JPH03173161A - Package for housing semiconductor element - Google Patents

Package for housing semiconductor element

Info

Publication number
JPH03173161A
JPH03173161A JP1312729A JP31272989A JPH03173161A JP H03173161 A JPH03173161 A JP H03173161A JP 1312729 A JP1312729 A JP 1312729A JP 31272989 A JP31272989 A JP 31272989A JP H03173161 A JPH03173161 A JP H03173161A
Authority
JP
Japan
Prior art keywords
semiconductor element
glass
external lead
lead terminal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1312729A
Other languages
Japanese (ja)
Other versions
JP2736462B2 (en
Inventor
Hiroshi Matsumoto
弘 松本
Masaaki Iguchi
井口 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1312729A priority Critical patent/JP2736462B2/en
Priority to US07/573,406 priority patent/US5057905A/en
Publication of JPH03173161A publication Critical patent/JPH03173161A/en
Application granted granted Critical
Publication of JP2736462B2 publication Critical patent/JP2736462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To surely input a signal to and output it from a semiconductor element housed at the inside by a method wherein an insulating container is formed of spinel or a steatite sintered substance, an external lead terminal is formed of a metal of a prescribed characteristic and a glass member is formed of a glass having a prescribed composition. CONSTITUTION:An insulating container is formed of spinel or a steatite sintered substance; external lead terminals are formed of a metal whose permeability is 200 (CGS) or lower, whose coefficient of thermal expansion is 70 to 85X10<-7>/ deg.C and whose electric conductivity is 50% (IACS) or higher; glass members are formed of a glass composed of the following: 30.0 to 50.0wt.% of silica; 10.0 to 30.0wt.% of a lead oxide; 5.0 to 15.0wt.% of boron oxide; 5.0 to 15.0wt.% of barium oxide; 5.0 to 10.0wt.% of bismuth oxide; 1.0 to 10.0wt.% of alumina; and 10.0wt.% or lower of calcia. Recessed parts used to form a space to house a semiconductor element are formed in respective central parts of an insulating substrate 1 and a lid body 2; the semiconductor element 4 is attached, bonded and fixed to the bottom in the recessed part of the insulating substrate 1 via an adhesive such as a resin, a glass, a brazing agent or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パフケ
ージの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a puff cage for accommodating semiconductor elements.

(従来の技術) 従来、半導体素子を収容するためのパッケージ、特にガ
ラスの溶着によって封止するガラス封止型半導体素子収
納用パッケージは、絶縁基体と蓋体とから成り、内部に
半導体素子を収容する空所を有する絶縁容器と、該容器
内に収容される半導体素子を外部電気回路に電気的に接
続するための外部リード端子とから構成されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形成すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
に被着させた封止用のガラス部材を溶融一体止させるこ
とによって内部に半導体素子を気密に封止している。
(Prior Art) Conventionally, a package for accommodating a semiconductor element, particularly a glass-sealed semiconductor element accommodating package sealed by glass welding, consists of an insulating base and a lid body, and the semiconductor element is housed inside. The device is composed of an insulating container having a cavity to open the container, and an external lead terminal for electrically connecting the semiconductor element housed in the container to an external electric circuit. After forming a glass member for sealing on the surface in advance, fixing external lead terminals to the main surface of the insulating substrate, and connecting each electrode of the semiconductor element and the external lead terminal by wire bonding, the insulating substrate and the lid are attached. The semiconductor element is hermetically sealed inside by melting and integrally sealing glass members attached to each of the parts.

(発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納用
パッケージは通常、外部リード端子がコバール(29W
tX Ni−16WtXCo−55wtχFe合金)や
42AIIoy(42WtXNi−58WtX Fe合
金)の導電性材料から成っており、該コバールや42八
目Oy等は透磁率が高く、且つ導電率が低いことから以
下に述べる欠点を有する。
(Problem to be Solved by the Invention) However, in this conventional glass-sealed package for storing semiconductor elements, the external lead terminals are usually Kovar (29W).
It is made of conductive materials such as tXNi-16WtXCo-55wtχFe alloy) and 42AIIoy (42WtXNi-58WtX Fe alloy), and Kovar and 42Hachime Oy have high magnetic permeability and low conductivity, so they are described below. It has its drawbacks.

