JPH03150828A - 電解コンデンサ用アルミニウム電極の製造方法 - Google Patents
電解コンデンサ用アルミニウム電極の製造方法Info
- Publication number
- JPH03150828A JPH03150828A JP28955989A JP28955989A JPH03150828A JP H03150828 A JPH03150828 A JP H03150828A JP 28955989 A JP28955989 A JP 28955989A JP 28955989 A JP28955989 A JP 28955989A JP H03150828 A JPH03150828 A JP H03150828A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- deposited
- nitride
- electrode
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 239000003990 capacitor Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 20
- 238000001704 evaporation Methods 0.000 claims description 17
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 15
- 238000007740 vapor deposition Methods 0.000 claims description 12
- 230000008020 evaporation Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 25
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 15
- 150000004767 nitrides Chemical class 0.000 abstract description 8
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 7
- 229910021645 metal ion Inorganic materials 0.000 abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 abstract description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000000151 deposition Methods 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 5
- 239000013077 target material Substances 0.000 abstract description 4
- 230000001070 adhesive effect Effects 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 17
- 239000010409 thin film Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000000541 cathodic arc deposition Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
この発明は電解コンデンサに用いられるアルミニウム電
極の製造方法に関し、さらに詳しくは表面に誘電体層が
形成された陰極用電極に用いられる高純度アルミニウム
電極の製造方法に関する。
極の製造方法に関し、さらに詳しくは表面に誘電体層が
形成された陰極用電極に用いられる高純度アルミニウム
電極の製造方法に関する。
電解コンデンサは、小型、大容量、安価で整流出力の平
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、一般にアルミニウム等の絶縁性酸化
皮膜が形成され得る、いわゆる弁金属を陽極に用い、前
記絶縁性酸化皮膜を誘電体層として用い、集電用の陰極
電極との間に電解液を介在させてコンデンサ素子が作成
され、この素子を外装容器内に収納し、電極と外部との
電気的接続を得るためのリード線を設けた構造を有する
。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、通常陽極材料と同種の金属が
