JPH0316751B2 - - Google Patents
Info
- Publication number
- JPH0316751B2 JPH0316751B2 JP59193638A JP19363884A JPH0316751B2 JP H0316751 B2 JPH0316751 B2 JP H0316751B2 JP 59193638 A JP59193638 A JP 59193638A JP 19363884 A JP19363884 A JP 19363884A JP H0316751 B2 JPH0316751 B2 JP H0316751B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fuel cell
- air
- fuel
- argon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 72
- 239000000446 fuel Substances 0.000 claims description 51
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 46
- 229910052786 argon Inorganic materials 0.000 claims description 24
- 238000000926 separation method Methods 0.000 claims description 16
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 9
- 229910001882 dioxygen Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002737 fuel gas Substances 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 39
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B23/00—Noble gases; Compounds thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/18—Noble gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/404—Further details for adsorption processes and devices using four beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0005—Acid electrolytes
- H01M2300/0008—Phosphoric acid-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は燃料電池発電プラントとアルゴンガス
製造プラントとを複合させた燃料電池複合プラン
トに関する。
製造プラントとを複合させた燃料電池複合プラン
トに関する。
従来の燃料電池、例えばリン酸型燃料電池によ
る発電プラントの一例を第3図を参照して説明す
る。
る発電プラントの一例を第3図を参照して説明す
る。
第3図において、燃料電池本体1は燃料極(ア
ノード)1aと空気極(カソード)1bとの間に
電解質(リン酸)1cを介在させて構成されてい
る。前記燃料極1aには、原料ガス生成系2から
の原料ガス及び酸素ガスホルダー3からの酸素
(あるいは空気)が改質装置4へ送られ、反応し
て生成した水素濃度約70%の水素リツチガスがバ
ルブ5を介して供給される。一方、前記空気極1
bには、エアフイルタ6で除じんされ、空気圧縮
機7で昇圧された空気が供給される。また、燃料
電池本体1でのエネルギー変換効率は約50%であ
り、残りは熱エネルギーとなるので冷却部1dに
て放熱が行なわれる。冷媒としての空気は前記空
気圧縮機7からバルブ8を介して冷却部1dに供
給され、熱交換器9で冷却された後、空気循環機
10により循環される。なお、空気圧縮機7から
の空気の一部は起動用及びメイクアツプ用として
も用いられる。更に、水素リツチガス及び空気は
それぞれその一部が燃料電池本体1での反応で消
費され、燃料極1a出口からバルブ11を介して
出てくる未反応ガス及び空気極1b出口からの未
反応ガスはガスタービン12の燃料及び燃焼用空
気として使用される。最終的にこれらのガスはガ
スタービン12で動力回収後、系外へ放出され
る。なお、休転時にはバルブ5、バルブ11を操
作し、窒素ガスホルダ13からバルブ14を介し
て燃料極1aへ供給される窒素ガスで水素リツチ
ガスを置換する。
ノード)1aと空気極(カソード)1bとの間に
電解質(リン酸)1cを介在させて構成されてい
る。前記燃料極1aには、原料ガス生成系2から
の原料ガス及び酸素ガスホルダー3からの酸素
(あるいは空気)が改質装置4へ送られ、反応し
て生成した水素濃度約70%の水素リツチガスがバ