即ち、 ■コバールや42AIIoyは鉄(Fe)、ニアケル(
Ni)、コバルト(Co)といった強磁性体金属のみか
ら成っており、その透磁率は250〜700 (CGS
)と高い。そのためこのコバールや42AIIoy等か
ら成る外部リード端子に電流が流れると外部リード端子
中に透磁率に比例した大きな自己インダクタンスが発生
し、これが逆起電力を誘発してノイズとなると共に、該
ノイズが半導体素子に入力されて半導体素子に誤動作を
生じさせる、 ■コバールや42Alloyはその導電率が3.0〜3
.52(IAC5)と低い。そのためこのコバールや4
2Alloy等から成る外部リード端子に信号を伝搬さ
せた場合、信号の伝搬速度が極めて遅いものとなり、高
速駆動を行う半導体素子はその収容が不可となってしま
う、 ■半導体素子収納用パッケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記■に
記載のコバールや42Alloyの導電率が低いことと
相俊って電気抵抗が掻めて大きなものになってきており
、外部リード端子に信号を伝搬させると、該外部リード
端子の電気抵抗に起因して信号が大きく減衰し、内部に
収容する半導体素子に信号を正確に入力することができ
ず、半導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。
In other words, ■ Kovar and 42AIIoy are iron (Fe) and Niackel (
It is made only of ferromagnetic metals such as Ni) and cobalt (Co), and its magnetic permeability is 250 to 700 (CGS
) and high. Therefore, when a current flows through the external lead terminal made of Kovar, 42AIIoy, etc., a large self-inductance proportional to the magnetic permeability is generated in the external lead terminal, which induces back electromotive force and becomes noise. Kovar and 42Alloy have a conductivity of 3.0 to 3.
.. 52 (IAC5), which is low. Therefore, this Kobar and 4
When a signal is propagated to an external lead terminal made of 2Alloy, etc., the signal propagation speed becomes extremely slow, making it impossible to accommodate semiconductor devices that drive at high speed. With the progress of higher density and higher integration of semiconductor devices, the number of electrodes on semiconductor devices has increased significantly, and the line width of external lead terminals that connect each electrode of semiconductor devices to external electric circuits has also become extremely large. It's getting thinner. Therefore, the electrical resistance of external lead terminals has increased due to the low conductivity of Kovar and 42Alloy described in item (2) above, and the electrical resistance has increased, and when a signal is propagated to the external lead terminal, It has the disadvantage that the signal is greatly attenuated due to the electrical resistance of the lead terminal, making it impossible to accurately input the signal to the semiconductor element housed inside, causing the semiconductor element to malfunction. Ta.

(発明の目的) 本発明は上記欠点に鑑み富山されたもので、その目的は
外部リード端子で発生するノイズ及び外部リード端子に
おける信号の減衰を掻小となし、内部に収容する半導体
素子への信号の入出力を確実に行うことを可能として半
導体素子を長期間にわたり正常、且つ安定に作動させる
ことができる半導体素子収納用パンケージを提供するこ
とにある。
(Object of the Invention) The present invention was developed in view of the above drawbacks, and its purpose is to minimize the noise generated at the external lead terminal and the attenuation of the signal at the external lead terminal, and to reduce the noise generated at the external lead terminal and the attenuation of the signal at the external lead terminal. It is an object of the present invention to provide a pancase for storing a semiconductor element, which enables reliable input/output of signals and allows the semiconductor element to operate normally and stably for a long period of time.

また本発明の他の目的は高速駆動を行う半導体素子を収
容することができる半導体素子収納用パッケージを提供
することにある。
Another object of the present invention is to provide a semiconductor device storage package that can accommodate semiconductor devices that operate at high speed.

(課題を解決するための手段) 本発明は内部に半導体素子を収容するための空所を有す
る絶縁容器に外部リード端子をガラス部材を介して取着
して成る半導体素子収納用パッケージにおいて、前記絶
縁容器をスピネルもしくはステアタイト質焼結体で、外
部リード端子を透磁率200(CGS )以下、熱膨張
係数70乃至85X10−’7℃、導電率50χ(lA
c5 )以上の金属で、ガラス部材をシリカ30.0乃
至50.0Wt%、酸化鉛10.0乃至30.0讐t%
、酸化ホウ素5.0乃至15.0れ%、酸化バリウム5
.0乃至15.o14t%、酸化ビスマス5.0乃至1
0.0れ%、アルミナ1.0乃至10.0Wt%、カル
シアto、owt%以下から成るガラスで形成したこと
を特徴とするものである。
(Means for Solving the Problems) The present invention provides a package for storing a semiconductor element, which is formed by attaching an external lead terminal to an insulating container having a cavity for accommodating a semiconductor element through a glass member. The insulating container is made of spinel or steatite sintered body, and the external lead terminal is made of a material with a magnetic permeability of 200 (CGS) or less, a thermal expansion coefficient of 70 to 85 x 10-'7°C, and an electrical conductivity of 50χ (1A).
c5) or above, the glass member contains 30.0 to 50.0 wt% of silica and 10.0 to 30.0 wt% of lead oxide.
, boron oxide 5.0 to 15.0%, barium oxide 5
.. 0 to 15. o14t%, bismuth oxide 5.0 to 1
It is characterized in that it is formed of a glass consisting of 0.0% by weight, 1.0 to 10.0% by weight of alumina, and 0.0% by weight of calcia.