用いられる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは陽極側の静電容量および、陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られなくなる。また所望の静電容量を得ようとすれば、
陽極側の静電容量を必要以上に大きくする必要がある。 この影響を少なくするためには、陽極側の静電容量値に
比べて陰極側の静電容量値を著しく高くすれば、陰極側
の静電容量による影客は殆ど無視できることになるが、
低電圧用の電解コンデンサの陽極側の静電容量は相当に
高く、これをより高くするのは困難で、合成容量による
静電容量値の低下は免れ得ない。 そこで陰極側の電極の静電容量値をより高くするために
、陰極電極表面をエツチング処理して表面積を拡大する
方法がある。しかしこの表面積を拡大する技術は、現在
では高度に洗練されているが、この技術のみによって電
解コンデンサの静電容量を飛躍的に増加させるのは次第
に困難になりつつある。 むしろ陰極との合成容量による静電容量の低下の問題の
解決のためには、陰極の表面部に静電容量値を持つ自然
酸化皮膜が形成されないか、あるいは形成されてもその
自然酸化皮膜が極めて薄く、高容量のまま保持できる形
態をとるのが望ましい。 このために、陰極材料の少なくとの表面に弁金属以外の
金属を用いれば、絶縁性の酸化皮膜が形成されない。 そこでこれを解決する手段として、例えば特開昭60−
1826号公報のように、アルミニウムの表面に各種の
導電性の金属を真空蒸着することが知られている。また
薄膜を形成するためには、前記の真空蒸着によるものの
ほか、イオンブレーティング法、スパンタリング法また
はプラズマCVD法なのような各種の物理的方法がある
。 しかし、電解コンデンサは内部に電解液が含浸されてお
り、電解液との反応によって腐食等の不具合が発生する
ことから、陰極材料として弁金属以外に問題なく使用で
きるものは、白金、金等の安定性の高い貴金属に限られ
る。しかしこれらの貴金属を集電用の陰極として用いる
ことは、経済的な理由ゆえまず不可能である。 しかも前記した方法では、アルミニウム表面における金
属の蒸着膜の密着性は必ずしも充分でなく、特に被蒸着
物の選択と、蒸着技術を改良してより優れた電解コンデ
ンサ用アルミニウム陰極電極を製造する余地が残されて
いた。 また前記した既存の蒸着技術では、処理時間が長くかか
るため、生産効率の点でも不十分であった。
滑用などの用途に優れた特性を示し、各種の電気・電子
機器の重要な構成要素の一つである。 電解コンデンサは、一般にアルミニウム等の絶縁性酸化
皮膜が形成され得る、いわゆる弁金属を陽極に用い、前
記絶縁性酸化皮膜を誘電体層として用い、集電用の陰極
電極との間に電解液を介在させてコンデンサ素子が作成
され、この素子を外装容器内に収納し、電極と外部との
電気的接続を得るためのリード線を設けた構造を有する
。 陽極材料は前述したように、アルミニウムをはじめ、タ
ンタル、ニオブ、チタンなどが使用される。また集電の
ための陰極電極材料には、通常陽極材料と同種の金属が
用いられる。 ところが、弁金属は一般に自然酸化による酸化皮膜層が
表面に形成される。この傾向はアルミニウムにおいて特
に顕著である。そしてこの自然酸化皮膜は極めて薄い絶
縁層のため、陰極側にも静電容量が形成され、電解コン
デンサは陽極側の静電容量および、陰極側の静電容量が
直列に接続された合成容量となり、所望の静電容量が得
られなくなる。また所望の静電容量を得ようとすれば、
陽極側の静電容量を必要以上に大きくする必要がある。 この影響を少なくするためには、陽極側の静電容量値に
比べて陰極側の静電容量値を著しく高くすれば、陰極側
の静電容量による影客は殆ど無視できることになるが、
低電圧用の電解コンデンサの陽極側の静電容量は相当に
高く、これをより高くするのは困難で、合成容量による
静電容量値の低下は免れ得ない。 そこで陰極側の電極の静電容量値をより高くするために
、陰極電極表面をエツチング処理して表面積を拡大する
方法がある。しかしこの表面積を拡大する技術は、現在
では高度に洗練されているが、この技術のみによって電
解コンデンサの静電容量を飛躍的に増加させるのは次第
に困難になりつつある。 むしろ陰極との合成容量による静電容量の低下の問題の
解決のためには、陰極の表面部に静電容量値を持つ自然
酸化皮膜が形成されないか、あるいは形成されてもその
自然酸化皮膜が極めて薄く、高容量のまま保持できる形
