JPH05183131A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH05183131A
JPH05183131A JP3359821A JP35982191A JPH05183131A JP H05183131 A JPH05183131 A JP H05183131A JP 3359821 A JP3359821 A JP 3359821A JP 35982191 A JP35982191 A JP 35982191A JP H05183131 A JPH05183131 A JP H05183131A
Authority
JP
Japan
Prior art keywords
type
region
concentration
polycrystalline silicon
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3359821A
Other languages
Japanese (ja)
Inventor
Shinji Obara
伸治 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3359821A priority Critical patent/JPH05183131A/en
Publication of JPH05183131A publication Critical patent/JPH05183131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve source.drain withstand voltage of a thin film transistor. CONSTITUTION:An N-type channel region 5 is connected to a P-type high- concentration drain region 6 through a offset region 8. The offset region 8 is a polysilicon which is not doped with impurities substantially. Therefore, source.drain withstand voltage is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜トランジスタに関
し、特にスタティック型RAMの負荷素子に用いられる
ポリシリコン薄膜トランジスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor, and more particularly to a polysilicon thin film transistor used as a load element of a static RAM.

【0002】[0002]

【従来の技術】ゲート電極の上にゲート絶縁膜を介して
堆積されたポリシリコン膜をチャンネルとする薄膜トラ
ンジスタ(Thin Film Transisto
r,以下、TFTと記す)がスタティック型RAMの負
荷素子に用いられている。
2. Description of the Related Art A thin film transistor having a channel formed of a polysilicon film deposited on a gate electrode via a gate insulating film is used.
r, hereinafter referred to as TFT) is used as a load element of the static RAM.

【0003】従来技術によるTFTについて図3を参照
して説明する。はじめにシリコン基板1にCVD法によ
り厚さ200〜300nmの酸化シリコン膜2と、厚さ
100〜150nmの多結晶シリコンよりなるゲート電
極3を形成する。
A conventional TFT will be described with reference to FIG. First, a silicon oxide film 2 having a thickness of 200 to 300 nm and a gate electrode 3 made of polycrystalline silicon having a thickness of 100 to 150 nm are formed on a silicon substrate 1 by a CVD method.

【0004】次にCVD法により厚さ15〜35nmの
ゲート絶縁膜4を形成する。次にTFTのチャンネルを
形成するためCVD法により設けた厚さ20〜50nm
の多結晶シリコン膜にイオン注入法によりリンを1×1
17〜1×1018 atoms/cm3の不純物濃度に
なるように導入し、N型チャンネル領域5を形成する。
次にフォトレジスト膜をマスクとしてN型チャンネル領
域5を形成した多結晶シリコン膜にボロンを1×1019
〜1×1020atoms/cm3の不純物濃度になるよ
うに導入し、高濃度P型ドレイン領域6及び高濃度P型
ソース領域7を形成する。
Next, the gate insulating film 4 having a thickness of 15 to 35 nm is formed by the CVD method. Next, a thickness of 20 to 50 nm provided by a CVD method to form a channel of the TFT
1 x 1 phosphorus by ion implantation into the polycrystalline silicon film of
The N-type channel region 5 is formed by introducing it so as to have an impurity concentration of 0 17 to 1 × 10 18 atoms / cm 3 .
Next, with the photoresist film as a mask, 1 × 10 19 boron was added to the polycrystalline silicon film in which the N-type channel region 5 was formed.
The impurities are introduced so as to have an impurity concentration of 1 × 10 20 atoms / cm 3 to form the high-concentration P-type drain region 6 and the high-concentration P-type source region 7.