(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be explained in detail based on the accompanying drawings.

第1図及び第2図は本発明の半導体素子収納用パッケー
ジの一実施例を示し、■は絶縁基体、2は蓋体である。
FIGS. 1 and 2 show an embodiment of a package for storing semiconductor elements according to the present invention, in which .largecircle. is an insulating base and 2 is a lid.

この絶8!基体lと蓋体2とにより絶縁容器3が構成さ
れる。
This absolute 8! The base 1 and the lid 2 constitute an insulating container 3.

前記絶縁基体l及び蓋体2はそれぞれの中央部に半導体
素子を収容する空所を形成するための凹部が設けてあり
、絶縁基体lの凹部底面には半導体素子4が樹脂、ガラ
ス、ロウ剤等の接着剤を介し取着固定される。
The insulating base 1 and the lid 2 are each provided with a recess in the center thereof to form a cavity for accommodating the semiconductor element, and the semiconductor element 4 is placed on the bottom of the recess of the insulating base 1 with resin, glass, or brazing agent. It is attached and fixed via adhesive such as.

前記絶縁基体1及び蓋体2はスピネルもしくはステアタ
イト質焼結体から成り、第1図に示すような絶縁基体l
及び蓋体2に対応した形状を有するプレス型内に、スピ
ネルの場合はマグネシア(MgO)、アルミナ(^h0
3 )の原料ワ)末を、ステアタイト質焼結体の場合は
マグネシア(Mg(+) 、シリカ(SiO□)等の原
料粉末を充填させるとともに一定圧力を印加して成形し
、しかる後、成形品を約1200〜1700℃の温度で
焼成することによって製作される。
The insulating base 1 and the lid 2 are made of spinel or steatite sintered body, and the insulating base 1 as shown in FIG.
In the case of spinel, magnesia (MgO) and alumina (^h0
3) In the case of steatite sintered material, the powder of the raw material W) is filled with raw material powder such as magnesia (Mg(+), silica (SiO□), etc.), and a constant pressure is applied to form the powder, and then, It is manufactured by firing a molded article at a temperature of approximately 1200 to 1700°C.

尚、前記絶縁基体1及び蓋体2を形成するスピネル、ス
テアタイト質焼結体はその熱膨張係数が70乃至85×
10−’/ ’cであり、後述する封止用ガラス部材の
熱膨張係数との関係において絶縁基体l及び蓋体2と封
止用ガラス部材間に大きな熱膨張の差が生じることはな
い。
The spinel and steatite sintered bodies forming the insulating base 1 and the lid 2 have a thermal expansion coefficient of 70 to 85×.
10-'/'c, and there is no large difference in thermal expansion between the insulating base l and the lid 2 and the sealing glass member in relation to the coefficient of thermal expansion of the sealing glass member, which will be described later.

また前記絶縁基体l及び蓋体2にはその相対向する主面
に封止用のガラス部材6が予め被着形成されており、該
絶縁基体1及び蓋体2の各々に被着されている封止用ガ
ラス部材6を加熱溶融させ一体化させることにより絶縁
容器3内の半導体素子4を気密に封止する。
Further, a sealing glass member 6 is formed in advance on the opposing main surfaces of the insulating base 1 and the lid 2, and is adhered to each of the insulating base 1 and the lid 2. The semiconductor element 4 inside the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 to integrate it.

前記絶!!基体1及び蓋体2の相対向する主面に被着さ
れる封止用ガラス部材6は、シリカ30.0乃至50.
0讐t%、酸化鉛l000乃至30.0Wt%、酸化ホ
ウ素5.0乃至is、owt%、酸化バリウム5.0乃
至15.0れ%、酸化ビスマス5.0乃至io、owt
%、アルミナ1.0乃至10.0WtX 、 力/L’
z?10.OWt$以下、l形成されるガラスから成り
、上記各成分を所定の値となるように秤量混合すると共
に、該混合粉末を1300〜1400℃の温度で加熱溶
融させることによって製作される。このガラス部材6の
熱膨張係数は55乃至75X10−’/ ’Cである。
Unprecedented! ! The sealing glass member 6 attached to the opposing main surfaces of the base body 1 and the lid body 2 is made of silica of 30.0 to 50.
0 weight%, lead oxide 1000 to 30.0wt%, boron oxide 5.0 to 15.0%, barium oxide 5.0 to 15.0%, bismuth oxide 5.0 to io, owt.
%, alumina 1.0 to 10.0WtX, force/L'
Z? 10. It is made of glass that is formed by weighing and mixing the above components to a predetermined value, and is manufactured by heating and melting the mixed powder at a temperature of 1,300 to 1,400°C. The coefficient of thermal expansion of this glass member 6 is 55 to 75X10-'/'C.

前記封止用ガラス部材6は、その熱膨張係数が55乃至
75X10−’/ ℃であり、絶縁基体1及び蓋体2の
各々の熱膨張係数と近似することから絶縁基体1及び蓋
体2の各々に被着されている封止用ガラス部材6を加熱
溶融させ一体化させることにより絶縁容器3内の半導体
素子4を気密に封止する際、絶縁基体l及び蓋体2と封
止用ガラス部材6との間には両者の熱膨張係数の相違に
起因する熱応力が発生することは殆どなく、絶縁基体1
と蓋体2とを封止用ガラス部材6を介し強固に接合する
ことが可能となる。
The sealing glass member 6 has a thermal expansion coefficient of 55 to 75×10-'/°C, which is similar to the thermal expansion coefficients of the insulating base 1 and the lid 2. When the semiconductor element 4 in the insulating container 3 is hermetically sealed by heating and melting the sealing glass members 6 attached to each, the insulating base l and the lid 2 are combined with the sealing glass. There is almost no thermal stress generated between the insulating base 1 and the member 6 due to the difference in coefficient of thermal expansion between the two.
It becomes possible to firmly join the lid body 2 to the lid body 2 through the sealing glass member 6.

尚、前記封止用ガラス部材6はシリカ(SiOz)が3
0、OWtχ未満であるとガラスの結晶化が進んで絶縁
容器3の気密封止が困難となり、また50.OWtχを
越えるとガラスの熱膨張が小さくなって絶縁基体lと蓋
体2の熱膨張と合わなくなることからシリカ(SiO□
)は30.0乃至50.OWtχの範囲に限定される。
Note that the sealing glass member 6 contains 3 silica (SiOz).
If it is less than 0.0, OWtχ, crystallization of the glass will progress, making it difficult to hermetically seal the insulating container 3; If OWtχ is exceeded, the thermal expansion of the glass becomes small and does not match the thermal expansion of the insulating base 1 and the lid 2, so silica (SiO□
) is 30.0 to 50. limited to the range of OWtχ.

また酸化鉛(PbO)が10.0WtX未満であるとガ
ラスの熱膨張が小さくなって絶縁基体1と蓋体2の熱膨
張と合わなくなり、また30.OWtχを越えるとガラ
スの耐薬品性が劣化して絶縁容器3の気密封止の信頼性
が大きく低下するため酸化鉛(PbO)は10.0乃至
30.0WtXの範囲に限定される。
If the lead oxide (PbO) content is less than 10.0 WtX, the thermal expansion of the glass will be too small to match the thermal expansion of the insulating base 1 and the lid 2, and 30. If OWtχ is exceeded, the chemical resistance of the glass deteriorates and the reliability of hermetic sealing of the insulating container 3 is greatly reduced, so lead oxide (PbO) is limited to a range of 10.0 to 30.0 WtX.

また酸化ホウ素(axo3)が5.Owtx未満である
とガラスの結晶化が進んで絶縁容器3の気密封止が困難
となり、また15.OWtχを越えるとガラスの耐薬品
性が劣化して絶縁容器3の気密封止の信頼性が大きく低
下するため酸化ホウ素(szoi)は5.0乃至15.
Htχの範囲に限定される。
Also, boron oxide (axo3) is 5. If it is less than Owtx, crystallization of the glass will progress, making it difficult to hermetically seal the insulating container 3, and 15. If the value of boron oxide (szoi) exceeds OWtχ, the chemical resistance of the glass deteriorates and the reliability of hermetic sealing of the insulating container 3 is greatly reduced.
limited to the range of Htχ.

また酸化バリウム(flag)が5.0しχ未満である
とガラスの耐薬品性が劣化して絶縁容器3の気密封止の
信頼性が大きく低下し、また15.0Wtχを越えると
ガラスの結晶化が進んで絶縁容器3の気密封止が困難と
なるため酸化バリウム(Bad)は5.0乃至15.O
Wtχの範囲に限定される。
Furthermore, if the barium oxide (flag) is less than 5.0Wtχ, the chemical resistance of the glass will deteriorate and the reliability of the hermetic seal of the insulating container 3 will be greatly reduced, and if it exceeds 15.0Wtχ, the glass crystals will deteriorate. barium oxide (Bad) is 5.0 to 15. O
limited to the range of Wtχ.

