JPH03181134A - Formation of multi-layer wiring - Google Patents

Formation of multi-layer wiring

Info

Publication number
JPH03181134A
JPH03181134A JP32199189A JP32199189A JPH03181134A JP H03181134 A JPH03181134 A JP H03181134A JP 32199189 A JP32199189 A JP 32199189A JP 32199189 A JP32199189 A JP 32199189A JP H03181134 A JPH03181134 A JP H03181134A
Authority
JP
Japan
Prior art keywords
film
layer
forming
wiring
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32199189A
Other languages
Japanese (ja)
Inventor
Shunji Abe
俊二 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32199189A priority Critical patent/JPH03181134A/en
Publication of JPH03181134A publication Critical patent/JPH03181134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase an etching rate of a nitride film, to facilitate etching in a lateral direction and to remove a corner part by lowering vacuum degree in a reaction chamber as regards a part of a specific depth of a surface layer in a process for forming a plasma nitride film. CONSTITUTION:A plasma nitride film 4 to be an interlayer insulation film is deposited and formed on a silicon wafer 1 and a first layer of wiring 2. In a process for forming this film 4, vacuum degree in a reaction chamber is lowered from the degree used as regards a part of a specific depth of a surface layer. Thus silicon nitride molecules on the deposited layer are deposited in a non-dense state as gas other than silane an ammonia in the plasma is collected at the time of film formation. Therefore during dry etching to be done in a subsequent process, an etching rate of the surface of the film 4 is increased and etching in the lateral direction is facilitated so that the corner of the film 4 is in a round shape.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置の製造方法に関する。特に多層配線
において層間絶縁膜に使用しているプラズマ窒化膜の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a semiconductor device. In particular, the present invention relates to a method of forming a plasma nitride film used as an interlayer insulating film in multilayer wiring.

〈従来の技術〉 第2図は、従来の方法により形成された多層配線の断面
図である。
<Prior Art> FIG. 2 is a cross-sectional view of a multilayer wiring formed by a conventional method.

以下に従来の方法を示す。The conventional method is shown below.

まず、シリコンウェハ10上に一層目AlSi配線20
を形成後、層間絶縁膜としてプラズマ窒化膜40を堆積
する。その後、フォト工程により窓開は壱行い、さらに
異方性ドライエツチングを行う。このため、プラズマ窒
化膜40は垂直にエツチングされ、切り立った面が形成
される。次いで、シリコンウェハ10上およびAlSi
配線20上に、二層目AlSi配線30を形成するが、
この工程において、窓開けしたプラズマ窒化膜40の端
面に到達し、かつその端面にほぼ垂直なスルーホール5
0が形成される。このスルーホール50は多層配線の形
成における断線の原因となっていた。
First, the first layer AlSi wiring 20 is placed on the silicon wafer 10.
After forming, a plasma nitride film 40 is deposited as an interlayer insulating film. Thereafter, the window is opened by a photo process, and anisotropic dry etching is further performed. Therefore, the plasma nitride film 40 is etched vertically, forming a steep surface. Next, on the silicon wafer 10 and AlSi
A second layer AlSi wiring 30 is formed on the wiring 20, but
In this step, a through hole 5 that reaches the end surface of the plasma nitride film 40 that has been opened and is substantially perpendicular to the end surface.
0 is formed. This through hole 50 has been a cause of disconnection in the formation of multilayer wiring.

〈発明が解決しようとする課題〉 以上説明したように、垂直に加工されたスルーホールに
より引き起こされる二層目配線の断線は、多層配線工程
における大きな課題であった。本発明の方法では、UT
線のない二層目配線を形成することをその目的とする。
<Problems to be Solved by the Invention> As explained above, disconnection of the second layer wiring caused by vertically processed through holes has been a major problem in the multilayer wiring process. In the method of the invention, the UT
The purpose is to form a second layer wiring without lines.