【0005】ここで、TFTのチャンネル領域5から高
濃度P型ドレイン領域6を離したオフセット構造にし、
オフセット領域の不純物濃度を高濃度P型ドレイン領域
6より低能度のP型とすることによりTFTのオン/オ
フ特性を改善できることが、例えば平成3年春季第38
回応用物理学関係連合講演会 講演予稿集NO.2,
P.671,30p−T−2に発表されている。すなわ
ち、図3のTFTにボロンを1×1017〜1×1018
toms/cm3の不純物濃度になるように導入して形
成した低濃度P型不純物領域9を設けることにより、オ
ン/オフ特性の改善を図る。最後に層間絶縁膜、金属配
線、表面保護膜などを形成してTFTが完成する。
Here, an offset structure is formed in which the high-concentration P-type drain region 6 is separated from the TFT channel region 5,
The fact that the on / off characteristics of the TFT can be improved by making the impurity concentration of the offset region P-type having a lower efficiency than that of the high-concentration P-type drain region 6 is described in, for example, Spring 38 of 1991.
Proceedings of the 12th Joint Lecture on Applied Physics No. Two
P. 671, 30p-T-2. That is, boron is added to the TFT of FIG. 3 in the range of 1 × 10 17 to 1 × 10 18 a.
By providing the low-concentration P-type impurity region 9 formed by introducing so as to have an impurity concentration of toms / cm 3 , the on / off characteristics are improved. Finally, an interlayer insulating film, a metal wiring, a surface protective film, etc. are formed to complete the TFT.

【0006】[0006]

【発明が解決しようとする課題】従来のTFTではオン
/オフ特性改善のためオフセット領域9を低濃度P型に
している。4メガビットクラスのスタティック型RAM
では負荷として用いるTFTのゲート長波1.0〜1.
4μm程度であるが、素子の微細化が進展した場合、T
FTのゲート長が短くなることにより、ソースとドレイ
ン間の耐圧の低下が大きくなりTFTの特性が劣化する
ことになる。特に、従来のTFTの用にオフセット領域
9を低濃度P型にしている場合には微細化によるソース
・ドレイン間耐圧の低下は著しい。
In the conventional TFT, the offset region 9 has a low concentration P type in order to improve the on / off characteristics. 4-megabit class static RAM
Then, the gate long wave of the TFT used as a load is 1.0 to 1.
It is about 4 μm, but if the miniaturization of the device progresses, T
When the gate length of the FT is shortened, the breakdown voltage between the source and the drain is greatly reduced, and the characteristics of the TFT are deteriorated. In particular, when the offset region 9 is of a low concentration P type for a conventional TFT, the reduction in source-drain breakdown voltage due to miniaturization is remarkable.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、半導体
基板の一主面上に形成され、ゲート電極と、多結晶シリ
コン膜中に画成されゲート電極にゲート絶縁膜を介して
対向した第1導電型のチャンネル領域と、上記多結晶シ
リコン膜中に形成されチャンネル領域に隣接する高濃度
第2導電型のソース領域と、上記多結晶シリコン中に設
けられ高濃度の第2導電型のドレイン領域と、上記多結
晶シリコン膜中に設けられチャンネル領域とドレイン領
域との間に介在するオフセット領域とを有する薄膜トラ
ンジスタにおいて、上記オフセット領域は実質的に不純
物の導入されていない多結晶シリコンであることであ
る。
SUMMARY OF THE INVENTION The gist of the present invention is to form a gate electrode on a main surface of a semiconductor substrate and to face the gate electrode with a gate insulating film interposed between the gate electrode and the gate electrode. A first conductivity type channel region, a high concentration second conductivity type source region formed in the polycrystalline silicon film adjacent to the channel region, and a high concentration second conductivity type source region provided in the polycrystalline silicon. In a thin film transistor having a drain region and an offset region provided in the polycrystalline silicon film and interposed between the channel region and the drain region, the offset region is polycrystalline silicon in which substantially no impurities are introduced. That is.

【0008】[0008]

【発明の作用】従来のTFTでは高濃度P型ドレイン領
域に低濃度P型オフセット領域を接触させたことにより
ドレイン近傍での電界を緩和しTFTオフ時のリーク電
流を低減させている。
In the conventional TFT, the high-concentration P-type drain region is brought into contact with the low-concentration P-type offset region to relax the electric field near the drain and reduce the leak current when the TFT is off.

【0009】本発明のTFTでは高濃度第2導電型ドレ
イン領域に接触する部分の多結晶シリコン膜に不純物を
導入しない状態で用いることで、ドレイン端での空乏層
の幅を広げ、ドレイン電界を緩和することによりTFT
オフ時のリーク電流を減少させることができる。この場
合、空乏層の最大幅よりオフセット領域の幅を大きくと
っておくことによりソース・ドレイン間耐圧の低下を防
ぐことができる。
The TFT of the present invention is used in a state where no impurities are introduced into the portion of the polycrystalline silicon film which is in contact with the high-concentration second conductivity type drain region, whereby the width of the depletion layer at the drain end is widened and the drain electric field is increased. TFT by relaxing
It is possible to reduce the leak current at the time of off. In this case, by setting the width of the offset region larger than the maximum width of the depletion layer, it is possible to prevent the breakdown voltage between the source and drain from being lowered.

