JPH03179777A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH03179777A
JPH03179777A JP31859589A JP31859589A JPH03179777A JP H03179777 A JPH03179777 A JP H03179777A JP 31859589 A JP31859589 A JP 31859589A JP 31859589 A JP31859589 A JP 31859589A JP H03179777 A JPH03179777 A JP H03179777A
Authority
JP
Japan
Prior art keywords
mosfet
implanted
source
single crystal
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31859589A
Other languages
Japanese (ja)
Inventor
Takemitsu Kunio
國尾 武光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31859589A priority Critical patent/JPH03179777A/en
Publication of JPH03179777A publication Critical patent/JPH03179777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent a MOSFET in which a thin SOI layer is used from deteriorating in drain breakdown strength by a method wherein an ion implantation process is carried out for the formation of a source and a drain region before a gate electrode is formed. CONSTITUTION:A gate oxide film is formed through oxidation in an electric oven to serve as a gate insulating film 5. Then, to form a source.drain region 4, boron ions are implanted for a P channel MOSFET and arsenic ions are implanted for an N channel MOSFET. Boron ions are implanted on such a condition that the implantation range of ions are made nearly equal to the thickness of a silicon single crystal 3 of a recess. By this setup, impurity is hardly introduced into a silicon single crystal 3 of a protrusion. Therefore, a MOSFET does not change in threshold voltage. Then, a polycrystalline silicon is deposited as a gate electrode 6, and a wiring process is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMO5FET半導体素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a MO5FET semiconductor device.

〔従来の技術〕[Conventional technology]

従来のSOIデバイスにおいて、301層の膜厚は約4
000人であった。しかし、最近、301層の膜厚を1
000Å以下にすると、デバイスの電流駆動能力が向上
したり、短チヤネル効果を防止することができることが
明らかになりつつある。しかし、このとき薄膜化する必
要があるのは、デバイスのチャネル領域のみであり、ソ
ース・ドレイン領域も薄膜化すると、トレイン耐圧が低
下するという問題点がある。これを、防止するために、
書見ら(ダイジェスト オブ VLS Iテ・クノロジ
イ シンポジウムンは、第2図に示すようにチャネル領
域のみのSOI層が薄く、ソース・ドレイン領域のSO
I層が厚い構造を提案している。第2図において、1は
シリコン基板、2はシリコン酸化膜、4はソース・トレ
イン領域、6はゲート′!4極である。
In conventional SOI devices, the thickness of the 301 layer is approximately 4
There were 000 people. However, recently, the thickness of the 301 layer has been reduced to 1
It is becoming clear that by reducing the thickness to 000 Å or less, the current drive capability of the device can be improved and the short channel effect can be prevented. However, at this time, only the channel region of the device needs to be thinned, and if the source/drain regions are also thinned, there is a problem that the train withstand voltage decreases. In order to prevent this,
Shomi et al. (Digest of VLS I Technology Symposium) found that the SOI layer only in the channel region is thin and the SOI layer in the source/drain regions is thin, as shown in Figure 2.
A structure with a thick I layer is proposed. In FIG. 2, 1 is a silicon substrate, 2 is a silicon oxide film, 4 is a source/train region, and 6 is a gate'! It has four poles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第2図に示すようにゲート′f4If!6のパ
ターンが目合わせずれを起すと、ドレイン領域が薄くな
り、耐圧の劣化が生じる。
However, as shown in FIG. 2, the gate 'f4If! If the pattern No. 6 is misaligned, the drain region becomes thinner and the withstand voltage deteriorates.

本発明の目的は薄膜化された301層を用いたMOSF
ETにおけるドレイン耐圧を劣化させない半導体素子の
製造方法を提供することにある。
The purpose of the present invention is to create a MOSFET using a thinned 301 layer.
An object of the present invention is to provide a method for manufacturing a semiconductor device that does not deteriorate drain breakdown voltage in ET.