態をとるのが望ましい。 このために、陰極材料の少なくとの表面に弁金属以外の
金属を用いれば、絶縁性の酸化皮膜が形成されない。 そこでこれを解決する手段として、例えば特開昭60−
1826号公報のように、アルミニウムの表面に各種の
導電性の金属を真空蒸着することが知られている。また
薄膜を形成するためには、前記の真空蒸着によるものの
ほか、イオンブレーティング法、スパンタリング法また
はプラズマCVD法なのような各種の物理的方法がある
。 しかし、電解コンデンサは内部に電解液が含浸されてお
り、電解液との反応によって腐食等の不具合が発生する
ことから、陰極材料として弁金属以外に問題なく使用で
きるものは、白金、金等の安定性の高い貴金属に限られ
る。しかしこれらの貴金属を集電用の陰極として用いる
ことは、経済的な理由ゆえまず不可能である。 しかも前記した方法では、アルミニウム表面における金
属の蒸着膜の密着性は必ずしも充分でなく、特に被蒸着
物の選択と、蒸着技術を改良してより優れた電解コンデ
ンサ用アルミニウム陰極電極を製造する余地が残されて
いた。 また前記した既存の蒸着技術では、処理時間が長くかか
るため、生産効率の点でも不十分であった。
この発明は、上述した欠点を改良したもので、高純度ア
ルミニウムの表面に蒸着により金属の窒化物を付着させ
ることからなる、電解コンデンサ用アルミニウム電極の
製造方法を改良することにより、静電容量を増加させ、
かつ蒸着膜の密着性および緻密性を向上させるとともに
、電極表面を劣化から保護し、併せて処理時間を大幅に
短縮させることを目的としている。
ルミニウムの表面に蒸着により金属の窒化物を付着させ
ることからなる、電解コンデンサ用アルミニウム電極の
製造方法を改良することにより、静電容量を増加させ、
かつ蒸着膜の密着性および緻密性を向上させるとともに
、電極表面を劣化から保護し、併せて処理時間を大幅に
短縮させることを目的としている。
この発明は、電解コンデンサ用アルミニウム電極を製造
するに際し、高純度アルミニウム表面に、窒素を含んだ
全圧がlXl0−’〜I X 10−1〜1×10−4
Torrの雰囲気中で、タンタルの窒化物からなる蒸着
層を陰極アーク蒸着法によって形成することを特徴とす
る電解コンデンサ用アルミニウム電極の製造方法である
。 またこの発明では、被処理材である高純度アルミニウム
を200℃ないし450℃に加熱することも特徴として
いる。 陰極アーク蒸着法は、ターゲット側を陰極とした陰極ア
ーク放電現象を利用して、ターゲット材料を局所的に溶
融蒸発させ、被処理材料表面に蒸着を行うもので、陰極
アーク放電の特性として、陰極側(ターゲット)に非常
に小さな陰極輝点を生じ、大きなアーク電流がこの小さ
い点に流れ込むことから、陰極点の近傍は極めて高温に
熱せられて、タンタル等の高融点材料も瞬時に熔融蒸発
させる。 通常の陰極アーク蒸着法によれば、薄着処理を行うチャ
ンバ内は、ヘリウム、アルゴン、ネオン等の不活性ガス
が僅かに存在する雰囲気中でW着を行うが、この発明に
おいてはタンタルを窒化させ、窒化物として蒸着膜を形
成する必要があることから、チャンバ内に微量の窒素ガ
スを存在させて、蒸着処理を行うものである。 そして溶融医発したターゲツト材は、同時に金属イオン
となり真空中に放出される。この際蒸着を行うチャンバ
内を窒素ガスを含む所定の圧力の雰囲気にしておくこと
によって、バイアス電圧を被処理材料に印加することに
より、この金属イオンは、加速された反応ガス粒子と共
に被処理材料の表面に窒化物として蒸着され、緻密な薄
膜を生成する。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度の箔状あるいは板状のア
ルミニウムを用いることができる。 このアルミニウム表面は、あらかじめ脱脂処理等にをよ
り表面を清浄化しておくことが望ましい。 またアルミニウム表面は、エツチング処理を施しても良
いし、プレーンのままであっても良い。 この発明における、陰極アーク蒸着の好ましい条件とし
ては、チャンバ内の窒素ガスの量は、窒化反応が充分行
われ、しかも遊離した金属イオンが被処理材表面に蒸着
形成されるのを妨げない範囲で選択されるべきで、その
範囲は窒素を含む全圧でlXl0−’〜I X 10−
1〜1×10−4Torrの範囲である。また上記範囲
において圧力の調整のため窒素以外に不活性ガスとして
アルゴン、ヘリウム、ネオン等のガスを混合できる。 またこの発明では、蒸着されるタンタルが被処理材であ
る高純度アルミニウム表面での窒化反応が円滑に行われ
るために、被処理材を加熱し、蒸着面での酸化反応を促
