JPH03150820A - 電解コンデンサ用アルミニウム電極 - Google Patents
電解コンデンサ用アルミニウム電極Info
- Publication number
- JPH03150820A JPH03150820A JP28955189A JP28955189A JPH03150820A JP H03150820 A JPH03150820 A JP H03150820A JP 28955189 A JP28955189 A JP 28955189A JP 28955189 A JP28955189 A JP 28955189A JP H03150820 A JPH03150820 A JP H03150820A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrolytic capacitor
- aluminum
- titanium nitride
- capacitance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 29
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000010408 film Substances 0.000 abstract description 14
- 239000010409 thin film Substances 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052719 titanium Inorganic materials 0.000 abstract description 7
- 239000010936 titanium Substances 0.000 abstract description 7
- 239000003792 electrolyte Substances 0.000 abstract description 5
- 150000004767 nitrides Chemical class 0.000 abstract description 2
- 230000002269 spontaneous effect Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 10
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Physical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
この発明は電解コンデンサに用いられるアルミニウム電
極であって、特に陰極に用いられるアルミニウム電極に
関する。
極であって、特に陰極に用いられるアルミニウム電極に
関する。
電解コンデンサは、小型、大容量、安価で整流出力の平
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、一般にアルミニウム等の絶縁性酸化
皮膜が形成され得る、いわゆる弁金属を陽極に用い、前
記絶縁性酸化皮膜を誘電体層として、集電用の陰極電極
との間にセパレータに保持された電解液を介在させてコ
ンデンサ素子を作成し、これを密閉容器内に収納して構
成される。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、陽極材料と同種の金属が用い
られる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは、陽極側の静電容量および陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られなくなる。また所望の静電容量を得るため、陽極側
の静電容量を必要以上に大きくする必要がある。 この影響を少なくするためには、陽極側の静電容量値に
比べ陰極側の静電容量値を著しく高くすれば、陰極側の
静電容量による影響は殆ど無視できることになるが、低
電圧用の電解コンデンサの陽極の単位面積あたりの静電
容量は相当に高い7準にあり、これをより高めるのは困
難で、合成1世による静電容量値の低下は免れ得ない。 そこで陰極側の静電容量値をより高くするたδに、陰極
電極表面をエツチング処理して表面積イ拡大する方法が
ある。しかしこの表面積を拡大する技術は、現在では高
度に洗練されているが、この技術のみによって電解コン
デンサの静電容量ツ飛躍的に増加させるのは次第に困難
になりつつオる。 むしろ陰極との合成容量による静電容量の低1の問題の
解決のためには、陰極の表面部に絶縁性の酸化皮膜を形
成しない導電性の金属からなる1膜で被覆することによ
って、合成容量による静1容量値の低下を防止すること
が考えられる。 このようなものとして、例えば特開昭6O−182C号
公報のように、各種の導電性金属を真空蒸着するものが
知られている。また薄膜を形成するためには、前記の真
空蒸着によるもののほか、イオンブレーティング法、ス
パッタリング法あるいはプラズマCVD法などのような
各種の物理的方法がある。 しかしながら、導電性金属のうち、金、白金などのいわ
ゆる貴金属については、薬品との反応が殆どなく、電解
コンデンサとして長期間使用しても良好な導電性を保ち
得る。しがしながらこの種の貴金属は、安価で多量の生
産が要求される電解コンデンサには、経済的理由から採