ルブ5を介して供給される。一方、前記空気極1
bには、エアフイルタ6で除じんされ、空気圧縮
機7で昇圧された空気が供給される。また、燃料
電池本体1でのエネルギー変換効率は約50%であ
り、残りは熱エネルギーとなるので冷却部1dに
て放熱が行なわれる。冷媒としての空気は前記空
気圧縮機7からバルブ8を介して冷却部1dに供
給され、熱交換器9で冷却された後、空気循環機
10により循環される。なお、空気圧縮機7から
の空気の一部は起動用及びメイクアツプ用として
も用いられる。更に、水素リツチガス及び空気は
それぞれその一部が燃料電池本体1での反応で消
費され、燃料極1a出口からバルブ11を介して
出てくる未反応ガス及び空気極1b出口からの未
反応ガスはガスタービン12の燃料及び燃焼用空
気として使用される。最終的にこれらのガスはガ
スタービン12で動力回収後、系外へ放出され
る。なお、休転時にはバルブ5、バルブ11を操
作し、窒素ガスホルダ13からバルブ14を介し
て燃料極1aへ供給される窒素ガスで水素リツチ
ガスを置換する。
上記リン酸型燃料電池では、空気極(カソー
ド)1bに供給されるのが大気(酸素濃度20%)
であるので、ガスの利用率が低く、セル電圧を高
くすることが困難なうえに機器をコンパクトにで
きない。また、この空気はエアフイルタ6を通過
しただけであり、清浄度が低いためセルの寿命を
低下させる。この空気の清浄度を高くしようとす
ると、設備費が増大する。更に、空気系統及び冷
却系統での補機動力が大きく、運転経費が高い。
ド)1bに供給されるのが大気(酸素濃度20%)
であるので、ガスの利用率が低く、セル電圧を高
くすることが困難なうえに機器をコンパクトにで
きない。また、この空気はエアフイルタ6を通過
しただけであり、清浄度が低いためセルの寿命を
低下させる。この空気の清浄度を高くしようとす
ると、設備費が増大する。更に、空気系統及び冷
却系統での補機動力が大きく、運転経費が高い。
本発明は上記欠点を解消するためになされたも
のであり、燃料電池発電プラントとアルゴンガス
製造プラントを複合させることにより、主として
従来の燃料電池発電プラントの空気系統を改善
し、燃料電池発電プラントの性能向上とともに両
プラントのコスト低減を図ろうとするものであ
る。
のであり、燃料電池発電プラントとアルゴンガス
製造プラントを複合させることにより、主として
従来の燃料電池発電プラントの空気系統を改善
し、燃料電池発電プラントの性能向上とともに両
プラントのコスト低減を図ろうとするものであ
る。
本発明の燃料電池複合プラントは、燃料電池
と、燃料電池アノードへの燃料ガス供給装置と、
燃料電池カソードへアルゴンを含む高純度酸素ガ
スを供給するガス分離装置と、アノード及びカソ
ードからの未反応ガスを燃焼させる燃焼器と、燃
焼ガス中の水を凝縮除去してアルゴンガスを得る
ための冷却器とを具備したことを特徴とするもの
である。
と、燃料電池アノードへの燃料ガス供給装置と、
燃料電池カソードへアルゴンを含む高純度酸素ガ
スを供給するガス分離装置と、アノード及びカソ
ードからの未反応ガスを燃焼させる燃焼器と、燃
焼ガス中の水を凝縮除去してアルゴンガスを得る
ための冷却器とを具備したことを特徴とするもの
である。
本発明によれば、ガス分離装置から供給される
アルゴン含有酸素ガスは高濃度で清浄度が高いの
で、高いセル電圧を得ることができ、機器をコン
パクトにでき、しかもセル寿命を延ばすことがで
きる。また、ガス分離装置に必要な設備及び運転
費を従来の燃料電池の空気系統の代わりとして用
い、一方ガス分離の一部を燃料電池の設備を用い
て行なうので、低コストで発電及びアルゴンガス
製造を行なうことができる。
アルゴン含有酸素ガスは高濃度で清浄度が高いの
で、高いセル電圧を得ることができ、機器をコン
パクトにでき、しかもセル寿命を延ばすことがで
きる。また、ガス分離装置に必要な設備及び運転
費を従来の燃料電池の空気系統の代わりとして用
い、一方ガス分離の一部を燃料電池の設備を用い
て行なうので、低コストで発電及びアルゴンガス
製造を行なうことができる。
以下、本発明の実施例を第1図及び第2図を参
照して説明する。
照して説明する。
第1図において、燃料電池本体21は燃料極
(アノード)21aと空気極(カソード)21b
との間に電解質(リン酸)21cを介在させて構
成されている。また、燃料電池本体21の冷却部
21dでは放熱が行なわれている。前記燃料極2
1aには原料ガス生成系22からの原料ガス及び
酸素ガスホルダー23からの酸素(あるいは空
気)が改質装置24へ送られ、反応して生成した
水素リツチガスが供給される。一方、前記空気極
21bには、エアフイルタ25で除じんされ、空
気圧縮機26で昇圧され、更に圧力スイング吸着
式(Pressure Swing Adsorption、以下PSA式
と記す)ガス分離装置27を通過したアルゴンガ
スを含む高純度酸素ガスが供給される。この
PSA式ガス分離装置27には真空ポンプ28が
接続されている。なお、PSA式ガス分離装置2
7については、後記するように第2図を参照して
更に詳細に説明する。前記燃料極21aに供給さ