また酸化ビスマス(BlxOz)が5.OWtχ未満で
あるとガラスの結晶化が進んで絶縁容器3の気密封止が
困難となり、また10.0Wtχを越えるとガラスの耐
薬品性が劣化して絶縁容器3の気密封止の信頼性が大き
く低下するため酸化ビスマス(Biz03)は5.0乃
至10.0Wtχの範囲に限定される。
Also, bismuth oxide (BlxOz) is 5. If it is less than OWtχ, crystallization of the glass will progress and it will be difficult to hermetically seal the insulating container 3, and if it exceeds 10.0Wtχ, the chemical resistance of the glass will deteriorate and the reliability of hermetically sealing the insulating container 3 will deteriorate. Bismuth oxide (Biz03) is limited to a range of 5.0 to 10.0 Wtχ because of the large decrease.

またアルミナ(Al□0.)が1.0しχ未満であると
ガラスの耐薬品性が劣化して絶縁容器3の気密封止の信
頼性が大きく低下し、またio、owtχを越えるとガ
ラスの熱膨張が小さくなり、絶縁基体1と蓋体2の熱膨
張と合わなくなることからアルミナ(Aha))は1.
0乃至10.0Wtχの範囲に限定される。
Furthermore, if alumina (Al□0.) is less than 1.0 and χ, the chemical resistance of the glass will deteriorate and the reliability of hermetic sealing of the insulating container 3 will be greatly reduced; Since the thermal expansion of the insulating base 1 and the lid body 2 becomes small and does not match the thermal expansion of the insulating base 1 and the lid 2, alumina (Aha)) is 1.
It is limited to a range of 0 to 10.0 Wtχ.

またカルシア(Cab)が10.OWtχを越えるとガ
ラスの耐薬品性が劣化して絶縁容器3の気密封止の信頼
性が大きく低下するためその量は10.0WtX以下に
限定される。
Also, Calcia (Cab) is 10. If OWtχ is exceeded, the chemical resistance of the glass deteriorates and the reliability of hermetic sealing of the insulating container 3 is greatly reduced, so the amount is limited to 10.0WtX or less.

前記封止用ガラス部材6は前述した成分から成るガラス
に適当な有機溶剤、溶媒を添加して得たガラスペースト
を従来周知の厚膜手法を採用することによって絶縁基体
l及び蓋体2の相対向する主面に被着形成される。
The sealing glass member 6 is made by applying a conventionally well-known thick film method to a glass paste obtained by adding a suitable organic solvent or solvent to the glass made of the above-mentioned components. It is deposited and formed on the main surface facing the opposite direction.

前記絶縁基体1と蓋体2との間には導電性材料から成る
外部リード端子5が配されており、該外部リード端子5
は半導体素子4の各電極がワイヤ7を介し電気的に接続
され、外部リード端子5を外部電気回路に接続すること
によって半導体素子4が外部電気回路に接続されること
となる。
An external lead terminal 5 made of a conductive material is disposed between the insulating base 1 and the lid 2.
Each electrode of the semiconductor element 4 is electrically connected via the wire 7, and the semiconductor element 4 is connected to the external electric circuit by connecting the external lead terminal 5 to the external electric circuit.

前記外部リード端子5は絶縁基体1と蓋体2の相対向す
る主面に被着させた封止用ガラス部材6を溶融一体止さ
せ、絶縁容器3を気密封止する際に同時に絶縁基体1と
蓋体2との間に取着される。
The external lead terminal 5 is formed by melting and integrally bonding the sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2, and simultaneously sealing the insulating base 1 when the insulating container 3 is hermetically sealed. and the lid body 2.

前記外部リード端子5は非磁性体金属である銅(Cu)
から成る芯体の外表面に銅(Cu)/コバール(Fe−
Ni−Co合金)/銅(Cu)の接合金属を被着させた
もの、或いは板状のコバール(Fe−Ni−Co合金)
もしくはインバー合金(36,5WtχNi−63,5
WtχFe合金)の上下面に非磁性体金属である銅(C
u)を接合させたもの等から成り、その透磁率は200
 (CGS)以下、導電率は50χ(IACS)以上、
熱膨張係数は70乃至85×10−77℃の導電性材料
から成る。
The external lead terminal 5 is made of copper (Cu), which is a non-magnetic metal.
Copper (Cu)/Kovar (Fe-
Ni-Co alloy)/copper (Cu) bonding metal coated, or plate-shaped Kovar (Fe-Ni-Co alloy)
Or invar alloy (36,5WtχNi-63,5
Copper (C
The magnetic permeability is 200.
(CGS) or less, conductivity is 50χ or more (IACS),
It is made of a conductive material with a coefficient of thermal expansion of 70 to 85.times.10@-77.degree.