用されるに到起き、表面の状態が経時変化するために、
腐食事故の発生や、電解コンデンサの特性が安定しない
という欠点があった。
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、一般にアルミニウム等の絶縁性酸化
皮膜が形成され得る、いわゆる弁金属を陽極に用い、前
記絶縁性酸化皮膜を誘電体層として、集電用の陰極電極
との間にセパレータに保持された電解液を介在させてコ
ンデンサ素子を作成し、これを密閉容器内に収納して構
成される。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、陽極材料と同種の金属が用い
られる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは、陽極側の静電容量および陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られなくなる。また所望の静電容量を得るため、陽極側
の静電容量を必要以上に大きくする必要がある。 この影響を少なくするためには、陽極側の静電容量値に
比べ陰極側の静電容量値を著しく高くすれば、陰極側の
静電容量による影響は殆ど無視できることになるが、低
電圧用の電解コンデンサの陽極の単位面積あたりの静電
容量は相当に高い7準にあり、これをより高めるのは困
難で、合成1世による静電容量値の低下は免れ得ない。 そこで陰極側の静電容量値をより高くするたδに、陰極
電極表面をエツチング処理して表面積イ拡大する方法が
ある。しかしこの表面積を拡大する技術は、現在では高
度に洗練されているが、この技術のみによって電解コン
デンサの静電容量ツ飛躍的に増加させるのは次第に困難
になりつつオる。 むしろ陰極との合成容量による静電容量の低1の問題の
解決のためには、陰極の表面部に絶縁性の酸化皮膜を形
成しない導電性の金属からなる1膜で被覆することによ
って、合成容量による静1容量値の低下を防止すること
が考えられる。 このようなものとして、例えば特開昭6O−182C号
公報のように、各種の導電性金属を真空蒸着するものが
知られている。また薄膜を形成するためには、前記の真
空蒸着によるもののほか、イオンブレーティング法、ス
パッタリング法あるいはプラズマCVD法などのような
各種の物理的方法がある。 しかしながら、導電性金属のうち、金、白金などのいわ
ゆる貴金属については、薬品との反応が殆どなく、電解
コンデンサとして長期間使用しても良好な導電性を保ち
得る。しがしながらこの種の貴金属は、安価で多量の生
産が要求される電解コンデンサには、経済的理由から採
用されるに到起き、表面の状態が経時変化するために、
腐食事故の発生や、電解コンデンサの特性が安定しない
という欠点があった。
この発明は、高純度アルミニウムの表面に導電性で、し
かも電解コンデンサとして使用した場合に特性上安定度
の高い薄膜を形成し、単位面積あたりの静電容量が大き
く、しかも信頼性の高い電解コンデンサ用電極を得るこ
とを目的としている。
かも電解コンデンサとして使用した場合に特性上安定度
の高い薄膜を形成し、単位面積あたりの静電容量が大き
く、しかも信頼性の高い電解コンデンサ用電極を得るこ
とを目的としている。
この発明は、窒化チタンがこの発明の目的に適合した薄
膜を形成することに着目したもので、この発明の電解コ
ンデンサ用電極は、高純度アルミニウム表面に、窒化チ
タン層を形成したことを特徴としている。 すなわちこの発明は、チタンの窒化物の薄膜によりアル
ミニウム電極表面を被覆することにより、この発明の目
的を達成している。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度で箔状あるいは板状のア
ルミニウムを用いることができる。 このアルミニウム表面は、あらかじめ脱脂処理等にをよ
り表面を清浄化しておく。またアルミニウム表面はエツ
チング処理を施しても良いし、ブレーンのままであって
も使用可能である。ただエツチングの際はエツチングに
よる凹凸の細かさの範囲を窒化チタン層を形成する手段
によって選択する必要がある場合がある。 形成される窒化チタン層の厚さは、少なくともアルミニ
ウム表面を均一に覆われる必要がある。 また厚さが必−要以上になると、被覆処理に時間がかか
ることなどから、好ましくは0.02ないし5μm、よ
り好ましくは0,1ないし2μmである。 窒化チタン薄膜を形成するための手段としては、各種の
手段が適用可能であるが、一般には薄膜ゆえ、厚さや状
態の制御が容易な物理的手段によるドライプロセスによ
るのが好適である。このような手段としては、真空蒸着
、陰極アーク蒸着、スパッタリング、イオンブレーティ
ング、プラズマCVD法などが例示できる。
膜を形成することに着目したもので、この発明の電解コ
ンデンサ用電極は、高純度アルミニウム表面に、窒化チ
タン層を形成したことを特徴としている。 すなわちこの発明は、チタンの窒化物の薄膜によりアル
ミニウム電極表面を被覆することにより、この発明の目
的を達成している。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度で箔状あるいは板状のア
ルミニウムを用いることができる。 このアルミニウム表面は、あらかじめ脱脂処理等にをよ
り表面を清浄化しておく。またアルミニウム表面はエツ
チング処理を施しても良いし、ブレーンのままであって
