JPS63304668A - Manufacture of insulated-gate transistor - Google Patents

Manufacture of insulated-gate transistor

Info

Publication number
JPS63304668A
JPS63304668A JP13932287A JP13932287A JPS63304668A JP S63304668 A JPS63304668 A JP S63304668A JP 13932287 A JP13932287 A JP 13932287A JP 13932287 A JP13932287 A JP 13932287A JP S63304668 A JPS63304668 A JP S63304668A
Authority
JP
Japan
Prior art keywords
gate electrode
deposited
diffusion region
sio2
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13932287A
Other languages
Japanese (ja)
Inventor
Soichiro Nakai
中井 宗一郎
Shuji Tabuchi
田淵 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13932287A priority Critical patent/JPS63304668A/en
Publication of JPS63304668A publication Critical patent/JPS63304668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a deformed LDD type S/D diffusion region by a method wherein, after a gate electrode structure has been formed by performing an ordinary process, an insulating material is deposited in such a manner that a gate electrode is coated in trapezoidal cross-section, and an S/D diffusion region having shallowly-formed gate electrode side is formed by implanting ions using said insulating material as a mask. CONSTITUTION:The state shown by the diagram (a) is obtained using the publicly known manufacturing method, and then an SiO2 24 is deposited by conducting a bias-sputtering method. The SiO2 24 is deposited in trapezoidal shape covering a gate electrode 23 as shown in the diagram (b) by conducting the above- mentioned treatment, and P<+> is ion-implanted using the trapezoidally deposited SiO2 24 and the electrode 23 as a mask. A deep S/D diffusion region 25 and an inclined S/D diffusion region 26 are formed simultaneously by conducting an ion-implanting method, and the structure shown by the diagram (c) is accomplished. As a result, the impurity density of the inclined S/D region is relatively made lower, and the impurity density distribution approximate to an LDD structure can be accomplished.

Description

【発明の詳細な説明】 〔概 要〕 LDD構造に類僚の構造を有する絶縁ゲート型トランジ
スタ(以下、MO3Trと表記)の製造方法であって、
ゲート電極を形成した後、イオンエツチングが同時に進
行するスパッタリング、典型的にはバイアススパッタリ
ング、によってSiO□層を堆積する。
[Detailed Description of the Invention] [Summary] A method for manufacturing an insulated gate transistor (hereinafter referred to as MO3Tr) having a structure similar to an LDD structure, comprising:
After forming the gate electrode, a layer of SiO□ is deposited by sputtering, typically bias sputtering, with simultaneous ion etching.

その場合S i Oz層は、台形状断面を形作ってゲー
ト電極を被覆するので、これをマスクとしてイオン注入
を行うと、第1図に示されるように、ゲート電極寄りで
は浅く、ゲート電極から離れるに従って深いS/D拡散
領域が形成される。
In that case, the SiOz layer forms a trapezoidal cross section and covers the gate electrode, so when ion implantation is performed using this as a mask, as shown in Figure 1, the SiOz layer is shallow near the gate electrode and is separated from the gate electrode. Accordingly, a deep S/D diffusion region is formed.

該方法によって形成されたMOS)ランジスタは、LD
D型M OS T rと同様、ショートチャネル効果の
発生が抑制される。
The MOS) transistor formed by the method is LD
Similar to the D-type MOS Tr, the occurrence of short channel effects is suppressed.

〔産業上の利用分野〕[Industrial application field]

本発明はMO3Trの製造方法に関わり、特にLDD類
似の構造を採ることによってショートチャネル効果を抑
制したMO3Trの製造方法に関わる。
The present invention relates to a method for manufacturing MO3Tr, and particularly to a method for manufacturing MO3Tr in which the short channel effect is suppressed by adopting an LDD-like structure.

集積回路の高集積化、微細化に伴ってMO3Trのショ
ートチャネル効果が問題になっている。
As integrated circuits become more highly integrated and miniaturized, the short channel effect of MO3Tr becomes a problem.