前記外部リード端子5はその透磁率が200(CGS)
以下であり、透磁率が低いことから外部リード端子5に
電流が流れたとしても外部リード端子5中には大きな自
己インダクタンスが発生することはなく、その結果、前
記自己インダクタンスにより誘発される逆起電力に起因
したノイズを極小となし、内部に収容する半導体素子4
を常に正常に作動させることができる。
The external lead terminal 5 has a magnetic permeability of 200 (CGS).
Since the magnetic permeability is low, even if a current flows through the external lead terminal 5, a large self-inductance is not generated in the external lead terminal 5, and as a result, the back electromotive force induced by the self-inductance is Semiconductor element 4 that minimizes noise caused by electric power and houses it inside.
can always operate normally.

また前記外部リード端子5はその導電率が50χ(IA
CS)以上であり、電気を流し易いことから外部リード
端子5の信号伝搬速度を掻めて速いものとなすことがで
き、絶縁容器3内に収容した半導体素子4を高速駆動さ
せたとしても半導体素子4と外部電気回路との間におけ
る信号の出し入れは常に安定、且つ確実となすことがで
きる。
Further, the external lead terminal 5 has a conductivity of 50χ (IA
CS), and since it is easy to conduct electricity, the signal propagation speed of the external lead terminal 5 can be increased, and even if the semiconductor element 4 housed in the insulating container 3 is driven at high speed, the semiconductor Signal input and output between the element 4 and the external electric circuit can always be carried out stably and reliably.

また同時に外部リード端子5の導電率が高いことから外
部リード端子5の線幅が細くなったとしても外部リード
端子5の電気抵抗を低く抑えることができ、その結果、
外部リード端子5における信号の減衰を極小として内部
に収容する半導体素子4に外部電気回路から供給される
電気信号を正確に入力することができる。
At the same time, since the conductivity of the external lead terminal 5 is high, even if the line width of the external lead terminal 5 becomes thin, the electrical resistance of the external lead terminal 5 can be kept low, and as a result,
By minimizing the attenuation of the signal at the external lead terminal 5, it is possible to accurately input the electrical signal supplied from the external electrical circuit to the semiconductor element 4 housed inside.

また更に前記外部リード端子5はその熱膨張係数が70
〜85X10−’/ ”Cであり、封止用ガラス部材6
の熱膨張係数と近似することから外部リード端子5を絶
縁基体1と蓋体2の間に封止用ガラス部材6を用いて固
定する際、外部リード端子5と封止用ガラス部材6との
間には両者の熱膨張係数の相違に起因する熱応力が発生
することはなく、外部リード端子5を封止用ガラス部材
6で強固に固定することも可能となる。
Furthermore, the external lead terminal 5 has a coefficient of thermal expansion of 70.
~85X10-'/''C, and the sealing glass member 6
When the external lead terminal 5 is fixed between the insulating base 1 and the lid 2 using the sealing glass member 6, the thermal expansion coefficient of the external lead terminal 5 and the sealing glass member 6 is approximated by Thermal stress due to the difference in coefficient of thermal expansion between the two does not occur, and the external lead terminal 5 can be firmly fixed with the sealing glass member 6.

かくして、この半導体素子収納用パッケージによれば絶
縁基体1の凹部底面に半導体素子4を取着固定するとと
もに該半導体素子4の各電極をボンディングワイヤ7に
より外部リード端子5に接続させ、しかる後、絶縁基体
lと蓋体2とを該絶縁基体1及び蓋体2の相対向する主
面に予め被着させておいた封止用ガラス部材6を溶融一
体止させることによって接合させ、これによって最終製
品としての半導体装置が完成する。
Thus, according to this semiconductor element storage package, the semiconductor element 4 is attached and fixed to the bottom surface of the recess of the insulating substrate 1, and each electrode of the semiconductor element 4 is connected to the external lead terminal 5 by the bonding wire 7, and then, The insulating base 1 and the lid 2 are joined together by melting the sealing glass member 6 that has been previously applied to the opposing main surfaces of the insulating base 1 and the lid 2, and thereby the final The semiconductor device as a product is completed.