【0010】[0010]

【実施例】次に本発明について図面を示された実施例を
参照して説明する。図1は本発明の第1実施例を示す縦
断面図である。第1実施例のTFTはフリップフロップ
型スタティックメモリセルの負荷素子として機能する。
The present invention will now be described with reference to the embodiments shown in the drawings. FIG. 1 is a vertical sectional view showing a first embodiment of the present invention. The TFT of the first embodiment functions as a load element of a flip-flop type static memory cell.

【0011】シリコン基板1にCVD法により厚さ20
0〜300nmの酸化シリコン膜2及び厚さ100〜1
50nmの導電性をもたせた多結晶シリコンよりなるゲ
ート電極3を形成する。
A silicon substrate 1 having a thickness of 20 is formed by a CVD method.
0 to 300 nm silicon oxide film 2 and thickness 100 to 1
A gate electrode 3 made of polycrystalline silicon having conductivity of 50 nm is formed.

【0012】次にCVD法により、厚さ15〜35nm
のゲート絶縁膜4を形成する。次にTFTのチャンネル
を形成するためCVD法により厚さ20〜50nmの多
結晶シリコン膜を形成し、フォトレジスト膜をマスクと
して用いてイオン注入法によりリンを1×1017〜1×
1018 atoms/cm3 の不純物濃度になるように
TFTのチャンネルになる領域にのみ導入し、N型チャ
ンネル領域5を形成する。
Next, the thickness is 15 to 35 nm by the CVD method.
The gate insulating film 4 is formed. Next, a polycrystalline silicon film having a thickness of 20 to 50 nm is formed by a CVD method to form a channel of the TFT, and phosphorus is added by 1 × 10 17 to 1 × by an ion implantation method using a photoresist film as a mask.
The N-type channel region 5 is formed by introducing it into only the region which becomes the channel of the TFT so that the impurity concentration becomes 10 18 atoms / cm 3 .

【0013】次にフォトレジスト膜をマスクとしてN型
チャンネル領域5を設けた多結晶シリコン膜にボロンを
1×1019〜1×1020atoms/cm3の不純物濃
度になるように導入し、高濃度P型ドレイン領域6およ
び高濃度P型ソース領域7を形成する。ここでTFTの
N型チャンネル領域5と高濃度P型ドレイン領域6は不
純物の導入されていないオフセット領域8により分離さ
れている。最後に層間絶縁膜、金属配線、表面保護膜な
どを形成すればTFTが完成する。
Next, using the photoresist film as a mask, boron is introduced into the polycrystalline silicon film provided with the N-type channel region 5 so as to have an impurity concentration of 1 × 10 19 to 1 × 10 20 atoms / cm 3 , and a high concentration is obtained. Concentration P-type drain region 6 and high concentration P-type source region 7 are formed. Here, the N-type channel region 5 of the TFT and the high-concentration P-type drain region 6 are separated by an offset region 8 in which no impurities are introduced. Finally, the TFT is completed by forming an interlayer insulating film, a metal wiring, a surface protective film, and the like.

【0014】次に本発明の第2実施例について図2を参
照して説明する。第1実施例と同様に、1はシリコン基
板、2は酸化シリコン膜である。ここで、TFTのチャ
ンネルを形成するためCVD法により厚さ20〜50n
mの多結晶シリコン膜を設け、全面イオン注入法により
リンを1×1017〜1×1018atoms/cm3の不
純物濃度になるように導入してN型チャンネル領域5を
含む多結晶シリコン膜を形成する。
Next, a second embodiment of the present invention will be described with reference to FIG. Similar to the first embodiment, 1 is a silicon substrate and 2 is a silicon oxide film. Here, a thickness of 20 to 50 n is formed by a CVD method to form a channel of the TFT.
m polycrystalline silicon film is provided, and phosphorus is introduced by the whole surface ion implantation method so as to have an impurity concentration of 1 × 10 17 to 1 × 10 18 atoms / cm 3 and a polycrystalline silicon film including the N-type channel region 5 is formed. To form.