進させることも好ましいことである。この温度は窒化反
応促進の見地から言えば、比較的高い温度が良いが、被
処理材が高純度のアルミニウムであることから、その範
囲は20、℃から450℃で行うことが好ましい。
するに際し、高純度アルミニウム表面に、窒素を含んだ
全圧がlXl0−’〜I X 10−1〜1×10−4
Torrの雰囲気中で、タンタルの窒化物からなる蒸着
層を陰極アーク蒸着法によって形成することを特徴とす
る電解コンデンサ用アルミニウム電極の製造方法である
。 またこの発明では、被処理材である高純度アルミニウム
を200℃ないし450℃に加熱することも特徴として
いる。 陰極アーク蒸着法は、ターゲット側を陰極とした陰極ア
ーク放電現象を利用して、ターゲット材料を局所的に溶
融蒸発させ、被処理材料表面に蒸着を行うもので、陰極
アーク放電の特性として、陰極側(ターゲット)に非常
に小さな陰極輝点を生じ、大きなアーク電流がこの小さ
い点に流れ込むことから、陰極点の近傍は極めて高温に
熱せられて、タンタル等の高融点材料も瞬時に熔融蒸発
させる。 通常の陰極アーク蒸着法によれば、薄着処理を行うチャ
ンバ内は、ヘリウム、アルゴン、ネオン等の不活性ガス
が僅かに存在する雰囲気中でW着を行うが、この発明に
おいてはタンタルを窒化させ、窒化物として蒸着膜を形
成する必要があることから、チャンバ内に微量の窒素ガ
スを存在させて、蒸着処理を行うものである。 そして溶融医発したターゲツト材は、同時に金属イオン
となり真空中に放出される。この際蒸着を行うチャンバ
内を窒素ガスを含む所定の圧力の雰囲気にしておくこと
によって、バイアス電圧を被処理材料に印加することに
より、この金属イオンは、加速された反応ガス粒子と共
に被処理材料の表面に窒化物として蒸着され、緻密な薄
膜を生成する。 この発明によれば、被処理材料としては、通常の電解コ
ンデンサの陰極に用いる高純度の箔状あるいは板状のア
ルミニウムを用いることができる。 このアルミニウム表面は、あらかじめ脱脂処理等にをよ
り表面を清浄化しておくことが望ましい。 またアルミニウム表面は、エツチング処理を施しても良
いし、プレーンのままであっても良い。 この発明における、陰極アーク蒸着の好ましい条件とし
ては、チャンバ内の窒素ガスの量は、窒化反応が充分行
われ、しかも遊離した金属イオンが被処理材表面に蒸着
形成されるのを妨げない範囲で選択されるべきで、その
範囲は窒素を含む全圧でlXl0−’〜I X 10−
1〜1×10−4Torrの範囲である。また上記範囲
において圧力の調整のため窒素以外に不活性ガスとして
アルゴン、ヘリウム、ネオン等のガスを混合できる。 またこの発明では、蒸着されるタンタルが被処理材であ
る高純度アルミニウム表面での窒化反応が円滑に行われ
るために、被処理材を加熱し、蒸着面での酸化反応を促
進させることも好ましいことである。この温度は窒化反
応促進の見地から言えば、比較的高い温度が良いが、被
処理材が高純度のアルミニウムであることから、その範
囲は20、℃から450℃で行うことが好ましい。
この発明の陰極アーク蒸着法により、窒化タンタルの蒸
着薄膜が高純度アルミニウムの表面に形成できる。 窒化タンタルは、比抵抗値が135μΩ・cn+と低い
抵抗値を有する硬質な化合物で、切削工具のチップ表面
の保護や時計用ケースの被覆などの用途が知られている
。 また窒化タンタルは、アルミニウムとの反応性も良好な
ことから、アルミニウム表面に低比抵抗の楊密な薄膜が
形成される。 この結果、アルミニウム電極は表面に形成された高静電
容量の極めて薄い自然酸化皮膜か、あるいは特定の微小
部分については、自然酸化皮膜が殆ど生成されない電導
度の高い金属アルミニウムの表面がそのまま窒化タンタ
ル薄膜によって安定して保護されることになり、電極全
体として高い静電容量が得られるものと思われる。 また窒化タンタルは、電解液との反応が起きにくく、電
解コンデンサの電気的特性を長期にわたって安定して維
持させる。 さらにこの発明の方法によれば、粒子のイオン化率が高
いため、イオンボンバード効果が強いこと、またコーテ
ィング中のバイアス効果も強いことなどの特徴があり、
窒化タンタルがアルミニウムとの反応性が良いことと相
まって被処理材との密着性が極めて高い皮膜となる。 この発明の陰極アーク蒸着法と、従来のイオンブレーテ
ィング法およびスパンタリング法について、−船釣な金
属の被処理材上のイオン化率および粒子エネルギーを比
較したものを、以下の第1表に示す。 (第 1 表) このように、陰極アーク蒸着法によれば、イオン化率が
他の方法に比べて著しく大きく、高イオンエネルギーで
あるため、反応効率が向上し、アルミニウム電極と蒸着
金属の窒化物との密着性ならびに緻密性を顕著に向上さ
せることができる。 また処理時間についても、この発明の陰極アーり蒸着法
によれば長くとも10分程度で処理が終わるのに対し、
イオンブレーティング法では20分程度、スパッタリン
グ法によれば50分程度と、何れもこの発明の方法に比
べ相当の時間を要する。
着薄膜が高純度アルミニウムの表面に形成できる。 窒化タンタルは、比抵抗値が135μΩ・cn+と低い
抵抗値を有する硬質な化合物で、切削工具のチップ表面
の保護や時計用ケースの被覆などの用途が知られている
。 また窒化タンタルは、アルミニウムとの反応性も良好な
ことから、アルミニウム表面に低比抵抗の楊密な薄膜が
形成される。 この結果、アルミニウム電極は表面に形成された高静電
容量の極めて薄い自然酸化皮膜か、あるいは特定の微小
部分については、自然酸化皮膜が殆ど生成されない電導
度の高い金属アルミニウムの表面がそのまま窒化タンタ
ル薄膜によって安定して保護されることになり、電極全
体として高い静電容量が得られるものと思われる。 また窒化タンタルは、電解液との反応が起きにくく、電
解コンデンサの電気的特性を長期にわたって安定して維
持させる。 さらにこの発明の方法によれば、粒子のイオン化率が高
いため、イオンボンバード効果が強いこと、またコーテ
ィング中のバイアス効果も強いことなどの特徴があり、
窒化タンタルがアルミニウムとの反応性が良いことと相
まって被処理材との密着性が極めて高い皮膜となる。 この発明の陰極アーク蒸着法と、従来のイオンブレーテ
ィング法およびスパンタリング法について、−船釣な金
属の被処理材上のイオン化率および粒子エネルギーを比
較したものを、以下の第1表に示す。 (第 1 表) このように、陰極アーク蒸着法によれば、イオン化率が
他の方法に比べて著しく大きく、高イオンエネルギーで
あるため、反応効率が向上し、アルミニウム電極と蒸着
金属の窒化物との密着性ならびに緻密性を顕著に向上さ
せることができる。 また処理時間についても、この発明の陰極アーり蒸着法
によれば長くとも10分程度で処理が終わるのに対し、
イオンブレーティング法では20分程度、スパッタリン
グ法によれば50分程度と、何れもこの発明の方法に比
べ相当の時間を要する。
以下実施例に基づいて、この発明を説明する。
図面は、陰極アーク蒸着に使用する装置の概略を説明し
たものである。この発明は図面の装置により、タンタル
からなる金属ターゲット(蒸発源)10を陰極としてア
ーク放電を起こすと、アークはターゲラ1−10の表面
にアークスポットを形成し、アークスポットに集中する
アーク電流のエネルギーにより、ターゲツト材10は瞬
時に溶融蒸発すると同時に金属イオン12となり、真空
中に放出される。 この際、高純度のアルミニウムからなる被処理材14に
対しバイアス電圧を印加することにより、この金属イオ
ン12は、加速された反応ガス粒子16と共に被処理材
14の表面に密着し、緻密な膜を生成する。なお、図面
中で、18および20はアーク電源、22はバイアス電
源、24は回転テーブル、26はガス入口、28はガス
出口、30は真空チャンバである。 そして図面の陰極アーク蒸着装置を用いて、以下の実施
例の電解コンデンサ用電極を作成した。 −実差貝一 交流による電気化学的なエツチング処理が施された高純
度のアルミニウム箔(純度99.95%)を50X 1
00mmに切断したものを被処理材として使用し、この
表面に窒化タンタルを蒸着した。 実施例では、被処理材のアルミニウムを200℃に加熱
しておき、窒素ガスを含むチャンバ内の全圧を5 X
10− ”Torrの範囲に設定し、蒸発距離200m
m、アーク電源の電流値を100A、蒸発速度0.05
μm/分とし、4分間陰極アーク蒸着を行い、0.2μ
mの膜厚の窒化タンタル蒸着膜を形成した。 −比較1ニー 被処理材の高純度アルミニウムは、実施例と同じものを
使用し、タンタルを蒸発源として、窒素ガスを含む全圧
が2 Xl0−1〜1×10−4Torrの言回気中で
、蒸発距離200mm、形成速度0.01 p m 7
分で20分間イオンブレーティング法による窒化タンタ
ル蒸着を行い、0.2μmの膜厚の窒化タンタル蒸着膜
を形成した。 一比較[1 被処理材の高純度アルミニウムは、実施例と同一のもの
を用いた。従ってこの処理材では、表面が交流による電
気化学的なエツチング処理が施されたのみである。 これら実施例および比較例のうち、蒸着処理をしたもの
について、蒸着された窒化タンタルの付着力を測定し、
密着性を調べたところ、実施例のものは、付着力が3.
6Kgm5であったのに対し、比較例1のものは2.8
Kgm5であり、この発明の陰極アーク蒸着法による薄
膜の密着性の良いことがわかる。 次に、これらの実施例および比較例の、単位面積あたり
の静電容量値を測定した結果を第2表に示す。 (第 2 表) この結果かられかるように、従来のアルミニウム電極表
面をエツチング処理したのみの電極の静電容量は、蒸着
により窒化タンタル層を設けたものに比べて著しく静電
容量値が低いことがわかる。 また蒸着法により窒化タンクル薄膜を形成したものは、
いずれも高い静電容量値を示すが、この発明の陰極アー
ク蒸着によるものは、比較例1の従来の方法に比べて短
時間でほぼ同等の厚さの薄膜を得ることができ、製造効
率に優れることがわかる。 次に形成された薄膜の安定性を調べるために、これらの
被処理材を実際の陰極として電解コンデンサを作成し、
寿命試験を行い特性の変化を調べた。 作成した電解コンデンサは、リード線同一方向型の電解
コンデンサで、箔状の電極をセパレータと共に巻回した
素子に電解液を含浸し、金属ケースに収納し、開口部を
封口ゴムで密閉したものである。電解コンデンサを構成
する材料は、陰極箔として、上記の実施例および比較例
のものを用いた以外は全て共通のものを用いた。また組
立方法についても全て同じである。 電解コンデンサの定格は、定格電圧6.3■、定格静電
容量47μF、外形寸法が直径5 mm、長さ7mam
である。使用した電解液の組成は、エチレングリコール
78重量%、アジピン酸アンモニウム10重量%、水1
2重量%の組成からなるもので、通常用いられる電解液
に比べて、水の含有量を多くしである。これは、水によ
る電極箔の水和劣化の発生が顕著になるようにしたため
である。 この電解コンデンサに定格電圧を印加し、110゛Cで
500時間寿命試験を行った後の静電容量値と、初期の
静電容量値との変化率を調べた。この結果を第3表に示
す。 (第 表) この結果かられかるように、この発明のアルミニウム電
極は、エツチング処理のみが行われたものはもとより、
他の蒸着法を用いたものに比べても表面の劣化や経時変
化が少なく、長期にわたって特性が安定していることが
わかる。
たものである。この発明は図面の装置により、タンタル
からなる金属ターゲット(蒸発源)10を陰極としてア
ーク放電を起こすと、アークはターゲラ1−10の表面
にアークスポットを形成し、アークスポットに集中する
アーク電流のエネルギーにより、ターゲツト材10は瞬
時に溶融蒸発すると同時に金属イオン12となり、真空
中に放出される。 この際、高純度のアルミニウムからなる被処理材14に
対しバイアス電圧を印加することにより、この金属イオ
ン12は、加速された反応ガス粒子16と共に被処理材
14の表面に密着し、緻密な膜を生成する。なお、図面
中で、18および20はアーク電源、22はバイアス電
源、24は回転テーブル、26はガス入口、28はガス
出口、30は真空チャンバである。 そして図面の陰極アーク蒸着装置を用いて、以下の実施
例の電解コンデンサ用電極を作成した。 −実差貝一 交流による電気化学的なエツチング処理が施された高純
度のアルミニウム箔(純度99.95%)を50X 1
00mmに切断したものを被処理材として使用し、この
表面に窒化タンタルを蒸着した。 実施例では、被処理材のアルミニウムを200℃に加熱
しておき、窒素ガスを含むチャンバ内の全圧を5 X
10− ”Torrの範囲に設定し、蒸発距離200m
m、アーク電源の電流値を100A、蒸発速度0.05
μm/分とし、4分間陰極アーク蒸着を行い、0.2μ
mの膜厚の窒化タンタル蒸着膜を形成した。 −比較1ニー 被処理材の高純度アルミニウムは、実施例と同じものを
使用し、タンタルを蒸発源として、窒素ガスを含む全圧
が2 Xl0−1〜1×10−4Torrの言回気中で
、蒸発距離200mm、形成速度0.01 p m 7
分で20分間イオンブレーティング法による窒化タンタ
ル蒸着を行い、0.2μmの膜厚の窒化タンタル蒸着膜
を形成した。 一比較[1 被処理材の高純度アルミニウムは、実施例と同一のもの
を用いた。従ってこの処理材では、表面が交流による電
気化学的なエツチング処理が施されたのみである。 これら実施例および比較例のうち、蒸着処理をしたもの
について、蒸着された窒化タンタルの付着力を測定し、
密着性を調べたところ、実施例のものは、付着力が3.
6Kgm5であったのに対し、比較例1のものは2.8
Kgm5であり、この発明の陰極アーク蒸着法による薄
膜の密着性の良いことがわかる。 次に、これらの実施例および比較例の、単位面積あたり