れた水素リツチガス及び空気極21bに供給され
たアルゴンガスを含む高純度酸素ガスはそれぞれ
その一部が反応して発電が行なわれる。燃焼極2
1a出口及び空気極21b出口からのそれぞれの
未反応ガスは適度に混合されて燃焼器29に送ら
れ、水素と酸素とは全量水に変換される。この
際、アルゴンガスは不活性であるので、そのまま
排出され、ドライベースでほぼ100%濃度となる。
更に、冷却器30で水を凝縮し、気液分離器31
で水を除去してアルゴンガスをアルゴンガスホル
ダ32へ送る。
(アノード)21aと空気極(カソード)21b
との間に電解質(リン酸)21cを介在させて構
成されている。また、燃料電池本体21の冷却部
21dでは放熱が行なわれている。前記燃料極2
1aには原料ガス生成系22からの原料ガス及び
酸素ガスホルダー23からの酸素(あるいは空
気)が改質装置24へ送られ、反応して生成した
水素リツチガスが供給される。一方、前記空気極
21bには、エアフイルタ25で除じんされ、空
気圧縮機26で昇圧され、更に圧力スイング吸着
式(Pressure Swing Adsorption、以下PSA式
と記す)ガス分離装置27を通過したアルゴンガ
スを含む高純度酸素ガスが供給される。この
PSA式ガス分離装置27には真空ポンプ28が
接続されている。なお、PSA式ガス分離装置2
7については、後記するように第2図を参照して
更に詳細に説明する。前記燃料極21aに供給さ
れた水素リツチガス及び空気極21bに供給され
たアルゴンガスを含む高純度酸素ガスはそれぞれ
その一部が反応して発電が行なわれる。燃焼極2
1a出口及び空気極21b出口からのそれぞれの
未反応ガスは適度に混合されて燃焼器29に送ら
れ、水素と酸素とは全量水に変換される。この
際、アルゴンガスは不活性であるので、そのまま
排出され、ドライベースでほぼ100%濃度となる。
更に、冷却器30で水を凝縮し、気液分離器31
で水を除去してアルゴンガスをアルゴンガスホル
ダ32へ送る。
次に、前記SPA式ガス分離装置27を第2図
を参照して説明する。
を参照して説明する。
第2図において、エアフイルタ28を通つて除
じんされた空気は空気圧縮機26で約5Kg/cm2に
昇圧され、冷却器33で圧縮熱が除去され、更に
水分分離器34で水分が除去された後、空気入口
バルブ35a,35b,35c,35dを介して
吸着塔36a,36b,36c,36dへ送られ
る。これら吸着塔36a,36b,36c,36
d内にはいわゆるモレキユラーシーブと呼ばれる
ゼオライト等からなる吸着剤37,…が内蔵され
ており、酸素及びアルゴンのみが吸着剤37,…
を通過し、製品ガス供給バルブ38a,38b,
38c,38dを介して製品ガスホルダ39へ送
られる。なお、空気入口側には廃空気出口バルブ
40a,40b,40c,40dが設けられ、真
空ポンプ28と接続されている。また、空気出口
側には均圧バルブ41a,41b,41c,41
dが設けられている。上述したゼオライトのよう
な吸着剤37…には、その吸着能力に対してかな
り大量の空気が送り込まれるため、吸着能力回復
のため、圧力を下げて空気を吸着し、廃空気出口
バルブ40a,40b,40c,40d及び真空
ポンプ28を介して系外へ放出する必要がある。
そして、連続的に製品ガス(アルゴンを含有する
高純度酸素)を供給するためには、高圧下での吸
着と低圧下での脱着とを周期的に行なう必要があ
り、吸着塔は最低2組必要であり、第2図では4
組設置した例を図示している。また、前記吸着及
び脱着の工程をスムーズに行なうために、空気入
口バルブ35a〜36d、製品ガス供給バルブ3
8a〜38d、廃空気出口バルブ40a〜40
d、均圧バルブ41a〜41dは制御装置42か
らの信号で制御される。
じんされた空気は空気圧縮機26で約5Kg/cm2に
昇圧され、冷却器33で圧縮熱が除去され、更に
水分分離器34で水分が除去された後、空気入口
バルブ35a,35b,35c,35dを介して
吸着塔36a,36b,36c,36dへ送られ
る。これら吸着塔36a,36b,36c,36
d内にはいわゆるモレキユラーシーブと呼ばれる
ゼオライト等からなる吸着剤37,…が内蔵され
ており、酸素及びアルゴンのみが吸着剤37,…
を通過し、製品ガス供給バルブ38a,38b,
38c,38dを介して製品ガスホルダ39へ送
られる。なお、空気入口側には廃空気出口バルブ
40a,40b,40c,40dが設けられ、真
空ポンプ28と接続されている。また、空気出口
側には均圧バルブ41a,41b,41c,41
dが設けられている。上述したゼオライトのよう
な吸着剤37…には、その吸着能力に対してかな
り大量の空気が送り込まれるため、吸着能力回復
のため、圧力を下げて空気を吸着し、廃空気出口
バルブ40a,40b,40c,40d及び真空
ポンプ28を介して系外へ放出する必要がある。
そして、連続的に製品ガス(アルゴンを含有する
高純度酸素)を供給するためには、高圧下での吸
着と低圧下での脱着とを周期的に行なう必要があ
り、吸着塔は最低2組必要であり、第2図では4
組設置した例を図示している。また、前記吸着及
び脱着の工程をスムーズに行なうために、空気入