も使用可能である。ただエツチングの際はエツチングに
よる凹凸の細かさの範囲を窒化チタン層を形成する手段
によって選択する必要がある場合がある。 形成される窒化チタン層の厚さは、少なくともアルミニ
ウム表面を均一に覆われる必要がある。 また厚さが必−要以上になると、被覆処理に時間がかか
ることなどから、好ましくは0.02ないし5μm、よ
り好ましくは0,1ないし2μmである。 窒化チタン薄膜を形成するための手段としては、各種の
手段が適用可能であるが、一般には薄膜ゆえ、厚さや状
態の制御が容易な物理的手段によるドライプロセスによ
るのが好適である。このような手段としては、真空蒸着
、陰極アーク蒸着、スパッタリング、イオンブレーティ
ング、プラズマCVD法などが例示できる。
窒化チタンは、比抵抗値が22ないし130μΩ・cm
と低い抵抗値を有する硬質な化合物で、切削工具のチッ
プ表面の保護や時計用ケースの被覆などの用途が知られ
ている。 また窒化チタンはアルミニウムとの反応性も良好なこと
から、アルミニウム表面に低比抵抗の緻密な薄膜が形成
される。 この結果、アルミニウム電極は表面に形成された高容量
の極めて薄い自然酸化皮膜か、あるいは特定の微小部分
については自然酸化皮膜が殆ど形成されない電導度の高
い金属アルミニウム表面がそのまま、窒化チタンによっ
て安定して保護されることになり、電極全体として高い
静電容量値が得られるものと思われる。 また窒化チタンは、電解液との反応が起きにく(、電極
の表面状態を長期にわたって安定して維持させる。
と低い抵抗値を有する硬質な化合物で、切削工具のチッ
プ表面の保護や時計用ケースの被覆などの用途が知られ
ている。 また窒化チタンはアルミニウムとの反応性も良好なこと
から、アルミニウム表面に低比抵抗の緻密な薄膜が形成
される。 この結果、アルミニウム電極は表面に形成された高容量
の極めて薄い自然酸化皮膜か、あるいは特定の微小部分
については自然酸化皮膜が殆ど形成されない電導度の高
い金属アルミニウム表面がそのまま、窒化チタンによっ
て安定して保護されることになり、電極全体として高い
静電容量値が得られるものと思われる。 また窒化チタンは、電解液との反応が起きにく(、電極
の表面状態を長期にわたって安定して維持させる。
【実 施 例]
以下実施例に基づいて、この発明を更に詳細に説明する
。 この発明の窒化チタン薄膜を表面に形成した高純度アル
ミニウム被処理材を以下の実施例1およ゛び2のごとく
作成した。また比較例として、窒化物でない金属チタン
層を形成したもの、従来から用いられている高純度アル
ミニウム表面をエツチング処理のみ行ったものを比較例
1ないし3とした。 ’IIIL− 高純度のアルミニウム箔(純度99.95%、厚さ10
0μm)を50mmX 100mmに切断したものを被
処理材として使用し、窒素ガスを含む全圧が5X10−
”Torrのチャンバ中で、陰極アーク蒸着法を用いて
蒸着を行った。蒸着条件は、被処理材を200’Cに加
熱し、蒸発距離20011II11でアーク放電電圧1
00■、アーク電流too Aで蒸着速度を0.05μ
m/分で4分間蒸着を行った。 この結果表面に、膜厚0.2μmの窒化チタン層が形成
された。 一皇施貞I− 実施例1と同じ高純度アルミニウムに、イオンブレーテ
ィング法によって、窒化チタン薄膜を形成した。 形成条件は、チャンバ中の窒素ガスを含む全圧が、I
Xl0−”Torrの雰囲気で、被処理材と蒸着源であ
るチタン電極間にI200 Vを印加して20分間イオ
ンブレーティングを行った。 この結果、表面に、膜厚082μmの窒化チタン層が形
成された。 一止較拠上一 被処理材には実施例と同じものを用い、これを常温状態
で、2 X 10−’Torrのアルゴンガス雰囲気の
チャンバ中で実施例1と同じ陰極アーク蒸着法によって
金属チタン薄膜を形成した。蒸着条件は、アーク放電電
圧100V、アーク電流too Aで蒸着温度を0.0
2μm/分で10分間蒸着を行った。 この結果、膜厚0.2μmの金属チタン蒸着膜が形成さ
れた。 一止較斑I− 実施例2と同じイオンブレーティング法によって金属チ
タンの薄膜を形成した。 被処理材は、実施例1と同じものを用いた。薄膜形成条
件は、2 X 10− ”Torrのアルゴンガス雰囲
気中で、被処理材、蒸発源間に1200 Vの電圧を印
加して18分間蒸着を行った。 この結果、膜厚0.2μmの金属チタン膜が形成された
。 !剋11一 実施例と同じ素材からなる高純度アルミニウム材表面を
交流電解法によってエツチング処理したものを準備した
。 これら、各実施例および比較例の被処理材について、各
々の単位面積あたりの静電容量値を測定したところ、第
1表に示す結果が得られた。 (第 1 表) この結果から明らかなように、この発明の実施例のもの
は、比較のものに比べていずれも単位面積あたりの静電
容量値が高いことがわかる。 次に、形成された薄膜の安定性を調べるために、これら
各被処理材を電解コンデンサの陰極に用いて電解コンデ
ンサを作成し、寿命試験を行って特性の変化を調べた。 作成した電解コンデンサは、リード線同一方向型の電解
コンデンサで、箔状の電極をセパレータと共に巻回した
素子に電解液を含浸し、金属ケース内に収納し、開口部
を封口ゴムで密閉したものである。電解コンデンサを構
成する材料は、陰極箔として上記の各実施例ならびに比