の静電容量値を測定した結果を第2表に示す。 (第 2 表) この結果かられかるように、従来のアルミニウム電極表
面をエツチング処理したのみの電極の静電容量は、蒸着
により窒化タンタル層を設けたものに比べて著しく静電
容量値が低いことがわかる。 また蒸着法により窒化タンクル薄膜を形成したものは、
いずれも高い静電容量値を示すが、この発明の陰極アー
ク蒸着によるものは、比較例1の従来の方法に比べて短
時間でほぼ同等の厚さの薄膜を得ることができ、製造効
率に優れることがわかる。 次に形成された薄膜の安定性を調べるために、これらの
被処理材を実際の陰極として電解コンデンサを作成し、
寿命試験を行い特性の変化を調べた。 作成した電解コンデンサは、リード線同一方向型の電解
コンデンサで、箔状の電極をセパレータと共に巻回した
素子に電解液を含浸し、金属ケースに収納し、開口部を
封口ゴムで密閉したものである。電解コンデンサを構成
する材料は、陰極箔として、上記の実施例および比較例
のものを用いた以外は全て共通のものを用いた。また組
立方法についても全て同じである。 電解コンデンサの定格は、定格電圧6.3■、定格静電
容量47μF、外形寸法が直径5 mm、長さ7mam
である。使用した電解液の組成は、エチレングリコール
78重量%、アジピン酸アンモニウム10重量%、水1
2重量%の組成からなるもので、通常用いられる電解液
に比べて、水の含有量を多くしである。これは、水によ
る電極箔の水和劣化の発生が顕著になるようにしたため
である。 この電解コンデンサに定格電圧を印加し、110゛Cで
500時間寿命試験を行った後の静電容量値と、初期の
静電容量値との変化率を調べた。この結果を第3表に示
す。 (第 表) この結果かられかるように、この発明のアルミニウム電
極は、エツチング処理のみが行われたものはもとより、
他の蒸着法を用いたものに比べても表面の劣化や経時変
化が少なく、長期にわたって特性が安定していることが
わかる。
以上述べたようにこの発明によれば、電解コンデンサ用
の電極として、単位面積あたりの静電容量値を高めるこ
とができるので、特に低圧領域において、電解コンデン
サを小型化できるとともに、大容量の電解コンデンサが
得られる。 また電極表面が窒化タンタルによって保護されるので、
長期にわたって安定した電気特性が維持でき、電解コン
デンサの信頬性が向上する。 さらにこの発明によれば、電極の処理時間が短時間で済
むので、生産効率が良くなるという利点がある。
の電極として、単位面積あたりの静電容量値を高めるこ
とができるので、特に低圧領域において、電解コンデン
サを小型化できるとともに、大容量の電解コンデンサが
得られる。 また電極表面が窒化タンタルによって保護されるので、
長期にわたって安定した電気特性が維持でき、電解コン
デンサの信頬性が向上する。 さらにこの発明によれば、電極の処理時間が短時間で済
むので、生産効率が良くなるという利点がある。
図面は、この発明で用いる陰極アーク蒸着装置の概略を
表した説明図である。
表した説明図である。
Claims (2)
- (1) 高純度アルミニウム表面に、窒素を含む全圧が
1×10^−^1〜1×10^−^4Torrの雰囲気
中で、タンタルの窒化物からなる蒸着層を陰極アーク蒸
着法によって形成することを特徴とする電解コンデンサ
用アルミニウム電極の製造方法。 - (2) 被処理高純度アルミニウムを200℃〜450
℃に加熱して蒸着を行う請求項1記載の電解コンデンサ
用アルミニウム電極の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28955989A JPH03150828A (ja) | 1989-11-07 | 1989-11-07 | 電解コンデンサ用アルミニウム電極の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28955989A JPH03150828A (ja) | 1989-11-07 | 1989-11-07 | 電解コンデンサ用アルミニウム電極の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03150828A true JPH03150828A (ja) | 1991-06-27 |
Family