〔ff!題を解決するための手段〕[ff! Means to solve the problem]

上記目的を達成するため、本発明に係る半導体素子の製
造方法においては、チャネル領域のみの800層がソー
ス・ドレイン領域の800層より薄膜化されたMOSF
ET半導体素子の製造方法であって、 ゲート電極を形成する以前にソース・ドレイン領域を形
成するイオン注入を行なうものである。
In order to achieve the above object, in the method for manufacturing a semiconductor device according to the present invention, the 800 layers of only the channel region are thinner than the 800 layers of the source/drain region.
This is a method of manufacturing an ET semiconductor device, in which ion implantation is performed to form source and drain regions before forming a gate electrode.

〔実施例〕〔Example〕

以下に、本発明について実施例を用いて説明する。 The present invention will be explained below using Examples.

第1図(a)〜(C)は本発明に係る半導体素子の製造
方法を工程順に示す断面図である。第1図(a)におい
て、シリコン基板1の表面に凹凸がドライエツチング法
により作製される。曲部分は将来デバイスのチャネル領
域となるところである。
FIGS. 1A to 1C are cross-sectional views showing the method for manufacturing a semiconductor device according to the present invention in order of steps. In FIG. 1(a), irregularities are created on the surface of a silicon substrate 1 by dry etching. The song part will become the channel area of the device in the future.

その後、シリコン酸化WA2を約3000λ程度成長さ
せ、その上にシリコン単結晶3を形成する。この単結晶
形成方法はレーザアニール法や電子線アニール法により
行なう、凸部のシリコン単結晶3の膜厚は約500Åと
する。また、凹部のシリコン単結晶3の膜厚は約300
0Åとする6次に、第1図(b)に示すように、ゲート
絶縁膜となるゲート酸化膜を約200人、電気炉酸化に
より形成する。その後、ソース・ドレイン領域4を形成
するために、PチャネルMOSFETに対しては、ボロ
ンを、NチャネルMOSFET対しては、砒素をイオン
注入により形成する。ボロン注入の条件は110 ke
V、5 x 10”aJ、砒素注入条件は240 ke
V、5 x 10”aaである。この条件は、イオン注
入の飛程距離を凹部のシリコン単結晶3の膜厚とほぼ同
一にすることにある。これにより、凸部のシリコン単結
晶3には、不純物はほとんど導入せずにすむ、このため
、MOSFETのしきい値電圧は変化しない、5はゲー
ト絶縁膜である。
Thereafter, silicon oxide WA2 is grown to about 3000λ, and silicon single crystal 3 is formed thereon. This single crystal formation method is performed by a laser annealing method or an electron beam annealing method, and the film thickness of the silicon single crystal 3 in the convex portion is about 500 Å. Furthermore, the film thickness of the silicon single crystal 3 in the recessed portion is approximately 300 mm.
Next, as shown in FIG. 1(b), about 200 people formed a gate oxide film, which will become a gate insulating film, by electric furnace oxidation. Thereafter, in order to form source/drain regions 4, boron is ion-implanted for the P-channel MOSFET, and arsenic is ion-implanted for the N-channel MOSFET. The conditions for boron implantation are 110 ke.
V, 5 x 10” aJ, arsenic implantation conditions were 240 ke
V, 5 x 10"aa. This condition is to make the range of ion implantation almost the same as the film thickness of the silicon single crystal 3 in the concave part. As a result, the thickness of the silicon single crystal 3 in the convex part is 5 is a gate insulating film, in which almost no impurities need to be introduced, so that the threshold voltage of the MOSFET does not change.

その後第1図(C)に示すように、ゲート電極6として
多結晶シリコンを形成し、配線工程を行なうことにより
、本実施例が終了する。
Thereafter, as shown in FIG. 1C, polycrystalline silicon is formed as the gate electrode 6 and a wiring process is performed, thereby completing the present embodiment.

本発明によれば、ゲート電極6が目ずれしても、第2図
に示すように、凸部のシリコン単結晶3が薄膜化した部
分にソース・ドレイン領域4が形成されることはない、
このため、トレイン耐圧が劣化することはない。
According to the present invention, even if the gate electrode 6 is misaligned, as shown in FIG.
Therefore, the train withstand voltage does not deteriorate.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、薄膜化したs。 As described above, according to the present invention, s is made into a thin film.