較例のものを用いた以外は全て共通のものを使用した。 また組立方法についても全て同じである。 電解コンデンサの定格電圧は6.3V、定格容量−が4
7μF、外形寸法が直径5fflfll、長さ7mmで
ある。 使用した電解液の組成は、エチレングリコール78重量
%、アジピン酸アンモニウム10重量%、水12重量%
の組成からなるもので、通常用いられる電解液に比べて
、水の含有量を多くしである。これは、水による電極箔
の水和劣化の発生が顕著になるようにしたためである。 この電解コンデンサに定格電圧を印加し、110°Cで
500時間の寿命試験を行った後の静電容量値と、初期
の静電容量値との変化率を調べた。この結果を第2表に
示す。 (第 2 表) この結果かられかるように、この発明のアルミニウム電
極を用いた電解コンデンサは、初期値においても、高い
静電容量値が得られるとともに、高温負荷寿命試験を行
った後も、電極表面に水和劣化等の特性劣化が生じない
ので、電気特性に変動が少なく、長期にわたって安定し
た特性が維持できることがわかる。 【発明の効果】 以上述べたようにこの発明によれば、電解コンデンサ用
の電極として、単位面積あたりの静電容量を高めること
ができるので、特に低圧領域において小型大容量の電解
コンデンサが得られる。 また電極表面が窒化チタンによって保護され、水和劣化
等の電極表面の劣化が防止されるので、長期にわたって
安定した特性が維持できる。
。 この発明の窒化チタン薄膜を表面に形成した高純度アル
ミニウム被処理材を以下の実施例1およ゛び2のごとく
作成した。また比較例として、窒化物でない金属チタン
層を形成したもの、従来から用いられている高純度アル
ミニウム表面をエツチング処理のみ行ったものを比較例
1ないし3とした。 ’IIIL− 高純度のアルミニウム箔(純度99.95%、厚さ10
0μm)を50mmX 100mmに切断したものを被
処理材として使用し、窒素ガスを含む全圧が5X10−
”Torrのチャンバ中で、陰極アーク蒸着法を用いて
蒸着を行った。蒸着条件は、被処理材を200’Cに加
熱し、蒸発距離20011II11でアーク放電電圧1
00■、アーク電流too Aで蒸着速度を0.05μ
m/分で4分間蒸着を行った。 この結果表面に、膜厚0.2μmの窒化チタン層が形成
された。 一皇施貞I− 実施例1と同じ高純度アルミニウムに、イオンブレーテ
ィング法によって、窒化チタン薄膜を形成した。 形成条件は、チャンバ中の窒素ガスを含む全圧が、I
Xl0−”Torrの雰囲気で、被処理材と蒸着源であ
るチタン電極間にI200 Vを印加して20分間イオ
ンブレーティングを行った。 この結果、表面に、膜厚082μmの窒化チタン層が形
成された。 一止較拠上一 被処理材には実施例と同じものを用い、これを常温状態
で、2 X 10−’Torrのアルゴンガス雰囲気の
チャンバ中で実施例1と同じ陰極アーク蒸着法によって
金属チタン薄膜を形成した。蒸着条件は、アーク放電電
圧100V、アーク電流too Aで蒸着温度を0.0
2μm/分で10分間蒸着を行った。 この結果、膜厚0.2μmの金属チタン蒸着膜が形成さ
れた。 一止較斑I− 実施例2と同じイオンブレーティング法によって金属チ
タンの薄膜を形成した。 被処理材は、実施例1と同じものを用いた。薄膜形成条
件は、2 X 10− ”Torrのアルゴンガス雰囲
気中で、被処理材、蒸発源間に1200 Vの電圧を印
加して18分間蒸着を行った。 この結果、膜厚0.2μmの金属チタン膜が形成された
。 !剋11一 実施例と同じ素材からなる高純度アルミニウム材表面を
交流電解法によってエツチング処理したものを準備した
。 これら、各実施例および比較例の被処理材について、各
々の単位面積あたりの静電容量値を測定したところ、第
1表に示す結果が得られた。 (第 1 表) この結果から明らかなように、この発明の実施例のもの
は、比較のものに比べていずれも単位面積あたりの静電
容量値が高いことがわかる。 次に、形成された薄膜の安定性を調べるために、これら
各被処理材を電解コンデンサの陰極に用いて電解コンデ
ンサを作成し、寿命試験を行って特性の変化を調べた。 作成した電解コンデンサは、リード線同一方向型の電解
コンデンサで、箔状の電極をセパレータと共に巻回した
素子に電解液を含浸し、金属ケース内に収納し、開口部
を封口ゴムで密閉したものである。電解コンデンサを構
成する材料は、陰極箔として上記の各実施例ならびに比
較例のものを用いた以外は全て共通のものを使用した。 また組立方法についても全て同じである。 電解コンデンサの定格電圧は6.3V、定格容量−が4
7μF、外形寸法が直径5fflfll、長さ7mmで
ある。 使用した電解液の組成は、エチレングリコール78重量
%、アジピン酸アンモニウム10重量%、水12重量%
の組成からなるもので、通常用いられる電解液に比べて
、水の含有量を多くしである。これは、水による電極箔
の水和劣化の発生が顕著になるようにしたためである。 この電解コンデンサに定格電圧を印加し、110°Cで
500時間の寿命試験を行った後の静電容量値と、初期
の静電容量値との変化率を調べた。この結果を第2表に
示す。 (第 2 表) この結果かられかるように、この発明のアルミニウム電
極を用いた電解コンデンサは、初期値においても、高い
静電容量値が得られるとともに、高温負荷寿命試験を行
った後も、電極表面に水和劣化等の特性劣化が生じない
ので、電気特性に変動が少なく、長期にわたって安定し
