物
であって、主としてソースドレイン間の少なくとも拡散
層の低面からやや表面側の不純物濃度が上がりかつ、チ
ャンネル領域つまり、基板表面近傍の不純物濃度を変え
ないような形成の仕方によって形成される不純物層であ
る. さて次の文献rThe Effect of Inte
rconnectProcess and Snapb
ack Voltage on the ESDFai
lure Thrashild of NMOS Tr
ansistorJ IEEETRANSACTION
  ON  ELEC丁RON  DEVICE,VO
L  35  No.12DEC 1988に開示され
ているように静電気耐圧がトランジスターのパターンパ
ラメーターおよびSnap  back電圧に依存する
ことがわがって来ており,またこのSnap  bac
k電圧はNchトラジスターを構成するソース、トレイ
ン、チャンネル領域からなるN”−P−N”寄生のバイ
ポーラトランジスタの動作によるものである.このSn
ap−back電圧を下げるためには実効チャンネル長
を短かくするか、チャンネル部分の不純物濃度を上げる
必要がある.しかし,実効チャンネル長を短かくするの
はバンチスルーやゲート長のバラッキによる特性変動が
ありこれを用いることは難しい.よってチャンネル部分
の不純物濃度を上げる方法を用いるがチャンネル部分全
ての不純物濃度を上げるとvthも変化してしまうので
、少なくともvthに影響をほとんど与えないような基
板表面より深い領域に不純物濃度の高い領域つまり第1
図107を形成すれば良い. これは具体的には高電圧加速イオン打ち込みにより実現
できる.たとえばNchトランジスタを例にあげれば第
1図で105、106に対応する拡散層の深さを0.3
μとすると180KeV’B′″のイオン打ち込みをす
ると不純物層107は形成でき濃度のピークはおよそ0
.48μで濃度は打ち込み量によって調整できる. 一方この不純物層107を形成するためには,フォトリ
ソグラフィー1回とイオン注入が1回が必要であり,工
程が増加する. ところが、スタティック動作をするメモリーを一部に有
する半導体装置に於いては、第1図のようにxBの入射
に対するメモリーのセルの安定性の確保のためBuri
ed  P”と呼ばれる不純物領域108をやはり拡散
層105、106の下に設ける方法がとられている.そ
こで、本発明では前記xi対策らできがっsnap  
backiJ圧を下げるような条件で不純物領域108
っまり107を形成することにより一つの工程で両者の
効果を出した. 以上本発明の構造が実現できた. 【発明の効果} 本発明の構造を用いることにより,静電気耐圧を向上で
きかつ工程を増やすことなく行えた.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in the structure of semiconductor devices. [Prior art] Figure 3(a) shows a conventional structure. In the figure, l is a semiconductor substrate, 2 is a gate insulator, 3 is a gate electrode, and 4 is a sidewall insulating film. 5a is a low concentration diffusion layer, and 5b is a high concentration diffusion layer. This is 5a
By arranging 5b on the outer side, it is possible to suppress the spread of impurities toward the channel side of the diffusion layer 5a and secure the channel length, and the invention is also applied to semiconductor devices that operate statically. [Problems to be Solved] In a semiconductor device having such a structure, the first part containing external input/output terminals, such as the output part, is shown in Fig. 3 (
In the output buffer transistor shown in b), particularly in the transistor in which 5a is made of P and 5b is made of As, a problem has occurred in that the electrostatic withstand voltage is low. The present invention aims to solve this problem. [Means for Solving the Problems] A semiconductor device of the present invention is characterized in that at least a part of the semiconductor device has a memory portion that performs static operation, in which a cell of the memory portion or a part of its periphery. The structure of the substrate is composed of a substrate region of a first conductivity type, a first impurity region of a second conductivity type formed on the substrate region, and a first conductivity type formed directly under the first impurity region, and This semiconductor device is characterized in that it includes a second impurity region with a high impurity concentration, and that part or all of the input and output portions have the same structure. [Example 1 Figure 1 shows an example of the present invention. In the figure, 10l is a semiconductor substrate, 102 is a gate insulating film, 103 is a gate electrode, 104 is a sidewall insulating film, I05a. l06a is a low concentration semiconductor substrate lO
105b and 106b are diffusion layers of a different conductor, 105 is a drain, and 106 is a source. Further, 107 is an impurity of the same conductivity type as the substrate 101, and the impurity concentration increases mainly at least from the low surface to the surface side of the diffusion layer between the source and drain, and does not change the impurity concentration in the channel region, that is, near the substrate surface. This is an impurity layer formed by this method. Now, the next document rThe Effect of Inte
rconnectProcess and Snapb
ack Voltage on the ESDFai
Lure Thrashield of NMOS Tr
ansistorJ IEEEETRANSACTION
ON ELEC RON DEVICE, VO
L35 No. 12DEC 1988, it has been found that the electrostatic withstand voltage depends on the pattern parameters of the transistor and the snap back voltage.
The k voltage is due to the operation of the N''-P-N'' parasitic bipolar transistor consisting of the source, train, and channel regions that constitute the Nch transistor. This Sn
In order to lower the ap-back voltage, it is necessary to shorten the effective channel length or increase the impurity concentration in the channel portion. However, it is difficult to shorten the effective channel length due to characteristic fluctuations due to bunch through and variations in gate length. Therefore, a method of increasing the impurity concentration in the channel part is used, but if the impurity concentration in the entire channel part is increased, vth will also change, so at least a region with high impurity concentration is placed deep below the substrate surface where it has little effect on vth. In other words, the first
All you need to do is form the image shown in Figure 107. Specifically, this can be achieved by high-voltage accelerated ion implantation. For example, if we take an Nch transistor as an example, the depth of the diffusion layer corresponding to 105 and 106 in Fig. 1 is 0.3.
When μ is ion implanted at 180 KeV'B''', the impurity layer 107 can be formed and the concentration peak is approximately 0.
.. At 48μ, the density can be adjusted by adjusting the amount of implantation. On the other hand, in order to form this impurity layer 107, one photolithography and one ion implantation are required, which increases the number of steps. However, in a semiconductor device that includes a memory that performs static operation, Buri is used to ensure the stability of the memory cell against the incidence of xB, as shown in Figure
A method has been adopted in which an impurity region 108 called "ed P" is provided under the diffusion layers 105 and 106. Therefore, in the present invention, the xi
The impurity region 108 is formed under conditions that lower the backiJ pressure.
By forming 107, both effects were achieved in one process. As described above, the structure of the present invention has been realized. [Effects of the invention] By using the structure of the present invention, the electrostatic withstand voltage could be improved without increasing the number of steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の説明図、第3図(a)(b)
は従来技術の説明図である6図中に於いて、 1,101・・半導体基板 2,102・・ゲート絶縁膜 3,103・・ゲート電極 4.104・・サイドゥオール絶縁膜 5a・・・・・濃度の低い拡散層a域 5b・・・・・〃 の高い  〃 1 05a・・・・・ドレインの濃度の低い拡散層領域 1 05b  ・・・・   〃    高い 〃1 
06a・・・・・ソースの濃度の低い拡散層領域 1 06b・・・・・   〃   高い 〃107・
・・・・・基板と同一導電型の基板より濃度の高い領域 108=Buried  P” 以上
Figures 1 and 2 are explanatory diagrams of the present invention, Figures 3 (a) and (b)
In FIG. 6, which is an explanatory diagram of the prior art, 1,101...semiconductor substrate 2,102...gate insulating film 3,103...gate electrode 4,104...side-all insulating film 5a... ... Diffusion layer region a with low concentration 5b ... High 1 05a ... Diffusion layer region 1 with low concentration of drain 05b ... High 1
06a... Diffusion layer region 1 with low source concentration 06b... 〃 High 〃 107.
...Region 108 with higher concentration than the substrate of the same conductivity type as the substrate = Buried P" or more