即ち、M OS T rのS/D間距離が小になったに
もかかわらず、供給される電源電圧がこれに追随して低
下しないことから、S/D間の電界が高まり、ホットキ
ャリヤの発生とそれに伴うvthの変動あるいはパンチ
スルーの発生といった障害が起こり易くなっているので
ある。
In other words, even though the S/D distance of the MOS TR has become smaller, the supplied power supply voltage does not decrease accordingly, so the electric field between S/D increases and hot carriers are Failures such as the generation of Vth and the resulting fluctuations in VTH or the occurrence of punch-through are becoming more likely to occur.

この問題を解決するMO3素子として、第3図に断面構
造が模式的に示されるようなLDD構造のものが知られ
ている。これはS / D 領域を浅く低濃度の領域3
6と深く高濃度の領域35から構成するものであって、
チャネル領域における高電界を緩和し、深い部分におけ
るS/D間の距離を拡大することでパンチスルーを回避
することを企図したものである。該図で、30はp型S
1基板、31はフィールド酸化膜、32はゲート酸化膜
、34はサイドウオールである。
As an MO3 element that solves this problem, an LDD structure whose cross-sectional structure is schematically shown in FIG. 3 is known. This makes the S/D region shallow and low concentration region 3.
6 and is composed of a deep and highly concentrated region 35,
This is intended to avoid punch-through by alleviating the high electric field in the channel region and increasing the distance between S/D in the deep portion. In the figure, 30 is p-type S
1 substrate, 31 is a field oxide film, 32 is a gate oxide film, and 34 is a sidewall.

該形状のMOSトランジスタはショートチャネル効果の
抑制には有効であるが、後述する如く製造工程が複雑で
ある。
Although a MOS transistor having this shape is effective in suppressing the short channel effect, the manufacturing process is complicated as will be described later.

一方、S i O2等の絶縁物の堆積法として、近年堆
積と同時に異方性エツチングを進行させることが行われ
るようになった。通常バイアススパッタリングと呼ばれ
る技術がこの処理法の典型的なものであるが、これは例
えば次のように行われる。
On the other hand, in recent years, as a method for depositing insulators such as SiO2, anisotropic etching has been carried out simultaneously with the deposition. A technique commonly called bias sputtering is typical of this processing method, and is carried out, for example, as follows.

SiO□等の絶縁物のスパッタリングは、数mtorr
のAr雰囲気に高周波電界を印加し、Arイオンによっ
てSi○2ターゲットからS i O2分子を叩きだし
、Si基板等に被着させる。この時に適当な直流電界を
印加するとイオンエツチングも同時に進行することにな
るが、エツチングは加速された粒子が対象面に斜めに衝
突する場合に効果的に進行するのに対し、堆積は粒子が
対象面に直角にぶつかる場合に最大速度を示すので、結
果的に基板に垂直な方向には速やかに堆積するが、斜め
方向には緩やかな堆積しか進行しないことになる。
Sputtering of insulators such as SiO□ is performed at several mtorr.
A high-frequency electric field is applied to the Ar atmosphere, and SiO2 molecules are driven out from the Si○2 target by Ar ions and deposited on a Si substrate or the like. If an appropriate DC electric field is applied at this time, ion etching will also proceed at the same time, but etching progresses effectively when accelerated particles collide obliquely with the target surface, whereas deposition occurs when particles collide obliquely with the target surface. Since the maximum speed is reached when hitting the surface at right angles, as a result, the deposition progresses quickly in the direction perpendicular to the substrate, but only slowly in the diagonal direction.

即ち、バイアススパッタリングでは堆積速度に異方性を
持たせることが可能で、その程度を直流バイアスを変化
させて調整することが出来る。
That is, in bias sputtering, it is possible to give anisotropy to the deposition rate, and the degree of this can be adjusted by changing the DC bias.