【0015】次にCVD法により厚さ15〜35nmの
ゲート絶縁膜4を形成した後に、厚さ100〜150n
mの導電性をもたせた多結晶シリコンより成るゲート電
極3を形成する。
Next, after forming the gate insulating film 4 having a thickness of 15 to 35 nm by the CVD method, the thickness of 100 to 150 n is obtained.
A gate electrode 3 made of polycrystalline silicon having a conductivity of m is formed.

【0016】次にゲート電極3をマスクとしてイオン注
入法によりボロンをN型チャンネル領域5に導入したリ
ンと同程度のドーズ量になるように導入する。この場
合、導入するボロンのドーズ量を調節して、オフセット
領域8の最終的な不純物濃度を不純物を導入していない
多結晶シリコン膜と同じ状態にすることができる。
Next, using the gate electrode 3 as a mask, boron is introduced by an ion implantation method so as to have a dose amount similar to that of phosphorus introduced into the N-type channel region 5. In this case, by adjusting the dose amount of boron to be introduced, the final impurity concentration of the offset region 8 can be made the same as that of the polycrystalline silicon film in which no impurity is introduced.

【0017】次にフォトレジスト膜をマスクとしてN型
多結晶シリコン膜5にボロンを1×1019〜1×1020
atoms/cm3の不純物濃度になるように導入し、
高濃度P型ドレイン領域6及び高濃度P型ソース領域7
を形成する。最後に先の実施例と同様に層間絶縁膜、金
属配線、表面保護膜などを形成すればTFTが完成す
る。
Next, using the photoresist film as a mask, boron is added to the N-type polycrystalline silicon film 5 at a concentration of 1 × 10 19 to 1 × 10 20.
Introduced so as to have an impurity concentration of atoms / cm 3 ,
High-concentration P-type drain region 6 and high-concentration P-type source region 7
To form. Finally, the TFT is completed by forming an interlayer insulating film, a metal wiring, a surface protective film and the like as in the previous embodiment.

【0018】また、これまでの実施例ではP型TFTを
形成する場合について述べてきたが、N型TFTを形成
する場合にも不純物を導入しないオフセット領域を設け
ることによりP型TFTと同様の効果を得ることができ
る。
Although the above embodiments have described the case where the P-type TFT is formed, the same effect as that of the P-type TFT is provided by providing the offset region in which the impurity is not introduced even when the N-type TFT is formed. Can be obtained.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
のTFTはN型チャンネル領域と高濃度P型ソース領域
との間に多結晶シリコン膜中に設けた実質的に不純物が
ドープされていないオフセット領域を介在させたのでソ
ース・ドレイン間の耐圧を低下させることなくTFTの
オン/オフ特性を改善することができるという効果を有
する。
As is apparent from the above description, the TFT of the present invention is substantially doped with impurities provided in the polycrystalline silicon film between the N-type channel region and the high-concentration P-type source region. Since there is no offset region, there is an effect that the on / off characteristics of the TFT can be improved without lowering the breakdown voltage between the source and drain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】従来例の断面図である。FIG. 3 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 酸化シリコン膜 3 ゲート電極 4 ゲート絶縁膜 5 N型チャンネル領域 6 高濃度P型ドレイン領域 7 高濃度P型ソース領域 8 オフセット領域 9 低濃度P型オフセット領域 1 Silicon Substrate 2 Silicon Oxide Film 3 Gate Electrode 4 Gate Insulating Film 5 N-type Channel Region 6 High-concentration P-type Drain Region 7 High-concentration P-type Source Region 8 Offset Region 9 Low-concentration P-type Offset Region