(発明の効果) 本発明の半導体素子収納用パンケージによれば、半導体
素子を収容するための絶縁容器をスピネルもしくはステ
アタイト質焼結体で、外部リード端子を透磁率が200
 (CGS)以下、導電率が50χ(■へCS)以上、
熱膨張係数が70乃至85X10−’/ ’Cの金属で
、ガラス部材をシリカ30.0乃至50.0WtX 、
酸化鉛10.0乃至30.0Wt%、酸化ホウ素5.0
乃至15.0れ%、酸化バリウム5.0乃至15.0W
tz、酸化ビスマス5.0乃至10.0Wt%、アルミ
ナ1.0乃至10.0れ%、カルシア10.OWt%以
下から成るガラスで形成したことから外部リード端子に
電流を流したとしても該外部リード端子中に大きな自己
インダクタンスが発生することはなく、その結果ミ前記
自己インダクタンスにより誘発される逆起電力に起因し
たノイズを極小となし、内部に収容する半導体素子を常
に正常に作動させることが可能となる。
(Effects of the Invention) According to the semiconductor device storage pancase of the present invention, the insulating container for accommodating the semiconductor device is made of spinel or steatite sintered body, and the external lead terminal has a magnetic permeability of 200.
(CGS) or less, conductivity is 50χ (CS to ■) or more,
The glass member is made of metal with a thermal expansion coefficient of 70 to 85X10-'/'C, and the glass member is made of silica of 30.0 to 50.0WtX.
Lead oxide 10.0 to 30.0 Wt%, boron oxide 5.0
15.0% to 15.0%, barium oxide 5.0 to 15.0W
tz, bismuth oxide 5.0 to 10.0 wt%, alumina 1.0 to 10.0 wt%, calcia 10. Since it is made of glass consisting of OWt% or less, even if a current is passed through the external lead terminal, a large self-inductance will not be generated in the external lead terminal, and as a result, the back electromotive force induced by the self-inductance will be reduced. It is possible to minimize the noise caused by this, and to always operate the semiconductor element housed inside normally.

また外部リード端子の信号伝搬速度を掻めて速いものと
なすことができ、絶縁容器内に収容した半導体素子を高
速駆動させたとしても半導体素子と外部電気回路との間
における信号の出し入れを安定、且つ確実となすことが
可能となる。
In addition, the signal propagation speed of the external lead terminal can be increased and the signal transmission speed between the semiconductor element and the external electric circuit can be stabilized even when the semiconductor element housed in the insulating container is driven at high speed. , and can be done reliably.

更に外部リード端子の線幅が細くなったとしても外部リ
ード端子の電気抵抗を低く抑えることができ、その結果
、外部リード端子における信号の減衰を極小として内部
に収容する半導体素子に外部電気回路から供給される電
気信号を正確に入力することができる。
Furthermore, even if the line width of the external lead terminal becomes thinner, the electrical resistance of the external lead terminal can be kept low, and as a result, the attenuation of the signal at the external lead terminal is minimized, and the external electrical circuit is connected to the semiconductor element housed inside. The supplied electrical signal can be input accurately.

また更に前記外部リード端子はその熱膨張係数が絶縁基
体、蓋体及び封止用ガラス部材の各々の熱膨張係数と近
似し、!!!縁基体と蓋体との間に外部リード端子を挟
み、各々を封止用ガラス部材で取着接合したとしても絶
縁基体及び蓋体と封止用ガラス部材との間、外部リード
端子と封止用ガラス部材との間のいずれにも熱膨張係数
の相違に起因する熱応力は発生せず、すべてを強固に取
着接合することも可能となる。
Furthermore, the coefficient of thermal expansion of the external lead terminal is close to that of each of the insulating base, the lid, and the sealing glass member, and! ! ! Even if the external lead terminal is sandwiched between the edge base and the lid and each is attached and bonded with a sealing glass member, there will be no contact between the insulating base, the lid, and the sealing glass member, and between the external lead terminal and the seal. No thermal stress due to the difference in coefficient of thermal expansion occurs between the glass member and the glass member, and it is possible to firmly attach and bond all the members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図である。 1 ・・絶縁基体  2 ・・蓋体 3 ・・絶縁容器 5 ・・外部リード端子 6 ・・封止用ガラス部材
FIG. 1 is a sectional view showing an embodiment of the semiconductor element storage package of the present invention, and FIG. 2 is a plan view of the package shown in FIG. 1, viewed from the top surface of the insulating base. 1...Insulating base 2...Lid 3...Insulating container 5...External lead terminal 6...Glass member for sealing

Claims (1)