〔従来の技術〕[Conventional technology]

MO3Trのショートチャネル効果の問題を解−3= 決する方法として、既述せる如く、LDD構造の素子が
知られている。このLDD構造の素子は第4図に模式的
に示された工程によって形成される。
As mentioned above, an LDD structure element is known as a method for solving the problem of the short channel effect of MO3Tr. This LDD structure element is formed by the steps schematically shown in FIG.

ここで同図を参照しながら該工程を説明する。Here, the process will be explained with reference to the same figure.

先ず、p型Si基板40にフィールド酸化膜41、ゲー
ト電極43を形成した状態でP゛をイオン注入し、浅い
S/D拡散46を形成する((a)図)。
First, with a field oxide film 41 and a gate electrode 43 formed on a p-type Si substrate 40, ion implantation of P is performed to form a shallow S/D diffusion 46 (FIG. 3(a)).

その上にS i Oz層44を堆積してRIEを施しく
(b)図)、ゲート電極の側方にサイドウオール44′
を残す((C)図)。
A SiOz layer 44 is deposited thereon and subjected to RIE (Figure (b)), and sidewalls 44' are formed on the sides of the gate electrode.
(Figure (C)).

ゲート電極とサイドウオールをマスクとしてAs”をイ
オン注入し、深いS/D拡散45を形成する((d)図
)。
Using the gate electrode and sidewall as a mask, As'' is ion-implanted to form a deep S/D diffusion 45 (see (d)).

このように、LDD構造のMO3素子を形成するには、
サイドウオールを形成するための工程を追加しなければ
ならない。
In this way, to form an MO3 element with an LDD structure,
A process for forming the sidewalls must be added.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

LDD型M OS T rはショートチャネル効果を抑
制するのに有効であるが、上述のように製造工程が複雑
化するので、製造コストの上昇を招くことになる。
Although the LDD type MOS transistor is effective in suppressing the short channel effect, the manufacturing process becomes complicated as described above, resulting in an increase in manufacturing cost.

本発明の目的は簡略化された工程によってLDD構造と
等価な構造のM OS T rを製造し、MO8型集積
回路の高集積化、微細化を可能ならしめると共に製造コ
ストを低度ならしめることである。
The purpose of the present invention is to manufacture a MOS transistor with a structure equivalent to an LDD structure through a simplified process, to enable higher integration and miniaturization of MO8 type integrated circuits, and to lower manufacturing costs. It is.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明の製造方法では、通常の
工程によってゲート電極構造を形成した後、例えばバイ
アススパッタリングによって、断面台形状にゲート電極
を被覆するよう絶縁物を堆積し、これをマスクとするイ
オン注入によってゲート電極側が浅くなったS/D拡散
領域を形成することが行われる。
In order to achieve the above object, in the manufacturing method of the present invention, after forming a gate electrode structure through a normal process, an insulating material is deposited to cover the gate electrode with a trapezoidal cross section by, for example, bias sputtering, and this is used as a mask. The ion implantation is performed to form an S/D diffusion region that is shallower on the gate electrode side.

〔作 用〕 バイアススパッタリングでは、既述せる如く、直流電界
に垂°直な平面上では速やかな堆積が起こり、傾斜した
面上ではエツチングが効果的に進行するため堆積速度は
小あるいは負である。その結果、絶縁物層はゲート電極
を台形状に被覆することになり、これをマスクとしてイ
オン注入を行えば、第1図に示される変形LDD型のS
/D拡散領域が形成される。
[Operation] In bias sputtering, as mentioned above, rapid deposition occurs on a plane perpendicular to the DC electric field, and etching progresses effectively on an inclined surface, so the deposition rate is small or negative. . As a result, the insulating layer covers the gate electrode in a trapezoidal shape, and if ion implantation is performed using this as a mask, the modified LDD type S shown in FIG.
/D diffusion region is formed.