口バルブ35a〜36d、製品ガス供給バルブ3
8a〜38d、廃空気出口バルブ40a〜40
d、均圧バルブ41a〜41dは制御装置42か
らの信号で制御される。
以上の構成により燃料電池発電プラントとアル
ゴンガス製造プラントとの両プラントが有機的に
複合されている。
ゴンガス製造プラントとの両プラントが有機的に
複合されている。
しかして上記燃料電池複合プラントによれば、
燃料電池本体21の空気極(カソード)21bに
送られるガスは通常の空気ではなく、PSA式ガ
ス分離装置27を経たものであるので、酸素濃度
約95%(Ar濃度約5%)の高純度のものである。
したがつてガスの利用率を高めることができ、高
いセル電圧を得ることができ性能向上を達成する
ことができ、しかもガスの総量が減るので機器を
コンパクトにしたり、圧損を減少することができ
る。また、アルゴンを含む高純度酸素ガスはエア
フイルタ25及び吸着剤37を通過しているので
清浄度が高く、セルの寿命を延ばすことができ
る。
燃料電池本体21の空気極(カソード)21bに
送られるガスは通常の空気ではなく、PSA式ガ
ス分離装置27を経たものであるので、酸素濃度
約95%(Ar濃度約5%)の高純度のものである。
したがつてガスの利用率を高めることができ、高
いセル電圧を得ることができ性能向上を達成する
ことができ、しかもガスの総量が減るので機器を
コンパクトにしたり、圧損を減少することができ
る。また、アルゴンを含む高純度酸素ガスはエア
フイルタ25及び吸着剤37を通過しているので
清浄度が高く、セルの寿命を延ばすことができ
る。
更に、燃料電池発電プラントにとつては、空気
極(カソード)21bに供給するガスがアルゴン
ガス製造プラントに必要な設備から得られ、一方
ガスの分離の一部(酸素とアルゴンとの分離)は
燃料電池発電プラントの設備(燃焼器29等)を
用いて行なうことができるので、発電コスト及び
アルゴン製造コストは単独プラントよりも低減す
ることができる。
極(カソード)21bに供給するガスがアルゴン
ガス製造プラントに必要な設備から得られ、一方
ガスの分離の一部(酸素とアルゴンとの分離)は
燃料電池発電プラントの設備(燃焼器29等)を
用いて行なうことができるので、発電コスト及び
アルゴン製造コストは単独プラントよりも低減す
ることができる。
なお、本発明において燃料電池本体21の冷却
部21dは水冷式、空冷式、水素式、有機媒体式
等いずれでもよい。
部21dは水冷式、空冷式、水素式、有機媒体式
等いずれでもよい。
また、本発明において燃料電池用の原料ガスと
しては炭化水素(メタン等)、天然ガス、メタノ
ール、製鉄所オフガス(高炉ガス、コークス炉ガ
ス、転炉ガス、電気炉ガス)等を用いることがで
きる。なお、これらは必要に応じて改質やガス分
離精製され、水素リツチガスとして燃料極(アノ
ード)側へ供給される。
しては炭化水素(メタン等)、天然ガス、メタノ
ール、製鉄所オフガス(高炉ガス、コークス炉ガ
ス、転炉ガス、電気炉ガス)等を用いることがで
きる。なお、これらは必要に応じて改質やガス分
離精製され、水素リツチガスとして燃料極(アノ
ード)側へ供給される。
また、燃料極へ供給されるガスは水素の他に
CO2及びCOをかなり含むようなものであつても
よい。このような燃料ガスを用いる場合、第1図
の気液分離器31の下流側にもPSA式ガス分離
装置を配置してもよい。すなわち、上記のような
燃料ガスを用いる場合、燃料極(アノード)21
a及び空気極(カソード)21bからの未反応ガ
スを燃焼器29で反応させ、水素と酸素とを全量
水に変換し、更に冷却器30及び気液分離器31
を通過させると、出てくるガスはAr,CO2及び
COとなる。しかる後、図示しないPSA式ガス分
離装置を通過させることによりCO2及びCOが除
去され、高純度アルゴンガスがアルゴンガスホル
ダ32へ送られる。
CO2及びCOをかなり含むようなものであつても
よい。このような燃料ガスを用いる場合、第1図
の気液分離器31の下流側にもPSA式ガス分離
装置を配置してもよい。すなわち、上記のような
燃料ガスを用いる場合、燃料極(アノード)21
a及び空気極(カソード)21bからの未反応ガ
スを燃焼器29で反応させ、水素と酸素とを全量
水に変換し、更に冷却器30及び気液分離器31
を通過させると、出てくるガスはAr,CO2及び
COとなる。しかる後、図示しないPSA式ガス分
離装置を通過させることによりCO2及びCOが除
去され、高純度アルゴンガスがアルゴンガスホル
ダ32へ送られる。
更に、以上の説明ではリン酸型燃料電池を用い
た場合について述べたが、これに限らず、例えば
アルカリ型燃料電池等にも適用することができ
る。
た場合について述べたが、これに限らず、例えば
アルカリ型燃料電池等にも適用することができ
る。
以上詳述した如く本発明の燃料電池複合プラン
トによれば、燃料電池発電プラントの性能向上及
び寿命延長を図ることができるとともに発電コス
ト及びアルゴンガス製造コストを低減できる等顕
著な効果を奏するものである。
トによれば、燃料電池発電プラントの性能向上及
び寿命延長を図ることができるとともに発電コス