【特許請求の範囲】[Claims] 内部に半導体素子を収容するための空所を有する絶縁容
器に外部リード端子をガラス部材を介して取着して成る
半導体素子収納用パッケージにおいて、前記絶縁容器を
スピネルもしくはステアタイト質焼結体で、外部リード
端子を透磁率200(CGS)以下、熱膨張係数70乃
至85×10^−^7/℃、導電率50%(IACS)
以上の金属で、ガラス部材をシリカ30.0乃至50.
0Wt%、酸化鉛10.0乃至30.0Wt%、酸化ホ
ウ素5.0乃至15.0Wt%、酸化バリウム5.0乃
至15.0Wt%、酸化ビスマス5.0乃至10.0W
t%、アルミナ1.0乃至10.0Wt%、カルシア1
0.0Wt%以下から成るガラスで形成したことを特徴
とする半導体素子収納用パッケージ。
In a semiconductor device storage package in which an external lead terminal is attached via a glass member to an insulating container having a cavity for accommodating a semiconductor device inside, the insulating container is made of spinel or steatite sintered body. , the external lead terminal has a magnetic permeability of 200 (CGS) or less, a thermal expansion coefficient of 70 to 85 x 10^-^7/℃, and an electrical conductivity of 50% (IACS).
The glass member is made of silica of 30.0 to 50.
0Wt%, lead oxide 10.0 to 30.0Wt%, boron oxide 5.0 to 15.0Wt%, barium oxide 5.0 to 15.0Wt%, bismuth oxide 5.0 to 10.0W
t%, alumina 1.0 to 10.0wt%, calcia 1
A package for housing a semiconductor element, characterized in that it is formed of glass comprising 0.0 Wt% or less.
JP1312729A 1989-08-25 1989-11-30 Package for storing semiconductor elements Expired - Lifetime JP2736462B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1312729A JP2736462B2 (en) 1989-11-30 1989-11-30 Package for storing semiconductor elements
US07/573,406 US5057905A (en) 1989-08-25 1990-08-24 Container package for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312729A JP2736462B2 (en) 1989-11-30 1989-11-30 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JPH03173161A true JPH03173161A (en) 1991-07-26
JP2736462B2 JP2736462B2 (en) 1998-04-02

Family

ID=18032722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312729A Expired - Lifetime JP2736462B2 (en) 1989-08-25 1989-11-30 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP2736462B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100239A (en) * 1979-01-23 1980-07-31 Asahi Glass Co Ltd Seal bonding glass composition
JPS5711847A (en) * 1978-02-06 1982-01-21 Ibm Nonporous glass-ceramic body
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63291834A (en) * 1987-04-27 1988-11-29 コーニング グラス ワークス Glass ceramics for electronic packing, thermally crystalline glass and substrate therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711847A (en) * 1978-02-06 1982-01-21 Ibm Nonporous glass-ceramic body
JPS55100239A (en) * 1979-01-23 1980-07-31 Asahi Glass Co Ltd Seal bonding glass composition
JPS6265954A (en) * 1985-09-18 1987-03-25 Nippon Electric Glass Co Ltd Borosilicate glass for sealing alumina
JPS63291834A (en) * 1987-04-27 1988-11-29 コーニング グラス ワークス Glass ceramics for electronic packing, thermally crystalline glass and substrate therefrom

Also Published As

Publication number Publication date
JP2736462B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JPH03173161A (en) Package for housing semiconductor element
JPH03173157A (en) Package for housing semiconductor element
JPH03173160A (en) Package for housing semiconductor element
JPH03173162A (en) Package for housing semiconductor element
JPH03167860A (en) Package for semiconductor-element
JP2742616B2 (en) Package for storing semiconductor elements
JP2747613B2 (en) Package for storing semiconductor elements
JP2742614B2 (en) Package for storing semiconductor elements
JP2691310B2 (en) Package for storing semiconductor elements
JPH03218660A (en) Semiconductor element housing package
JPH03167864A (en) Package for semiconductor-element
JP2742613B2 (en) Package for storing semiconductor elements
JPH03173164A (en) Package for housing semiconductor element
JP2691304B2 (en) Package for storing semiconductor elements
JPH03167854A (en) Package for semiconductor-element
JPH03173156A (en) Package for housing semiconductor element
JP2742612B2 (en) Package for storing semiconductor elements
JP2742611B2 (en) Package for storing semiconductor elements
JPH03167856A (en) Package for semiconductor-element
JP2742615B2 (en) Package for storing semiconductor elements
JPH03167858A (en) Package for semiconductor-element
JPH03173155A (en) Package for housing semiconductor element
JPH03167845A (en) Package for semiconductor-element
JP2736453B2 (en) Package for storing semiconductor elements
JPH03173158A (en) Package for housing semiconductor element