Iデバイスの問題点であるドレイン耐圧の劣化を防止し
た半導体素子を得ることができる。
A semiconductor element can be obtained in which deterioration of drain breakdown voltage, which is a problem with I devices, is prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (c)は本発明に係る
半導体素子の製造方法を工程順に示す断面図、第2図は
従来例を示す断面図である。 1・・・シリコン基板   2・・・シリコン酸化膜3
・・・シリコン単結晶 4・・・ソース・ドレイン領域 5・・・ゲート絶縁1i16・・・ゲート電極((L) (b> (Cン 第 図
FIGS. 1(a), (b), and (c) are cross-sectional views showing the method of manufacturing a semiconductor device according to the present invention in the order of steps, and FIG. 2 is a cross-sectional view showing a conventional example. 1... Silicon substrate 2... Silicon oxide film 3
...Silicon single crystal 4...Source/drain region 5...Gate insulation 1i16...Gate electrode ((L) (b> (C)

Claims (1)

【特許請求の範囲】[Claims] (1)チャネル領域のみのSOI層がソース・ドレイン
領域のSOI層より薄膜化されたMOSFET半導体素
子の製造方法であって、 ゲート電極を形成する以前にソース・ドレイン領域を形
成するイオン注入を行なうことを特徴とする半導体素子
の製造方法。
(1) A method for manufacturing a MOSFET semiconductor device in which the SOI layer only in the channel region is thinner than the SOI layer in the source/drain regions, in which ion implantation for forming the source/drain regions is performed before forming the gate electrode. A method for manufacturing a semiconductor device, characterized in that:
JP31859589A 1989-12-07 1989-12-07 Manufacture of semiconductor element Pending JPH03179777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31859589A JPH03179777A (en) 1989-12-07 1989-12-07 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31859589A JPH03179777A (en) 1989-12-07 1989-12-07 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH03179777A true JPH03179777A (en) 1991-08-05

Family

ID=18100893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31859589A Pending JPH03179777A (en) 1989-12-07 1989-12-07 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH03179777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171441A1 (en) 2013-04-15 2014-10-23 株式会社Icst Light radiation apparatus for nail resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171441A1 (en) 2013-04-15 2014-10-23 株式会社Icst Light radiation apparatus for nail resin

Similar Documents

Publication Publication Date Title
US6188104B1 (en) Trench DMOS device having an amorphous silicon and polysilicon gate
JPH06350090A (en) Manufacture of semiconductor device
KR20050085607A (en) Method of manufactoring a trench-gate semiconductor device
KR0164079B1 (en) Semiconductor device
JPH04102317A (en) Manufacture of semiconductor device
JPS63244776A (en) Manufacture of insulated-gate field-effect transistor
JPH07249770A (en) Semiconductor device and its fabrication
US4470191A (en) Process for making complementary transistors by sequential implantations using oxidation barrier masking layer
US6521942B2 (en) Electrically programmable memory cell
JPH03179777A (en) Manufacture of semiconductor element
JPS63304668A (en) Manufacture of insulated-gate transistor
JPS6197967A (en) Semiconductor device and manufacture thereof
JPH0412629B2 (en)
JPH05267665A (en) Thin-film transistor
KR960006689B1 (en) Ldd manufacturing method of semiconductor device
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JPH05291294A (en) Manufacture of thin film transistor
JPH07202211A (en) Manufacture of semiconductor device
JPS63114264A (en) Manufacture of semiconductor device
JPS62245675A (en) Ldd type mos transistor and manufacture thereof
US5177029A (en) Method for manufacturing static induction type semiconductor device enhancement mode power
JPH02208943A (en) Manufacture of silicon thin film semiconductor device
JPS60133757A (en) Manufacture of thin film transistor
KR100303356B1 (en) SOI device having double gate structure and method of manufacturing the same
JPH0334468A (en) Insulated gate type field-effect semiconductor device and manufacture thereof