〔実施例〕〔Example〕

第1図は本発明による変形LDD型M OS T rの
模式断面図である。図の10はp型Si基板、13はゲ
ートを極、14は5iOz、15ハ深いs/D拡散であ
る。該構造に於けるゲート電極側で浅い傾斜S/D拡散
16はショートチャネル効果の発生を抑止している。
FIG. 1 is a schematic cross-sectional view of a modified LDD type MOS Tr according to the present invention. In the figure, 10 is a p-type Si substrate, 13 is a gate pole, 14 is 5 iOz, and 15 is a deep S/D diffusion. The shallow sloped S/D diffusion 16 on the gate electrode side of this structure prevents short channel effects from occurring.

以下、第2図を参照しながら、本発明実施例の製造工程
を説明する。
Hereinafter, the manufacturing process of the embodiment of the present invention will be explained with reference to FIG.

先ず公知の製造方法によってfa1図の状態を得る。First, the state shown in figure fa1 is obtained by a known manufacturing method.

ここで20はp型Si基板、21はフィールド酸化膜、
22はゲート酸化膜、23はゲート電極である。
Here, 20 is a p-type Si substrate, 21 is a field oxide film,
22 is a gate oxide film, and 23 is a gate electrode.

次にバイアススパッタリングによってSiO□24を堆
積する。この処理条件は例えば次のようなも= 7 = のである。
Next, SiO□ 24 is deposited by bias sputtering. This processing condition is, for example, as follows.

Ar雰囲気、圧カニ 5−10 mtorr高周波電カ
ニ 13.56MHz、5KW基板直流バイアスニー1
00〜−300■この処理により、(b1図示されるよ
うにケート電極を覆ってS i Ozが台形状に堆積す
る。
Ar atmosphere, pressure crab 5-10 mtorr high frequency electric crab 13.56MHz, 5KW substrate DC bias knee 1
00 to -300■ By this treatment, SiOz is deposited in a trapezoidal shape covering the gate electrode as shown in (b1).

この台形状に堆積したSiO2とゲート電極をマスクと
してP“をイオン注入する。加速電圧は例えばゲート電
極の厚さを200人とすると40KeV程度である。こ
のイオン注入によって深いS/D拡散15と傾斜S/D
拡散16が同時に形成され、fci図の構造が実現する
P'' is ion-implanted using the trapezoidally deposited SiO2 and the gate electrode as a mask.The accelerating voltage is, for example, about 40 KeV if the thickness of the gate electrode is 200 people.This ion implantation creates a deep S/D diffusion 15. Incline S/D
Diffusion 16 is formed at the same time, realizing the structure of the fci diagram.

この処理で注入されたイオンの分布を考えると、深さ方
向の中心面(断面図では線)は傾斜領域では台形状Si
○2の中に入るので、傾斜S/D領域の不純物濃度は比
較的低くなり、LDD構造に近い不純物濃度分布が実現
する。
Considering the distribution of ions implanted in this process, the central plane in the depth direction (line in the cross-sectional view) is trapezoidal in the sloped region.
Since it falls within 2, the impurity concentration in the inclined S/D region is relatively low, and an impurity concentration distribution close to that of the LDD structure is realized.

上記実施例の他、As”、Sb”など他の元素をイオン
注入してM OS T rを形成することも可能であり
、更にn型基板にpチャネルTrを形成する場合に本発
明を適用することも可能である。
In addition to the above embodiments, it is also possible to form a MOS transistor by ion-implanting other elements such as As", Sb", etc. Furthermore, the present invention can be applied when forming a p-channel transistor on an n-type substrate. It is also possible to do so.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によって傾斜S/D領域を
持つMO3Trが形成されるのであるが、その断面形状
から容易に推測し得るように、パンチスルーが抑制され
るばかりでなく、傾斜S/D領域は不純物濃度が比較的
低く、ホットキャリヤも発生し難くなっている。
As explained above, an MO3Tr having an inclined S/D region is formed according to the present invention, and as can be easily inferred from its cross-sectional shape, punch-through is not only suppressed, but also an inclined S/D region is formed. The impurity concentration in the D region is relatively low, making it difficult for hot carriers to be generated.