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面上に形成され、ゲー
ト電極と、多結晶シリコン膜中に画成されゲート電極に
ゲート絶縁膜を介して対向した第1導電型のチャンネル
領域と、上記多結晶シリコン膜中に形成されチャンネル
領域に隣接する高濃度第2導電型のソース領域と、上記
多結晶シリコン中に設けられ高濃度の第2導電型のドレ
イン領域と、上記多結晶シリコン膜中に設けられチャン
ネル領域とドレイン領域との間に介在するオフセット領
域とを有する薄膜トランジスタにおいて、上記オフセッ
ト領域は実質的に不純物の導入されていない多結晶シリ
コンであることを特徴とする薄膜トランジスタ。
1. A gate electrode, a first conductivity type channel region formed on one main surface of a semiconductor substrate, the channel region being defined in a polycrystalline silicon film and opposed to the gate electrode via a gate insulating film. A high-concentration second-conductivity-type source region formed in the polycrystalline silicon film and adjacent to a channel region; a high-concentration second-conductivity-type drain region provided in the polycrystalline silicon film; A thin film transistor having an offset region provided between the channel region and the drain region, wherein the offset region is polycrystalline silicon into which substantially no impurities are introduced.
【請求項2】 上記第1導電型はN型であり、第2導電
型はP型である請求項1記載の薄膜トランジスタ。
2. The thin film transistor according to claim 1, wherein the first conductivity type is N type, and the second conductivity type is P type.
【請求項3】 上記薄膜トランジスタはフリップフロッ
プ型スタティックメモリセルの負荷素子として機能する
請求項1記載の薄膜トランジスタ。
3. The thin film transistor according to claim 1, wherein the thin film transistor functions as a load element of a flip-flop type static memory cell.
JP3359821A 1991-12-27 1991-12-27 Thin film transistor Pending JPH05183131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359821A JPH05183131A (en) 1991-12-27 1991-12-27 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359821A JPH05183131A (en) 1991-12-27 1991-12-27 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH05183131A true JPH05183131A (en) 1993-07-23

Family

ID=18466469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359821A Pending JPH05183131A (en) 1991-12-27 1991-12-27 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH05183131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417057B1 (en) 1994-06-14 2002-07-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device having a TFT utilizing optical annealing before a gate electrode is formed
JP2006066928A (en) * 1994-09-09 2006-03-09 Renesas Technology Corp Method of manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105574A (en) * 1981-12-17 1983-06-23 Seiko Epson Corp Thin film transistor
JPS63110750A (en) * 1986-10-29 1988-05-16 Sony Corp Semiconductor device
JPH01268064A (en) * 1988-04-20 1989-10-25 Hitachi Ltd Formation of polycrystalline silicon thin film
JPH02278771A (en) * 1989-04-20 1990-11-15 Matsushita Electron Corp Thin-film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105574A (en) * 1981-12-17 1983-06-23 Seiko Epson Corp Thin film transistor
JPS63110750A (en) * 1986-10-29 1988-05-16 Sony Corp Semiconductor device
JPH01268064A (en) * 1988-04-20 1989-10-25 Hitachi Ltd Formation of polycrystalline silicon thin film
JPH02278771A (en) * 1989-04-20 1990-11-15 Matsushita Electron Corp Thin-film transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417057B1 (en) 1994-06-14 2002-07-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device having a TFT utilizing optical annealing before a gate electrode is formed
US6690063B2 (en) 1994-06-14 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor integrated circuit and method for forming the same
JP2006066928A (en) * 1994-09-09 2006-03-09 Renesas Technology Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
CN1332437C (en) Novel field effect transistor and method of fabrication
US5716879A (en) Method of making a thin film transistor
KR100221120B1 (en) Manufacturing method of a semiconductor device
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
US4918510A (en) Compact CMOS device structure
JP3039200B2 (en) MOS transistor and method of manufacturing the same
US6054357A (en) Semiconductor device and method for fabricating the same
JPS6124833B2 (en)
US4713329A (en) Well mask for CMOS process
JPS62156873A (en) Semiconductor device
JPH05183164A (en) Semiconductor device
JPH0290683A (en) Thin film transistor and manufacture thereof
JPH05183131A (en) Thin film transistor
JPS63217664A (en) Misfet and manufacture thereof
KR940004415B1 (en) Making method and structure of mosfet
JP3183256B2 (en) Method for manufacturing thin film transistor
KR100260484B1 (en) Thi film transistor and making method thereof
KR100252754B1 (en) Thin film transistor and the manufacturing method thereof
KR100327419B1 (en) Method for fabricating semiconductor device
KR910009743B1 (en) High speed and high voltage semiconductor device and its manufacturing method
KR0172820B1 (en) Method of manufacturing semiconductor device
JPS6254959A (en) Manufacture of mis semiconductor device
JPH02174236A (en) Manufacture of semiconductor device
KR20010003517A (en) Thin film transistor and a method for fabricating the same
JPH0864820A (en) Semiconductor device and method of fabrication thereof