ト及びアルゴンガス製造コストを低減できる等顕
著な効果を奏するものである。
第1図は本発明の実施例における燃料電池複合
プラントの系統図、第2図に同プラントに用いら
れるPSA式ガス分離装置の系統図、第3図は従
来の燃料電池発電プラントの系統図である。 21……燃料電池本体、21a……燃料極(ア
ノード)、21b……空気極(カソード)、21c
……電解質、21d……冷却部、22……原料ガ
ス生成系、23……酸素ガスホルダ、24……改
質装置、25……エアフイルタ、26……空気圧
縮機、27……PSA式ガス分離装置、28……
真空ポンプ、29……燃焼器、30……冷却器、
31……気液分離器、32……アルゴンガスホル
ダ、33……冷却器、34……水分分離器、35
a〜35d……空気入口バルブ、36a〜36d
……吸着塔、37……吸着剤、38a〜38d…
…製品ガス供給バルブ、39……製品ガスホル
ダ、40a〜40d……廃空気出口バルブ、41
a〜41d……均圧バルブ、42……制御装置。
プラントの系統図、第2図に同プラントに用いら
れるPSA式ガス分離装置の系統図、第3図は従
来の燃料電池発電プラントの系統図である。 21……燃料電池本体、21a……燃料極(ア
ノード)、21b……空気極(カソード)、21c
……電解質、21d……冷却部、22……原料ガ
ス生成系、23……酸素ガスホルダ、24……改
質装置、25……エアフイルタ、26……空気圧
縮機、27……PSA式ガス分離装置、28……
真空ポンプ、29……燃焼器、30……冷却器、
31……気液分離器、32……アルゴンガスホル
ダ、33……冷却器、34……水分分離器、35
a〜35d……空気入口バルブ、36a〜36d
……吸着塔、37……吸着剤、38a〜38d…
…製品ガス供給バルブ、39……製品ガスホル
ダ、40a〜40d……廃空気出口バルブ、41
a〜41d……均圧バルブ、42……制御装置。
Claims (1)
- 1 燃料電池と、該燃料電池のアノード側上流に
配置され、燃料電池アノードへ燃料ガスを供給す
る燃料ガス供給装置と、前記燃料電池のカソード
側上流に配置され、燃料電池カソードへアルゴン
を含む高純度酸素ガスを供給するガス分離装置
と、前記燃料電池の下流側に配置され、アノード
出口ガスとカソード出口ガスとを燃焼させる燃焼
器と、該燃焼器の下流側に配置され、燃焼ガス中
の水を凝縮除去して高純度アルゴンガスを得るた
めの冷却器とを具備したことを特徴とする燃料電
池複合プラント。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59193638A JPS6171561A (ja) | 1984-09-14 | 1984-09-14 | 燃料電池複合プラント |
US06/772,751 US4595642A (en) | 1984-09-14 | 1985-09-05 | Fuel cell composite plant |
DE19853532835 DE3532835A1 (de) | 1984-09-14 | 1985-09-12 | Kombinierte brennstoffzellenanlage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59193638A JPS6171561A (ja) | 1984-09-14 | 1984-09-14 | 燃料電池複合プラント |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6171561A JPS6171561A (ja) | 1986-04-12 |
JPH0316751B2 true JPH0316751B2 (ja) | 1991-03-06 |
Family
ID=16311267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59193638A Granted JPS6171561A (ja) | 1984-09-14 | 1984-09-14 | 燃料電池複合プラント |
Country Status (3)
Country | Link |
---|---|
US (1) | US4595642A (ja) |
JP (1) | JPS6171561A (ja) |
DE (1) | DE3532835A1 (ja) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4792502A (en) * | 1986-11-14 | 1988-12-20 | International Fuel Cells Corporation | Apparatus for producing nitrogen |
NL8801492A (nl) * | 1988-06-10 | 1990-01-02 | Kinetics Technology | Werkwijze voor het omzetten van brandstof in electriciteit. |
DE3932217A1 (de) * | 1989-04-25 | 1990-10-31 | Linde Ag | Verfahren fuer den betrieb von hochtemperatur-brennstoffzellen |
US6703150B2 (en) * | 1993-10-12 | 2004-03-09 | California Institute Of Technology | Direct methanol feed fuel cell and system |
US5773162A (en) * | 1993-10-12 | 1998-06-30 | California Institute Of Technology | Direct methanol feed fuel cell and system |
US5599638A (en) * | 1993-10-12 | 1997-02-04 | California Institute Of Technology | Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane |
USRE38493E1 (en) | 1996-04-24 | 2004-04-13 | Questair Technologies Inc. | Flow regulated pressure swing adsorption system |
US6921597B2 (en) * | 1998-09-14 | 2005-07-26 | Questair Technologies Inc. | Electrical current generation system |
DE19856499C1 (de) | 1998-12-08 | 2000-10-26 | Daimler Chrysler Ag | Verfahren und Vorrichtung zur zweistufigen Aufladung von Prozeßluft für eine Brennstoffzelle |
US6432177B1 (en) * | 2000-09-12 | 2002-08-13 | Donaldson Company, Inc. | Air filter assembly for low temperature catalytic processes |
AU2002214858A1 (en) * | 2000-10-27 | 2002-05-06 | Questair Technologies, Inc. | Systems and processes for providing hydrogen to fuel cells |
US7097925B2 (en) * | 2000-10-30 | 2006-08-29 | Questair Technologies Inc. | High temperature fuel cell power plant |
CA2325072A1 (en) | 2000-10-30 | 2002-04-30 | Questair Technologies Inc. | Gas separation for molten carbonate fuel cell |
AU2002215752A1 (en) * | 2000-12-08 | 2002-06-18 | Denis Connor | Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source |
CA2329475A1 (en) | 2000-12-11 | 2002-06-11 | Andrea Gibbs | Fast cycle psa with adsorbents sensitive to atmospheric humidity |
US20020112479A1 (en) * | 2001-01-09 | 2002-08-22 | Keefer Bowie G. | Power plant with energy recovery from fuel storage |
DE10108187A1 (de) * | 2001-02-21 | 2002-10-02 | Xcellsis Gmbh | Brennstoffzellensystem mit einer Druckwechseladsorptionseinheit |
US6780534B2 (en) | 2001-04-11 | 2004-08-24 | Donaldson Company, Inc. | Filter assembly for intake air of fuel cell |
US6797027B2 (en) * | 2001-04-11 | 2004-09-28 | Donaldson Company, Inc. | Filter assemblies and systems for intake air for fuel cells |
US7416580B2 (en) * | 2001-04-11 | 2008-08-26 | Donaldsom Company, Inc. | Filter assemblies and systems for intake air for fuel cells |