また、本発明の工程は通常のLDD構造MO3Trの製
造工程に比べ、工程数が大幅に減少している。
Furthermore, the number of steps in the process of the present invention is significantly reduced compared to the manufacturing process of a normal LDD structure MO3Tr.

【図面の簡単な説明】 第1図は本発明による変形LDD構造MO3Trの模式
断面図 第2図は本発明の製造工程を示す模式断面図第3図は公
知のLDD型M OS T rの模式断面図、 第4図は従来技術の製造工程を示す模式断面口であり、
図に於いて 10.20,30.40はp型S1基板、11.21.
3L41はフィールド酸化膜、13.23.33.43
はゲート電極、14.24.44はS i 02. 15.25,35.45は深いS/D拡散、16.26
は傾斜S/D拡散、 22.32はゲート酸化膜、 34.44 ’はサイドウオール、 36.46は浅いS/D拡散 である。 本発明による変形LDD型MO3Trの模式断面図第1
図 従来技術によるLDD型MO3Trの模式断面図第3図 第4図
[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view of a modified LDD structure MO3Tr according to the present invention. Fig. 2 is a schematic cross-sectional view showing the manufacturing process of the present invention. Fig. 3 is a schematic cross-section of a known LDD type MO3Tr. Cross-sectional view, FIG. 4 is a schematic cross-sectional view showing the manufacturing process of the conventional technology,
In the figure, 10.20, 30.40 are p-type S1 substrates, 11.21.
3L41 is field oxide film, 13.23.33.43
is the gate electrode, 14.24.44 is S i 02. 15.25, 35.45 are deep S/D diffusion, 16.26
is a sloped S/D diffusion, 22.32 is a gate oxide film, 34.44' is a sidewall, and 36.46 is a shallow S/D diffusion. Schematic sectional view 1 of a modified LDD type MO3Tr according to the present invention
Figure 3 Schematic sectional view of LDD type MO3Tr according to conventional technology Figure 4

Claims (1)

【特許請求の範囲】[Claims] 絶縁ゲート型トランジスタの製造に於いて、ゲート電極
構造体(22、23)が形成された第1導電型の半導体
基板(20)表面に、弱異方性の堆積と強異方性のエッ
チングが同時に進行する堆積法によって絶縁体層(24
)を堆積する工程と、しかる後、第2導電型の不純物を
イオン注入してソース/ドレイン領域(25、26)を
形成する工程とを包含することを特徴とする絶縁ゲート
型トランジスタの製造方法。
In manufacturing an insulated gate transistor, weak anisotropic deposition and strong anisotropic etching are performed on the surface of the first conductivity type semiconductor substrate (20) on which the gate electrode structures (22, 23) are formed. The insulator layer (24
), and then ion-implanting impurities of a second conductivity type to form source/drain regions (25, 26). .
JP13932287A 1987-06-03 1987-06-03 Manufacture of insulated-gate transistor Pending JPS63304668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13932287A JPS63304668A (en) 1987-06-03 1987-06-03 Manufacture of insulated-gate transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13932287A JPS63304668A (en) 1987-06-03 1987-06-03 Manufacture of insulated-gate transistor

Publications (1)

Publication Number Publication Date
JPS63304668A true JPS63304668A (en) 1988-12-12

Family

ID=15242609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13932287A Pending JPS63304668A (en) 1987-06-03 1987-06-03 Manufacture of insulated-gate transistor

Country Status (1)