ID=17744802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28955989A Pending JPH03150828A (ja) | 1989-11-07 | 1989-11-07 | 電解コンデンサ用アルミニウム電極の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03150828A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6863750B2 (en) | 2000-05-22 | 2005-03-08 | Cabot Corporation | High purity niobium and products containing the same, and methods of making the same |
-
1989
- 1989-11-07 JP JP28955989A patent/JPH03150828A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6863750B2 (en) | 2000-05-22 | 2005-03-08 | Cabot Corporation | High purity niobium and products containing the same, and methods of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7410509B2 (en) | Sputtered ruthenium oxide coatings in electrolytic capacitor | |
JP2687299B2 (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH0471213A (ja) | 電解コンデンサ用アルミニウム電極およびその製造方法 | |
JP2618281B2 (ja) | 電解コンデンサ用アルミニウム電極およびその製造方法 | |
JPH03150822A (ja) | 電解コンデンサ用アルミニウム電極 | |
JP3016421B2 (ja) | 電解コンデンサ用アルミニウム陰極箔 | |
JP2864477B2 (ja) | 電解コンデンサ用アルミニウム電極 | |
JPH03150828A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
CN118805082A (zh) | 电极及电化学测定系统 | |
US4412901A (en) | Method for the manufacture of solid electrolyte layers for galvanic cells | |
JPH03150829A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH03150826A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH042110A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH03150827A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
US4089990A (en) | Battery plate and method of making | |
JPH059710A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH0330410A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
EP1591553A1 (en) | Process for producing an electrode coated with titanium nitride | |
JPH0330409A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH03150823A (ja) | 電解コンデンサ用アルミニウム電極 | |
JPH03131014A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JP3155750B2 (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH0332012A (ja) | 電解コンデンサ用アルミニウム電極の製造方法 | |
JPH03150821A (ja) | 電解コンデンサ用アルミニウム電極 | |
JPS58198884A (ja) | サ−ジ吸収素子 |