US6783881B2 (en) | 2001-04-11 | 2004-08-31 | Donaldson Company, Inc. | Filter assembly for intake air of fuel cell |
US6951697B2 (en) * | 2001-09-11 | 2005-10-04 | Donaldson Company, Inc. | Integrated systems for use with fuel cells, and methods |
US6902602B2 (en) * | 2002-03-14 | 2005-06-07 | Questair Technologies Inc. | Gas separation by combined pressure swing and displacement purge |
EP1500156B1 (en) * | 2002-03-14 | 2007-09-12 | QuestAir Technologies Inc. | Hydrogen recycle for solid oxide fuel cell |
TW553500U (en) * | 2002-04-24 | 2003-09-11 | Asia Pacific Fuel Cell Tech | Liquid cooling type fuel battery device |
US7285350B2 (en) * | 2002-09-27 | 2007-10-23 | Questair Technologies Inc. | Enhanced solid oxide fuel cell systems |
US20040151966A1 (en) * | 2002-12-02 | 2004-08-05 | Dahlgren Andrew Christian | Various filter elements for hydrogen fuel cell |
WO2004076017A2 (en) * | 2003-02-26 | 2004-09-10 | Questair Technologies Inc. | Hydrogen recycle for high temperature fuel cells |
US7189280B2 (en) * | 2004-06-29 | 2007-03-13 | Questair Technologies Inc. | Adsorptive separation of gas streams |
JP4534661B2 (ja) * | 2004-08-20 | 2010-09-01 | 日本ビクター株式会社 | 燃料電池駆動装置 |
CA2585963A1 (en) * | 2004-11-05 | 2006-05-18 | Questair Technologies Inc. | Separation of carbon dioxide from other gases |
JP5103757B2 (ja) * | 2006-03-08 | 2012-12-19 | トヨタ自動車株式会社 | 燃料電池の酸化剤ガス浄化装置 |
WO2010099626A1 (en) * | 2009-03-05 | 2010-09-10 | G4 Insights Inc. | Process and system for thermochemical conversion of biomass |
CA2781204C (en) | 2009-11-18 | 2018-05-01 | G4 Insights Inc. | Sorption enhanced methanation of biomass |
WO2011060539A1 (en) | 2009-11-18 | 2011-05-26 | G4 Insights Inc. | Method and system for biomass hydrogasification |
US8383871B1 (en) | 2010-09-03 | 2013-02-26 | Brian G. Sellars | Method of hydrogasification of biomass to methane with low depositable tars |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2909410A (en) * | 1955-05-19 | 1959-10-20 | Air Prod Inc | Recovery of argon from an oxygen containing crude argon mixture |
US3173778A (en) * | 1961-01-05 | 1965-03-16 | Air Prod & Chem | Separation of gaseous mixtures including argon |