Country Link
JP (1) JPS63304668A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143358A (en) * 1987-11-30 1989-06-05 Nec Corp Manufacture of mos semiconductor integrated circuit device
JP2005129632A (en) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology Method for manufacturing mosfet semiconductor device
JP2010232635A (en) * 2009-03-27 2010-10-14 Samsung Mobile Display Co Ltd Thin film transistor, method of fabricating the same, and organic electroluminescent display device including the same
US8409887B2 (en) 2009-03-03 2013-04-02 Samsung Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US8546248B2 (en) 2009-03-05 2013-10-01 Samsung Display Co., Ltd. Method of forming polycrystalline silicon layer and atomic layer deposition apparatus used for the same
US8890165B2 (en) 2009-11-13 2014-11-18 Samsung Display Co., Ltd. Method of forming polycrystalline silicon layer, thin film transistor, organic light emitting diode display device having the same, and methods of fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163850A (en) * 1983-03-07 1984-09-14 Mitsubishi Electric Corp Semiconductor device
JPS62120081A (en) * 1985-11-20 1987-06-01 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS63296380A (en) * 1987-05-28 1988-12-02 Sumitomo Electric Ind Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163850A (en) * 1983-03-07 1984-09-14 Mitsubishi Electric Corp Semiconductor device
JPS62120081A (en) * 1985-11-20 1987-06-01 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS63296380A (en) * 1987-05-28 1988-12-02 Sumitomo Electric Ind Ltd Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143358A (en) * 1987-11-30 1989-06-05 Nec Corp Manufacture of mos semiconductor integrated circuit device
JP2005129632A (en) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology Method for manufacturing mosfet semiconductor device
US8409887B2 (en) 2009-03-03 2013-04-02 Samsung Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US9035311B2 (en) 2009-03-03 2015-05-19 Samsung Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
US8546248B2 (en) 2009-03-05 2013-10-01 Samsung Display Co., Ltd. Method of forming polycrystalline silicon layer and atomic layer deposition apparatus used for the same
JP2010232635A (en) * 2009-03-27 2010-10-14 Samsung Mobile Display Co Ltd Thin film transistor, method of fabricating the same, and organic electroluminescent display device including the same
US9117798B2 (en) 2009-03-27 2015-08-25 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same and organic light emitting diode display device including the same
US8890165B2 (en) 2009-11-13 2014-11-18 Samsung Display Co., Ltd. Method of forming polycrystalline silicon layer, thin film transistor, organic light emitting diode display device having the same, and methods of fabricating the same

Similar Documents

Publication Publication Date Title
US7179703B2 (en) Method of forming shallow doped junctions having a variable profile gradation of dopants
JPH0945906A (en) Semiconductor device and its manufacture
US7449403B2 (en) Method for manufacturing semiconductor device
JPS62113474A (en) Manufacture of semiconductor integrated circuit
JPH0475351A (en) Manufacture of chemical compound semiconductor device
JPS63304668A (en) Manufacture of insulated-gate transistor
JP5060002B2 (en) Manufacturing method of semiconductor device
JPH0595115A (en) Manufacture of mos transistor
JPS6038879A (en) Manufacture of semiconductor device
JP2757491B2 (en) Method for manufacturing semiconductor device
JP2856166B2 (en) MOSFET and manufacturing method thereof
JPH04245642A (en) Mos transistor and its manufacture
JP3240991B2 (en) Semiconductor device and manufacturing method thereof
JPH0212960A (en) Manufacture of semiconductor device
JP2956538B2 (en) Method for manufacturing semiconductor device
JP3480500B2 (en) Semiconductor element forming method
KR0147255B1 (en) Method for manufacturing mosfet
JPS61256670A (en) Insulated gate field effect transistor
JPS6243341B2 (en)
JPS6190470A (en) Manufacture of compound semiconductor device
JPH01185973A (en) Semiconductor device and manufacture thereof
JPH0334468A (en) Insulated gate type field-effect semiconductor device and manufacture thereof
JPH01278777A (en) Manufacture of mosfet
JPH0590574A (en) Semiconductor device
JPS58115861A (en) Semiconductor device and manufacture thereof