た特性が維持できることがわかる。 【発明の効果】 以上述べたようにこの発明によれば、電解コンデンサ用
の電極として、単位面積あたりの静電容量を高めること
ができるので、特に低圧領域において小型大容量の電解
コンデンサが得られる。 また電極表面が窒化チタンによって保護され、水和劣化
等の電極表面の劣化が防止されるので、長期にわたって
安定した特性が維持できる。
Claims (1)
- (1) 高純度アルミニウム表面に、窒化チタン層を形
成したことを特徴とする電解コンデンサ用アルミニウム
電極。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1289551A JP2864477B2 (ja) | 1989-11-07 | 1989-11-07 | 電解コンデンサ用アルミニウム電極 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1289551A JP2864477B2 (ja) | 1989-11-07 | 1989-11-07 | 電解コンデンサ用アルミニウム電極 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9015925A Division JP3016421B2 (ja) | 1997-01-13 | 1997-01-13 | 電解コンデンサ用アルミニウム陰極箔 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03150820A true JPH03150820A (ja) | 1991-06-27 |
JP2864477B2 JP2864477B2 (ja) | 1999-03-03 |
Family
ID=17744706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1289551A Expired - Lifetime JP2864477B2 (ja) | 1989-11-07 | 1989-11-07 | 電解コンデンサ用アルミニウム電極 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2864477B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998014970A1 (en) * | 1996-09-30 | 1998-04-09 | Pinnacle Research Institute, Inc. | High surface area metal nitrides or metal oxynitrides for electrical energy storage |
US5980977A (en) * | 1996-12-09 | 1999-11-09 | Pinnacle Research Institute, Inc. | Method of producing high surface area metal oxynitrides as substrates in electrical energy storage |
JP2001085277A (ja) * | 1999-09-17 | 2001-03-30 | Nippon Chemicon Corp | 固体電解コンデンサとその製造方法 |
JP2001196270A (ja) * | 1999-11-04 | 2001-07-19 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
EP1184883A1 (en) * | 1999-03-29 | 2002-03-06 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor and production method thereof |
JP5181401B1 (ja) * | 2012-07-12 | 2013-04-10 | 日本蓄電器工業株式会社 | アルミニウム電解コンデンサ用陰極箔 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02117123A (ja) * | 1988-10-27 | 1990-05-01 | Elna Co Ltd | 電解コンデンサ用陰極材料 |
-
1989
- 1989-11-07 JP JP1289551A patent/JP2864477B2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02117123A (ja) * | 1988-10-27 | 1990-05-01 | Elna Co Ltd | 電解コンデンサ用陰極材料 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998014970A1 (en) * | 1996-09-30 | 1998-04-09 | Pinnacle Research Institute, Inc. | High surface area metal nitrides or metal oxynitrides for electrical energy storage |