GB1125505A (en) * | 1966-06-23 | 1968-08-28 | Distillers Co Carbon Dioxide | Production of carbon dioxide and argon |
US3615850A (en) * | 1969-03-10 | 1971-10-26 | Gen Electric | System and process employing a reformable fuel to generate electrical energy |
US4352863A (en) * | 1981-01-21 | 1982-10-05 | Energy Research Corporation | Apparatus and method for producing high pressure steam in a fuel cell system |
-
1984
- 1984-09-14 JP JP59193638A patent/JPS6171561A/ja active Granted
-
1985
- 1985-09-05 US US06/772,751 patent/US4595642A/en not_active Expired - Fee Related
- 1985-09-12 DE DE19853532835 patent/DE3532835A1/de active Granted
Also Published As
Publication number | Publication date |
---|---|
US4595642A (en) | 1986-06-17 |
DE3532835C2 (ja) | 1987-06-11 |
JPS6171561A (ja) | 1986-04-12 |
DE3532835A1 (de) | 1986-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0316751B2 (ja) | ||
US7060382B2 (en) | Fuel cell system with recycle of anode exhaust gas | |
US4751151A (en) | Recovery of carbon dioxide from fuel cell exhaust | |
CA2439506C (en) | Electronic current generation system comprising a fuel cell and a rotary pressure swing adsorption unit | |
JP5801141B2 (ja) | 炭酸ガス回収型燃料電池システム | |
CN1172392C (zh) | 电流发生系统 | |
CN1258829C (zh) | 用于燃料电池的能量有效气体分离 | |
JPH11312527A (ja) | 製鉄副生ガスを利用した溶融炭酸塩型燃料電池発電−排ガス回収複合システム | |
CA2482990A1 (en) | Hydrogen production and water recovery system for a fuel cell | |
JPH03184270A (ja) | 燃料を電気に変換する方法及び装置 | |
CA2618064A1 (en) | Fuel cell systems and methods for passively increasing hydrogen recovery through vacuum-assisted pressure swing adsorption | |
CN113830735A (zh) | 碳氢燃料重整中温净化制氢方法、设备和燃料电池供能系统 | |
CN109921073A (zh) | 燃料电池阳极气高效制取氢燃料电池用氢气的方法和系统 | |
CN115427347B (zh) | 用于碳捕获的蒸汽甲烷重整单元 | |
JPS62274561A (ja) | 溶融炭酸塩型燃料電池 | |
CN210403912U (zh) | 一种基于co2回收的家用pemfc热电联供系统 | |
JP4011203B2 (ja) | 燃料電池発電システム | |
JPH11111320A (ja) | 内部燃焼型改質器を使用する燃料電池発電における炭酸ガス、窒素ガス及びアルゴンガスの回収、固定方法 | |
JPH11339820A (ja) | ハイブリッド型燃料電池システム | |
JPS59198669A (ja) | 燃料電池発電プラント | |
JPH1027621A (ja) | 炭酸ガスの発生を抑制する燃料電池発電設備 | |
US20230312339A1 (en) | Apparatus for producing hydrogen gas | |
US20230294986A1 (en) | Method and apparatus for producing hydrogen gas | |
JPH04206158A (ja) | 溶融炭酸塩型燃料電池を用いる発電プラント | |
CN215988846U (zh) | 一种利用高温燃料电池阴极尾气制氧的igfc系统 |