く課題を解決するための手段〉 本発明の多層配線の形成方法は、ウェハ上に一層目配線
を形成し、次いでそのウェハ上および一層目配線上にま
たがる層間絶縁膜を形成し、次にその層間絶縁膜上にパ
ターン形成されたレジストを形成した後、そのレジスト
をマスクとして層間絶縁膜をドライエツチングし、次い
でそのレジストを除去した後、上記層間絶縁膜および一
層目配線上にまたがる二層目配線を形成する方法におい
て、上記層間絶縁膜を所定の真空度でプラズマ窒化膜に
より形成するとともに、その窒化膜の形成過程で表面層
の所定深さの部分についてのみ反応室内の真空度をそれ
までの真空度よりも低下させることを特徴としている。
Means for Solving the Problems> The method for forming a multilayer wiring of the present invention includes forming a first layer wiring on a wafer, then forming an interlayer insulating film spanning over the wafer and the first layer wiring, and then forming the first layer wiring on the wafer. After forming a patterned resist on the interlayer insulating film, dry etching the interlayer insulating film using the resist as a mask, and then removing the resist. In the method for forming wiring, the above-mentioned interlayer insulating film is formed using a plasma nitride film at a predetermined degree of vacuum, and during the process of forming the nitride film, the degree of vacuum in the reaction chamber is reduced only to a predetermined depth of the surface layer. It is characterized by lowering the degree of vacuum below that of .

〈作用〉 本発明の多層配線の形成方法は、プラズマ窒化膜の形成
過程で表面層の所定深さの部分についてのみ反応室内の
真空度をそれまでの真空度よりも低下させて堆積を行う
ことにより、後工程に行われるドライエツチングにおい
て、プラズマ窒化膜表面のエッチレートが速くなり、ま
た横方向へのエツチングが促進されるため、プラズマ窒
化膜の角部分は丸みをもった形状となる。
<Function> The method for forming a multilayer wiring according to the present invention is to perform deposition by lowering the degree of vacuum in the reaction chamber from the previous degree of vacuum only for a predetermined depth portion of the surface layer in the process of forming a plasma nitride film. As a result, in the dry etching performed in the subsequent process, the etch rate of the surface of the plasma nitride film becomes faster and etching in the lateral direction is promoted, so that the corners of the plasma nitride film have a rounded shape.

以上のことによりその後の二層目配線の形成において、
スルーホール部でのくびれ等を解消することができ、断
線の無い二層目配線が形成される。
Due to the above, in the subsequent formation of the second layer wiring,
It is possible to eliminate constrictions in the through-hole portion, and a second layer wiring without disconnection is formed.

〈実施例〉 第1図は本発明方法による実施例を経時的に示す模式断
面図である。
<Example> FIG. 1 is a schematic sectional view showing an example according to the method of the present invention over time.

(a)図に示すように、まずシリコンウェハ1上に一層
目AlSi配線2を形成する。
(a) As shown in the figure, first, a first layer of AlSi wiring 2 is formed on a silicon wafer 1.

次いで、(b)図に示すように、シリコンウェハ1およ
び一層目AlSi配線2上にまたがる層間絶縁膜をプラ
ズマCVD法tこよりプラズマ窒化膜4を堆積すること
により形成する。このプラズマ窒化膜4の形成は、その
膜厚を6000人まで形成するが、その形成過程におい
て、膜表面より500−1000人の深さ部分の形成時
においてのみ、反応室内の真空度を0.2TOrrから
09Torrに変化させて堆積を行う。このように真空
度を0.1Torr低下することにより、堆積された層
における窒化シリコンの分子はプラズマ中のシラン、ア
ンモニア以外の気体が膜の形成時に取り込まれるため、
真空度Q、2Torrの条件で堆積された層に比べ窒化
シリコンの分子は疎の状態で堆積される。このように形
成されたプラズマ窒化膜4の表面付近は、後述するエツ
チングの工程においてそのエッチレートは速くなる。
Next, as shown in FIG. 3B, an interlayer insulating film extending over the silicon wafer 1 and the first layer AlSi wiring 2 is formed by depositing a plasma nitride film 4 using the plasma CVD method. The plasma nitride film 4 is formed to a thickness of up to 6000 mm, but during the formation process, the degree of vacuum in the reaction chamber is reduced to 0. Deposition is performed by changing the temperature from 2 Torr to 09 Torr. By lowering the degree of vacuum by 0.1 Torr in this way, gases other than silane and ammonia in the plasma are incorporated into the silicon nitride molecules in the deposited layer during film formation.
The silicon nitride molecules are deposited in a sparse state compared to a layer deposited under the conditions of vacuum degree Q and 2 Torr. The etch rate near the surface of the plasma nitride film 4 formed in this manner becomes faster in the etching process described later.