US5980977A (en) * | 1996-12-09 | 1999-11-09 | Pinnacle Research Institute, Inc. | Method of producing high surface area metal oxynitrides as substrates in electrical energy storage |
EP1184883A1 (en) * | 1999-03-29 | 2002-03-06 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor and production method thereof |
EP1184883A4 (en) * | 1999-03-29 | 2004-09-08 | Nippon Chemicon | SOLID ELECTROLYTE CAPACITOR AND PROCESS FOR PRODUCING THE SAME |
JP2001085277A (ja) * | 1999-09-17 | 2001-03-30 | Nippon Chemicon Corp | 固体電解コンデンサとその製造方法 |
JP2001196270A (ja) * | 1999-11-04 | 2001-07-19 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサおよびその製造方法 |
JP4560940B2 (ja) * | 1999-11-04 | 2010-10-13 | パナソニック株式会社 | 固体電解コンデンサおよびその製造方法 |
JP5181401B1 (ja) * | 2012-07-12 | 2013-04-10 | 日本蓄電器工業株式会社 | アルミニウム電解コンデンサ用陰極箔 |
Also Published As
Publication number | Publication date |
---|---|
JP2864477B2 (ja) | 1999-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6764712B2 (en) | Method for producing high surface area foil electrodes | |
US2993266A (en) | Method of making a capacitor employing film-forming metal electrode | |
JP2745875B2 (ja) | 電解コンデンサ用陰極材料 | |
JPH03150822A (ja) | 電解コンデンサ用アルミニウム電極 | |
JP3016421B2 (ja) | 電解コンデンサ用アルミニウム陰極箔 | |
JPH03150820A (ja) | 電解コンデンサ用アルミニウム電極 | |
US3256468A (en) | Electrode for electrical capacitors and method of making the same | |
US2960642A (en) | Dielectric films and capacitors employing the same | |
US3126503A (en) | Electrical capacitor and electrode | |
JPH0471213A (ja) | 電解コンデンサ用アルミニウム電極およびその製造方法 | |
JP2687299B2 (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH03150823A (ja) | 電解コンデンサ用アルミニウム電極 | |
JP2618281B2 (ja) | 電解コンデンサ用アルミニウム電極およびその製造方法 | |
JPH03150821A (ja) | 電解コンデンサ用アルミニウム電極 | |
JPH03150824A (ja) | 電解コンデンサ用アルミニウム電極 | |
JPH042109A (ja) | 電解コンデンサ用アルミニウム電極 | |
JPS6353688B2 (ja) | ||
JPH059710A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH042110A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
US3182235A (en) | Electrical capacitor and titaniumcontaining electrode material therefor | |
JPH03150829A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH03150828A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
US3255389A (en) | Electrical capacitor and electrode material therefor | |
JP5016472B2 (ja) | 電解コンデンサ用電極箔の製造方法 | |
JPH03150827A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091218 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |