JPH03173157A - Package for housing semiconductor element - Google Patents

Package for housing semiconductor element

Info

Publication number
JPH03173157A
JPH03173157A JP31272389A JP31272389A JPH03173157A JP H03173157 A JPH03173157 A JP H03173157A JP 31272389 A JP31272389 A JP 31272389A JP 31272389 A JP31272389 A JP 31272389A JP H03173157 A JPH03173157 A JP H03173157A
Authority
JP
Japan
Prior art keywords
external lead
semiconductor element
lead terminal
glass member
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31272389A
Other languages
Japanese (ja)
Other versions
JP2742617B2 (en
Inventor
Hiroshi Matsumoto
弘 松本
Masaaki Iguchi
井口 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1312723A priority Critical patent/JP2742617B2/en
Priority to US07/574,472 priority patent/US5168126A/en
Publication of JPH03173157A publication Critical patent/JPH03173157A/en
Application granted granted Critical
Publication of JP2742617B2 publication Critical patent/JP2742617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce an attenuation of a signal to a minimum at an external lead terminal by a method wherein the external lead terminal is formed of a metal of a specific physical property and a glass member is formed of a glass composed of silica, a lead oxide and at least one kind of oxides of sodium and potassium at a specific ratio. CONSTITUTION:Glass members 6, for sealing use, which are applied to opposite main faces of an insulating substrate 1 and a lid body 2 are formed of a glass composed of the following: 30.0 to 60.0wt.% of silica; 20.0 to 40.0wt.% of a lead oxide; and 10.0 to 20. 0wt.% of at least one kind of oxides of sodium and potassium. External lead terminals 5 are formed of a conductive material which is formed by bonding an alloy of nickel and iron (an N-Fe alloy) to the outer surface of a core body composed of copper (Cu) as a nonmagnetic metal, whose electric conductivity is 12% (IACS) or higher and whose coefficient of thermal expansion is 95 to 110X10<-7>/ deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パッケ
ージの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a semiconductor element housing package that houses a semiconductor element.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特にガ
ラスの溶着によって封止するガラス封止型半導体素子収
納用パッケージは、絶縁基体と蓋体とから成り、内部に
半導体素子を収容する空所を有する絶縁容器と、該容器
内に収容される半導体素子を外部電気回路に電気的に接
続するための外部リード端子とから構成されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形成すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
に被着させた封止用のガラス部材を溶融一体止させるこ
とによって内部に半導体素子を気密に封止している。
(Prior Art) Conventionally, a package for accommodating a semiconductor element, particularly a glass-sealed semiconductor element accommodating package sealed by glass welding, consists of an insulating base and a lid body, and the semiconductor element is housed inside. The device is composed of an insulating container having a cavity to open the container, and an external lead terminal for electrically connecting the semiconductor element housed in the container to an external electric circuit. After forming a glass member for sealing on the surface in advance, fixing external lead terminals to the main surface of the insulating substrate, and connecting each electrode of the semiconductor element and the external lead terminal by wire bonding, the insulating substrate and the lid are attached. The semiconductor element is hermetically sealed inside by melting and integrally sealing glass members attached to each of the parts.

(発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納用
パンケージは通常、外部リード端子がコバール(29W
tXNi−16れχCo−55WtχFe合金)や42
AIloy(42WtX Ni−58WtX Fe合金
)の導電性材料から成っており、該コバールや42A1
1oy等は導電率が低いことから以下に述べる欠点を有
する。
(Problem to be Solved by the Invention) However, in this conventional glass-sealed semiconductor element storage pancase, the external lead terminals are usually Kovar (29W).
tXNi-16, χCo-55WtχFe alloy) and 42
It is made of conductive material of AIloy (42WtX Ni-58WtX Fe alloy), and is made of conductive material such as Kovar and 42A1.
1oy etc. have the following drawbacks because of their low conductivity.

即ち、 Ωコバールや42A11oyはその導電率が3.0〜3
.5χ(IACS)と低い、そのためこのコバールや4
2AIloy等から成る外部リード端子に信号を伝搬さ
せた場合、信号の伝搬速度が極めて遅いものとなり、高
速駆動を行う半導体素子はその収容が不可となってしま
う、 ■半導体素子収納用パッケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記■に
記載のコバールや42A11oyの導電率が低いことと
相俊って電気抵抗が極めて大きなものになってきており
、外部リード端子に信号を伝搬させると、該外部リード
端子の電気抵抗に起因して信号が大きく減衰し、内部に
収容する半導体素子に信号を正確に入力することができ
ず、半導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。
That is, Ω Kovar and 42A11oy have an electrical conductivity of 3.0 to 3.
.. As low as 5χ (IACS), this Kovar and 4
When a signal is propagated to an external lead terminal made of 2AIloy or the like, the signal propagation speed becomes extremely slow, making it impossible to accommodate semiconductor devices that drive at high speed. With the progress of higher density and higher integration of semiconductor devices, the number of electrodes on semiconductor devices has increased significantly, and the line width of external lead terminals that connect each electrode of semiconductor devices to external electric circuits has also become extremely large. It's getting thinner. Therefore, the electrical resistance of the external lead terminal has become extremely large due to the low conductivity of Kovar and 42A11oy described in (2) above, and when a signal is propagated to the external lead terminal, the external lead terminal The signal is greatly attenuated due to the electrical resistance of the device, making it impossible to accurately input the signal to the semiconductor device housed inside the device, resulting in malfunction of the semiconductor device.

(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的は
外部リード端子における信号の減衰を極小となし、内部
に収容する半導体素子への信号の入出力を確実に行うこ
とを可能として半導体素子を長期間にわたり正常、且つ
安定に作動させることができる半導体素子収納用パッケ
ージを提供することにある。
(Object of the Invention) The present invention was devised in view of the above drawbacks, and its purpose is to minimize the attenuation of signals at external lead terminals and ensure the input and output of signals to and from semiconductor elements housed inside. It is an object of the present invention to provide a package for storing a semiconductor element, which enables the semiconductor element to operate normally and stably for a long period of time.

また本発明の他の目的は高速駆動を行う半導体素子を収
容することができる半導体素子収納用パッケージを提供
することにある。
Another object of the present invention is to provide a semiconductor device storage package that can accommodate semiconductor devices that operate at high speed.

(課題を解決するための手段) 本発明は内部に半導体素子を収容するための空所を有す
る絶縁容器に外部リード端子をガラス部材を介して取着
して成る半導体素子収納用パッケージにおいて、前記絶
縁容器をフォルステライト質焼結体もしくはジルコニア
質焼結体で、外部リード端子を熱膨張係数95乃至11
0 ×10−’/ ”C1導電率12χ(IACS)以
上の金属で、ガラス部材をシリカ30.0乃至60.0
Wtχ、酸化鉛20.0乃至40.O讐t″t1ナトリ
ウム、カリウムの酸化物の少なくとも1種10.0乃至
20.0Wtχから成るガラスで形成したことを特徴と
するものである。
(Means for Solving the Problems) The present invention provides a package for storing a semiconductor element, which is formed by attaching an external lead terminal to an insulating container having a cavity for accommodating a semiconductor element through a glass member. The insulating container is made of forsterite sintered body or zirconia sintered body, and the external lead terminal has a thermal expansion coefficient of 95 to 11.
0 x 10-'/''C1 metal with electrical conductivity of 12χ (IACS) or higher, glass member made of silica 30.0 to 60.0
Wtχ, lead oxide 20.0 to 40. It is characterized in that it is formed of a glass comprising at least one of sodium and potassium oxides of 10.0 to 20.0 Wtx.

(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be explained in detail based on the accompanying drawings.

第1図及び第2図は本発明の半導体素子収納用パッケー
ジの一実施例を示し、■はk(u 43基体、2は蓋体
である。この絶縁基体1と蓋体2とにより絶縁容器3が
構成される。
1 and 2 show an embodiment of the package for storing semiconductor elements of the present invention, where ■ is a k(u43 base) and 2 is a lid. 3 is composed.

前記絶縁基体l及び蓋体2はそれぞれの中央部に半導体
素子を収容する空所を形成するための凹部が設けてあり
、絶縁基体1の凹部底面には半導体素子4が樹脂、ガラ
ス、ロウ剤等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a recess in the center thereof to form a cavity for accommodating the semiconductor element, and the semiconductor element 4 is placed on the bottom of the recess of the insulating base 1 with resin, glass, or brazing agent. It is attached and fixed via adhesive such as.

前記絶縁基体l及び蓋体2はフォルステライト質焼結体
もしくはジルコニア質焼結体から成り、第1図に示すよ
うな絶縁基体1及び蓋体2に対応した形状を有するプレ
ス型内に、フォルステライト質焼結体の場合はマグネシ
ア(MgO) 、シリカ(SiOz)等の原料粉末を、
ジルコニア質焼結体の場合は酸化ジルコニウム(ZrO
z)、イツトリア(Y2O2)等の原料粉末を充填させ
るとともに一定圧力を印加して成形し、しかる後、成形
品を約1200〜1500°Cの温度で焼成することに
よって製作される。
The insulating base 1 and the lid 2 are made of a forsterite sintered body or a zirconia sintered body, and are placed in a press mold having a shape corresponding to the insulating base 1 and the lid 2 as shown in FIG. In the case of stellite sintered bodies, raw material powders such as magnesia (MgO) and silica (SiOz) are used.
In the case of zirconia sintered bodies, zirconium oxide (ZrO
z), is filled with raw material powder such as yttoria (Y2O2), molded by applying a constant pressure, and then fired at a temperature of about 1200 to 1500°C.

尚、前記絶縁基体1及び蓋体2を形成するフォルステラ
イト質焼結体もしくはジルコニア質焼結体はその熱膨張
係数がlOO乃至110 xlO−’/ ”cであり、
後述する封止用ガラス部材の熱膨張係数との関係におい
て絶縁基体1及び蓋体2と封止用ガラス部材間に大きな
熱膨張の差が生じることはない。
The forsterite sintered body or the zirconia sintered body forming the insulating base 1 and the lid 2 have a thermal expansion coefficient of lOO to 110 xlO-'/''c,
In relation to the coefficient of thermal expansion of the sealing glass member, which will be described later, there is no large difference in thermal expansion between the insulating base 1 and the lid 2 and the sealing glass member.

また前記絶縁基体1及び蓋体2にはその相対向する主面
に封止用のガラス部材6が予め被着形成されており、該
(色縁基体1及び蓋体2の各々に被着されている封止用
ガラス部材6を加熱溶融させ一体化させることにより絶
縁容器3内の半導体素子4を気密に封止する。
Further, a glass member 6 for sealing is formed in advance on the opposing main surfaces of the insulating base 1 and the lid 2, and a glass member 6 for sealing is deposited on each of the (color-rimmed base 1 and lid 2). The semiconductor element 4 in the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 that is included in the insulating container 3 and integrating the sealing glass member 6 .

前記絶縁基体l及び蓋体2の相対向する主面に被着され
る封止用ガラス部材6は、シリカ30.0乃至60.0
Wt! 、酸化鉛20.0乃至40.0Wtχ、ナトリ
ウム、カリウムの酸化物の少なくとも1種10.0乃至
20.0Wtχより形成されるガラスから成り、上記各
成分を所定の値となるように秤量混合すると共に、該混
合わ)末を1300〜1400℃の温度で加熱溶融させ
ることによって製作される。このガラス部材6の熱膨張
係数は100乃至110 ×10−’/ ”Cである。
The sealing glass member 6 adhered to the opposing main surfaces of the insulating base 1 and the lid 2 is made of silica 30.0 to 60.0.
Wt! , lead oxide of 20.0 to 40.0 Wtχ, at least one of sodium and potassium oxides of 10.0 to 20.0 Wtχ, and the above components are weighed and mixed to a predetermined value. At the same time, it is manufactured by heating and melting the mixed powder at a temperature of 1300 to 1400°C. The coefficient of thermal expansion of this glass member 6 is 100 to 110×10-'/''C.

前記封止用ガラス部月6は、その熱膨張係数が100乃
至110 xlO−’/ ”cであり、絶縁基体l及び
蓋体2の各々の熱膨張係数と近似することから絶縁基体
1及び蓋体2の各々に被着されている封止用ガラス部材
6を加熱溶融させ一体化させることにより絶縁容器3内
の半導体素子4を気密に封止する際、絶縁基体1及び蓋
体2と封止用ガラス部材6との間には両者の熱膨張係数
の相違に起因する熱応力が発生することは殆どなく、絶
縁基体1と蓋体2とを封止用ガラス部材6を介し強固に
接合することが可能となる。
The sealing glass part 6 has a thermal expansion coefficient of 100 to 110 xlO-'/''c, which is similar to the thermal expansion coefficient of each of the insulating base 1 and the lid 2. When the semiconductor element 4 in the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 attached to each of the bodies 2, the insulating base 1 and the lid 2 are sealed. There is almost no thermal stress generated between the sealing glass member 6 due to the difference in coefficient of thermal expansion between the two, and the insulating base 1 and the lid body 2 are firmly joined via the sealing glass member 6. It becomes possible to do so.

尚、前記封止用ガラス部材6はシリカ(SiOz)が3
0、OWt!未満であるとガラスの結晶化が進んで絶縁
容器3の気密封止が困難となり、また60.0WtZを
越えるとガラスの熱膨張が小さくなって絶縁基体1と蓋
体2の熱膨張と合わなくなることからシリカ(Sing
)は30.0乃至60.0れχの範囲に限定される。
Note that the sealing glass member 6 contains 3 silica (SiOz).
0,OWt! If it is less than 60.0 WtZ, the crystallization of the glass will progress and it will be difficult to hermetically seal the insulating container 3, and if it exceeds 60.0 WtZ, the thermal expansion of the glass will become so small that it will not match the thermal expansion of the insulating base 1 and the lid 2. Therefore, silica (Sing
) is limited to the range of 30.0 to 60.0.

また酸化鉛(PbO)が20.0WtZ未満であるとガ
ラスの熱膨張が小さくなって絶縁基体1と蓋体2の熱膨
張と合わなくなり、また40.0Wtχを越えるとガラ
スの結晶化が進んで絶縁容器3の気密封止が困難となる
ことから酸化鉛(PbO)は20.0乃至40.OWL
χの範囲に限定される。
Furthermore, if lead oxide (PbO) is less than 20.0 WtZ, the thermal expansion of the glass becomes small and does not match the thermal expansion of the insulating base 1 and the lid 2, and if it exceeds 40.0 Wtχ, the crystallization of the glass progresses. Since it is difficult to hermetically seal the insulating container 3, lead oxide (PbO) should be in the range of 20.0 to 40. OWL
limited to the range of χ.

またナトリウム、カリウムの酸化物が10.0訂χ未満
であるとガラスを製作する際のガラスの溶融温度が大幅
に上がって作業性が著しく悪くなり、また20.0Wt
%を越えるとガラスの耐薬品性が劣化して絶縁容器3の
気密封止の信鎖性が大きく低下するためナトリウム、カ
リウムの酸化物は10.0乃至20.0Wt%の範囲に
限定される。
In addition, if the oxides of sodium and potassium are less than 10.0 Wt, the melting temperature of the glass will increase significantly and the workability will be extremely poor.
%, the chemical resistance of the glass deteriorates and the reliability of hermetic sealing of the insulating container 3 is greatly reduced. Therefore, the content of sodium and potassium oxides is limited to a range of 10.0 to 20.0 wt%. .

前記封止用ガラス部材6は前述した成分から成るガラス
に適当な有機溶剤、溶媒を添加して得たガラスペースト
を従来周知の厚膜手法を採用することによって絶縁基体
1及び蓋体2の相対向する主面に被着形成される。
The sealing glass member 6 is made by applying a well-known thick film method to a glass paste obtained by adding an appropriate organic solvent or solvent to the glass made of the above-mentioned components, and thereby attaching the insulating substrate 1 and the lid 2 to each other. It is deposited and formed on the main surface facing the opposite direction.

前記絶縁基体lと蓋体2との間には導電性材料から成る
外部リード端子5が配されており、該外部リード端子5
は半導体素子4の各電イヘがワイヤ7を介し電気的に接
続され、外部リード端子5を外部電気回路に接続するこ
とによって半導体素子4が外部電気回路に接続されるこ
ととなる。
An external lead terminal 5 made of a conductive material is disposed between the insulating base l and the lid 2.
Each terminal of the semiconductor element 4 is electrically connected via the wire 7, and the semiconductor element 4 is connected to the external electric circuit by connecting the external lead terminal 5 to the external electric circuit.

前記外部リート端子5は絶縁基体1と蓋体2の相対向す
る主面に被着させた封止用ガラス部材6を溶融一体止さ
せ、絶縁容器3を気密封止する際に同時に絶縁基体1と
蓋体2との間に取着される。
The external lead terminal 5 is formed by melting and integrally bonding the sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2, and simultaneously sealing the insulating base 1 when the insulating container 3 is hermetically sealed. and the lid body 2.

前記外部リード端子5は非磁性体金属である銅(Cu)
から成る芯体の外表面にニッケルー鉄合金(Ni−Fe
合金)を接合させたもの等から成り、その導電率は12
χ([AC3)以上、熱膨張係数は95乃至110 x
lO−’/ ℃のう5電性材料から成る。
The external lead terminal 5 is made of copper (Cu), which is a non-magnetic metal.
Nickel-iron alloy (Ni-Fe
The electrical conductivity is 12
χ ([AC3) or more, thermal expansion coefficient is 95 to 110 x
It consists of a pentaelectric material with a temperature of lO-'/°C.

前記外部リード端子5はその導電率が12χ(IAC3
)以上であり、電気を流し易いことから外部リート端子
5の信号伝搬速度を極めて速いものとなすことができ、
絶縁容器3内に収容した半導体素子4を高速駆動させた
としても半導体素子4と外部電気回路との間における信
号の出し入れは常に安定、且つ確実となすことができる
The external lead terminal 5 has a conductivity of 12χ (IAC3
), and since it is easy to conduct electricity, the signal propagation speed of the external lead terminal 5 can be made extremely high,
Even when the semiconductor element 4 housed in the insulating container 3 is driven at high speed, signals can always be input and output stably and reliably between the semiconductor element 4 and the external electric circuit.

また外部リード端子5の導電率が高いことから外部リー
ド端子5の線幅が細くなったとしても外部リード端子5
の電気抵抗を低く抑えることができ、その結果、外部リ
ード端子5における信号の減衰を極小として内部に収容
する半導体素子4に外部電気回路から供給される電気信
号を正モ有に入力することができる。
Furthermore, since the conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 becomes thin, the external lead terminal 5
As a result, the attenuation of the signal at the external lead terminal 5 is minimized, and the electrical signal supplied from the external electrical circuit can be properly input to the semiconductor element 4 housed inside. can.

更に前記外部リード端子5はその熱膨張係数が95乃至
110 ×10−’/ ”cであり、封止用ガラス部材
6の熱膨張係数と近似することから外部リード端子5を
絶縁基体1と蓋体2の間に封止用ガラス部材6を用いて
固定する際、外部リード端子5と1゛1止川ガ用ス部材
6との間には両者の熱膨張係数の相違に起因する熱応力
が発生することはなく・外部リード端子5を封止用ガラ
ス部材6で強固に固定することも可能となる。
Furthermore, the external lead terminal 5 has a coefficient of thermal expansion of 95 to 110 × 10-'/''c, which is similar to the coefficient of thermal expansion of the sealing glass member 6. When fixing between the body 2 using the sealing glass member 6, there is a thermal stress between the external lead terminal 5 and the sealing glass member 6 due to the difference in coefficient of thermal expansion between the two. The external lead terminal 5 can be firmly fixed with the sealing glass member 6.

かくして、この半導体素子収納用パッケージによれば絶
縁基体lの凹部底面に半導体素子4を取着固定するとと
もに該半導体素子4の各電極をボンディングワイヤ7に
より外部リード端子5に接続させ、しかる後、絶縁基体
1と蓋体2とを該絶縁基体l及び蓋体2の相対向する主
面に予め被着させておいた封止用ガラス部材6を溶融一
体止させることによって接合させ、これによって最終製
品としての半導体装置が完成する。
Thus, according to this semiconductor element storage package, the semiconductor element 4 is attached and fixed to the bottom surface of the recess of the insulating substrate l, and each electrode of the semiconductor element 4 is connected to the external lead terminal 5 by the bonding wire 7, and then, The insulating base 1 and the lid 2 are joined together by melting the sealing glass member 6 that has been previously applied to the opposing main surfaces of the insulating base 1 and the lid 2. The semiconductor device as a product is completed.

(発明の効果) 本発明の半導体素子収納用パッケージによれば、半導体
素子を収容するための絶縁容器をフォルステライト質焼
結体もしくはジルコニア質焼結体で、外部リード端子を
導電率が12χ(IACS)以上、熱膨張係数95乃至
110 xlL’/ ’cの金属で、ガラス部材をシリ
カ30.0乃至60.0Wt%、酸化鉛20.0乃至4
0、0Wt%、ナトリウムンカリウムの酸化物の少なく
とも1種10.0乃至20.0WtXから成るガラスで
形成したことから外部リート端子の信号伝搬速度を極め
て速いものとなすことができ、絶縁容器内に収容した半
導体素子を高速駆動させたとしても半導体素子と外部電
気回路との間における信号の出し入れを安定、且つ確実
となすことが可能となる。
(Effects of the Invention) According to the semiconductor device storage package of the present invention, the insulating container for accommodating the semiconductor device is made of a forsterite sintered body or a zirconia sintered body, and the external lead terminals have a conductivity of 12χ( IACS) or higher, a metal with a coefficient of thermal expansion of 95 to 110
0.0 Wt%, at least one kind of sodium potassium oxide 10.0 to 20.0 Wt Even if the semiconductor element housed in the semiconductor element is driven at high speed, it is possible to stably and reliably transmit signals between the semiconductor element and the external electric circuit.

また外部リード端子の線幅が細くなったとしても外部リ
ード端子の電気抵抗を低(抑えることができ、その結果
、外部リード端子における信号の減衰を極小として内部
に収容する半導体素子に外部電気回路から供給される電
気信号を正確に入力することができる。
In addition, even if the line width of the external lead terminal becomes thinner, the electrical resistance of the external lead terminal can be kept low (suppressed), and as a result, the attenuation of the signal at the external lead terminal is minimized, and the external electrical circuit is connected to the semiconductor element housed inside. It is possible to accurately input electrical signals supplied from

更に前記外部リード端子はその熱膨張係数が絶縁基体、
蓋体及び封止用ガラス部材の各々の熱膨張係数と近似し
、絶縁基体と蓋体との間に外部リード端子を挟み、各々
を封止用ガラス部材で取着接合したとしても絶縁基体及
び蓋体と封止用ガラス部材との間、外部リード端子と封
止用ガラス部材との間のいずれにも熱膨張係数の相違に
起因する熱応力は発生せず、すべてを強固に取着接合す
ることも可能となる。
Furthermore, the external lead terminal has a coefficient of thermal expansion that is equal to that of the insulating base,
The coefficient of thermal expansion is similar to that of each of the lid body and the sealing glass member, and even if an external lead terminal is sandwiched between the insulating base body and the lid body and each is attached and bonded with the sealing glass member, the insulating base and No thermal stress is generated between the lid and the sealing glass member, nor between the external lead terminal and the sealing glass member due to differences in thermal expansion coefficients, and all are firmly attached and bonded. It is also possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図である。 l ・・絶縁基体  2 ・・蓋体 3 ・・絶縁容器 5 ・・外部リード端子 6 ・・封止用ガラス部材
FIG. 1 is a sectional view showing an embodiment of the semiconductor element storage package of the present invention, and FIG. 2 is a plan view of the package shown in FIG. 1, viewed from the top surface of the insulating base. l...Insulating base 2...Lid 3...Insulating container 5...External lead terminal 6...Glass member for sealing

Claims (1)

【特許請求の範囲】[Claims] 内部に半導体素子を収容するための空所を有する絶縁容
器に外部リード端子をガラス部材を介して取着して成る
半導体素子収納用パッケージにおいて、前記絶縁容器を
フォルステライト質焼結体もしくはジルコニア質焼結体
で、外部リード端子を熱膨張係数95乃至110×10
^−^7/℃、導電率12%(IACS)以上の金属で
、ガラス部材をシリカ30.0乃至60.0Wt%、酸
化鉛20.0乃至40.0Wt%、ナトリウム、カリウ
ムの酸化物の少なくとも1種10.0乃至20.0Wt
%から成るガラスで形成したことを特徴とする半導体素
子収納用パッケージ。
In a semiconductor device storage package in which external lead terminals are attached via a glass member to an insulating container having a cavity for accommodating a semiconductor device inside, the insulating container is made of a forsterite sintered body or a zirconia sintered body. The external lead terminal is a sintered body with a thermal expansion coefficient of 95 to 110 x 10.
^-^7/℃, metal with electrical conductivity of 12% (IACS) or more, glass member with 30.0 to 60.0 Wt% of silica, 20.0 to 40.0 Wt% of lead oxide, and oxides of sodium and potassium. At least one type 10.0 to 20.0 Wt
A package for storing semiconductor elements, characterized in that it is formed of glass consisting of %.
JP1312723A 1989-08-25 1989-11-30 Package for storing semiconductor elements Expired - Lifetime JP2742617B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1312723A JP2742617B2 (en) 1989-11-30 1989-11-30 Package for storing semiconductor elements
US07/574,472 US5168126A (en) 1989-08-25 1990-08-27 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312723A JP2742617B2 (en) 1989-11-30 1989-11-30 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH03173157A true JPH03173157A (en) 1991-07-26
JP2742617B2 JP2742617B2 (en) 1998-04-22

Family

ID=18032644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312723A Expired - Lifetime JP2742617B2 (en) 1989-08-25 1989-11-30 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2742617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187823A (en) * 1992-12-18 1994-07-08 Taiyo Yuden Co Ltd Ni content nonmagnetic conductive paste and electronic part mounted with conductor thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146899A (en) * 1974-05-16 1975-11-25
JPS53123080A (en) * 1977-04-02 1978-10-27 Ngk Insulators Ltd Circuit substrate and ceramic package assembly and method of producing same
JPS55100239A (en) * 1979-01-23 1980-07-31 Asahi Glass Co Ltd Seal bonding glass composition
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63185318U (en) * 1987-05-22 1988-11-29
JPS645041A (en) * 1987-06-29 1989-01-10 Shinko Electric Ind Co Manufacture of ceramic body having superconducting circuit pattern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146899A (en) * 1974-05-16 1975-11-25
JPS53123080A (en) * 1977-04-02 1978-10-27 Ngk Insulators Ltd Circuit substrate and ceramic package assembly and method of producing same
JPS55100239A (en) * 1979-01-23 1980-07-31 Asahi Glass Co Ltd Seal bonding glass composition
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63185318U (en) * 1987-05-22 1988-11-29
JPS645041A (en) * 1987-06-29 1989-01-10 Shinko Electric Ind Co Manufacture of ceramic body having superconducting circuit pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187823A (en) * 1992-12-18 1994-07-08 Taiyo Yuden Co Ltd Ni content nonmagnetic conductive paste and electronic part mounted with conductor thereof

Also Published As

Publication number Publication date
JP2742617B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JPH03173157A (en) Package for housing semiconductor element
JP2742616B2 (en) Package for storing semiconductor elements
JPH03173160A (en) Package for housing semiconductor element
JP2742613B2 (en) Package for storing semiconductor elements
JP2747613B2 (en) Package for storing semiconductor elements
JP2691304B2 (en) Package for storing semiconductor elements
JP2742614B2 (en) Package for storing semiconductor elements
JPH03173161A (en) Package for housing semiconductor element
JPH03218660A (en) Semiconductor element housing package
JP2678509B2 (en) Package for storing semiconductor elements
JP2691310B2 (en) Package for storing semiconductor elements
JPH03167864A (en) Package for semiconductor-element
JPH03167858A (en) Package for semiconductor-element
JP2691308B2 (en) Package for storing semiconductor elements
JP2736463B2 (en) Package for storing semiconductor elements
JP2742611B2 (en) Package for storing semiconductor elements
JP2736461B2 (en) Package for storing semiconductor elements
JP2742612B2 (en) Package for storing semiconductor elements
JPH03173156A (en) Package for housing semiconductor element
JPH03173164A (en) Package for housing semiconductor element
JP2742615B2 (en) Package for storing semiconductor elements
JPH03167853A (en) Package for semiconductor-element
JPH03167856A (en) Package for semiconductor-element
JP2736457B2 (en) Package for storing semiconductor elements
JP2736454B2 (en) Package for storing semiconductor elements