次いで、(C)図に示すように、フォトレジスト膜5を
形成する。
Next, as shown in FIG. 3(C), a photoresist film 5 is formed.

次いで、(d)図に示すように、フォト工程によりバタ
ーニングしたフォトレジスト膜5の窓開けを行う。
Next, as shown in Figure (d), the photoresist film 5 patterned by the photo process is opened.

次いで、(e)図に示すように、さらに上記フォトレジ
スト膜5をマスクとしてプラズマ窒化膜4を異方性ドラ
イエツチングし、上記フォトレジストr1g、5を除去
する。このドライエツチングにおいては、プラズマによ
り異方性の強いエツチングが行われるが、同時に、表面
の物質をはぎとるスパッタエツチングも行われるため、
フォトレジスト膜5の窓開けを行った部分についてもフ
ォトレジスト膜5が横方向へ徐々に後退していく。さら
に上述したプラズマCVD法により形成されたプラズマ
窒化膜4の表面付近は、疎の状態で結合されているので
、エッチレートが速くなるため、これによりフォトレジ
スト膜5とプラズマ窒化膜4の表面のエッチレートの選
択比は小さくなり、従来の技術で生じていたエッチレー
トの差による段差は生じない。また、スルーホールの開
口部は丸みをもった形状となる。
Next, as shown in FIG. 3(e), the plasma nitride film 4 is anisotropically dry etched using the photoresist film 5 as a mask to remove the photoresists r1g and 5. In this dry etching, highly anisotropic etching is performed using plasma, but at the same time, sputter etching is also performed to strip away material on the surface.
The photoresist film 5 also gradually recedes in the lateral direction in the portion of the photoresist film 5 where the window is opened. Furthermore, since the surface area of the plasma nitride film 4 formed by the plasma CVD method described above is loosely bonded, the etch rate becomes faster. The selectivity ratio of the etch rate becomes small, and the step due to the difference in etch rate that occurs in the conventional technique does not occur. Further, the opening of the through hole has a rounded shape.

次いで、(f)図に示すように、二層目AlSi配線3
の形成を行う。特に、二層目AlSi配線3の厚さが1
.4μmで形成した場合、断線のない形状を得ることが
できる。
Next, as shown in the figure (f), the second layer AlSi wiring 3
Formation of In particular, the thickness of the second layer AlSi wiring 3 is 1
.. When formed with a thickness of 4 μm, a shape without disconnection can be obtained.

〈発明の効果〉 本発明の方法によれば、断線のない多層配線を製造する
ことができ、最近のニーズの高まりにこたえることがで
きる。すなわち、多層配線によれば、集積度の高いVL
S Iの配線が短縮でき、また配線によるチップ面積の
占有および信号の遅延を防く等、今後の高集積化に寄与
するところも大である。
<Effects of the Invention> According to the method of the present invention, multilayer wiring without disconnection can be manufactured, and it is possible to meet the increasing needs of recent years. In other words, according to multilayer interconnection, VL with a high degree of integration
This will greatly contribute to future high integration, such as by shortening the wiring of the SI and preventing the wiring from occupying the chip area and preventing signal delays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による実施例を経時的に示す模式断
面図、第2図は従来例の説明図である。 シリコンウェハー 一層目AlSi配線 二層目AlSi配線 プラズマ窒化膜 フォトレジスト膜
FIG. 1 is a schematic sectional view showing an embodiment according to the method of the present invention over time, and FIG. 2 is an explanatory diagram of a conventional example. Silicon wafer 1st layer AlSi wiring 2nd layer AlSi wiring Plasma nitride film Photoresist film

Claims (1)

【特許請求の範囲】[Claims]  ウェハ上に一層目配線を形成し、次いでそのウェハ上
および一層目配線上にまたがる層間絶縁膜を形成し、次
にその層間絶縁膜上にパターン形成されたレジストを形
成した後、そのレジストをマスクとして層間絶縁膜をド
ライエッチングし、次いでそのレジストを除去した後、
上記層間絶縁膜および一層目配線上にまたがる二層目配
線を形成する方法において、上記層間絶縁膜を所定の真
空度でプラズマ窒化膜により形成するとともに、その窒
化膜の形成過程で表面層の所定深さの部分についてのみ
反応室内の真空度をそれまでの真空度よりも低下させる
ことを特徴とする多層配線の形成方法。
First layer wiring is formed on the wafer, then an interlayer insulating film is formed over the wafer and the first layer wiring, a patterned resist is formed on the interlayer insulating film, and then the resist is masked. After dry etching the interlayer insulating film and removing the resist,
In the method for forming the second layer wiring over the interlayer insulating film and the first layer wiring, the interlayer insulating film is formed using a plasma nitride film at a predetermined degree of vacuum, and in the process of forming the nitride film, a predetermined portion of the surface layer is formed. A method for forming multilayer interconnection characterized by lowering the degree of vacuum in the reaction chamber compared to the previous degree of vacuum only in the depth portion.
JP32199189A 1989-12-11 1989-12-11 Formation of multi-layer wiring Pending JPH03181134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32199189A JPH03181134A (en) 1989-12-11 1989-12-11 Formation of multi-layer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32199189A JPH03181134A (en) 1989-12-11 1989-12-11 Formation of multi-layer wiring

Publications (1)

Publication Number Publication Date
JPH03181134A true JPH03181134A (en) 1991-08-07

Family

ID=18138706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32199189A Pending JPH03181134A (en) 1989-12-11 1989-12-11 Formation of multi-layer wiring

Country Status (1)

Country Link
JP (1) JPH03181134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082512A (en) * 1995-11-27 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082512A (en) * 1995-11-27 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP2604631B2 (en) Method for manufacturing semiconductor device
JP3252780B2 (en) Silicon layer etching method
JPH11330245A (en) Method for contact formation of semiconductor device
JPH1041389A (en) Manufacture of semiconductor device
JPH0313744B2 (en)
JPH03181134A (en) Formation of multi-layer wiring
JP2650313B2 (en) Dry etching method
KR100480233B1 (en) Method for forming the contact hole of semiconductor device
JPH0653334A (en) Manufacturing for semiconductor device
JP2888213B2 (en) Method for manufacturing semiconductor device
JP2702007B2 (en) Method for manufacturing semiconductor device
JPH07240466A (en) Fabrication of semiconductor device
JPH05109702A (en) Manufacture of semiconductor device
JPH03248429A (en) Manufacture of semiconductor device
JPS59167021A (en) Manufacture of semiconductor device
JP2702010B2 (en) Method for manufacturing semiconductor device
JPH1012868A (en) Semiconductor and its manufacture
JP3291387B2 (en) Method for manufacturing semiconductor device
JP2823727B2 (en) Contact formation method
JPH05243388A (en) Manufacture of semiconductor device
JPS58169938A (en) Manufacture of semiconductor device
JPH0376127A (en) Manufacture of semiconductor device
JP2674654B2 (en) Method for manufacturing semiconductor device
JPS5933849A (en) Semiconductor device and manufacture thereof
KR100615822B1 (en) Method for eliminating the particle of semiconductor device