Claims (1)

【特許請求の範囲】[Claims] 半導体装置少なくとも一部にスタティック動作をする記
憶部分を有することを特徴とする半導体装置に於いて、
該記憶部分のセルまたはその周辺の一部の構造が第一導
電型の基板領域と、該基板領域上に形成された第二導電
型の第一の不純物領域と、該第一の不純物領域直下に形
成された第一導電型からなり、該基板領域の不純物濃度
の高い第2の不純物領域を具備しかつ、同一の構造を入
力および出力部の素子の一部又は全てが有することを特
徴とする半導体装置。
In a semiconductor device characterized in that at least a part of the semiconductor device has a memory portion that operates statically,
A substrate region in which a cell of the memory portion or a part of its surrounding structure is of a first conductivity type, a first impurity region of a second conductivity type formed on the substrate region, and directly below the first impurity region. The device is characterized by comprising a second impurity region of the first conductivity type formed in the substrate region and having a high impurity concentration in the substrate region, and in which some or all of the elements of the input and output portions have the same structure. semiconductor devices.
JP1153993A 1989-06-16 1989-06-16 Semiconductor device Pending JPH0319364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153993A JPH0319364A (en) 1989-06-16 1989-06-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153993A JPH0319364A (en) 1989-06-16 1989-06-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0319364A true JPH0319364A (en) 1991-01-28

Family

ID=15574572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153993A Pending JPH0319364A (en) 1989-06-16 1989-06-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0319364A (en)

Similar Documents

Publication Publication Date Title
US20030132466A1 (en) Field effect transistors having gate and sub-gate electrodes that utilize different work function materials and methods of forming same
US5670399A (en) Method of making thin film transistor with offset drain
KR920017279A (en) MOS semiconductor device and manufacturing method thereof
JPS63102264A (en) Thin film semiconductor device
JPH04152536A (en) Manufacture of mis semiconductor device
US5502322A (en) Transistor having a nonuniform doping channel
JPH0319364A (en) Semiconductor device
JPS62262462A (en) Semiconductor device
JPH0342874A (en) Semiconductor device
KR100252842B1 (en) Semiconductor device and its manufacture method
JPH06244428A (en) Mos device and manufacture thereof
JPH0462975A (en) Semiconductor device
JPH04356965A (en) Semiconductor device
JPH02219237A (en) Mis type semiconductor device
KR930005272A (en) LDD type MOS transistor and manufacturing method thereof
JPH0251278A (en) Manufacture of double diffusion type field effect semiconductor device
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH03288474A (en) Active matrix type liquid crystal display
JPS60137065A (en) Semiconductor device
JPH05251697A (en) Mosfet and its manufacture
KR100260363B1 (en) Gate electrode of semiconductor device and method for forming the same
JPH05183131A (en) Thin film transistor
JPH04179162A (en) Semiconductor device and manufacture thereof
JPH0319212A (en) Manufacture of semiconductor device