JPH03146121A - Hollow fiber membrane and hollow fiber membrane-type breathing simulator using the membrane - Google Patents

Hollow fiber membrane and hollow fiber membrane-type breathing simulator using the membrane

Info

Publication number
JPH03146121A
JPH03146121A JP1286382A JP28638289A JPH03146121A JP H03146121 A JPH03146121 A JP H03146121A JP 1286382 A JP1286382 A JP 1286382A JP 28638289 A JP28638289 A JP 28638289A JP H03146121 A JPH03146121 A JP H03146121A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
treated
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1286382A
Other languages
Japanese (ja)
Other versions
JPH0763592B2 (en
Inventor
Tomonori Muraki
智則 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1286382A priority Critical patent/JPH0763592B2/en
Publication of JPH03146121A publication Critical patent/JPH03146121A/en
Publication of JPH0763592B2 publication Critical patent/JPH0763592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To make the effective membrane surface area positive and sufficient and heighten fluid treatment ability by making curling ratio of a porous hollow fiber membrane with which a fluid to be treated is treated in the inside or outside of the membrane wall be 0.1-0.7%. CONSTITUTION:Hollow fiber membranes having curling ratio 0.1-0.7% are prepared and fluids to be treated are treated mutually through a membrane while one fluid to be treated is in the inside or outside and the other fluid to be treated is in the other side of a membrane. About 10000-60000 of said porous hollow fiber membranes 6 and hollow fiber membrane bundles 13 are put in housing 2 in the longitudinal direction to give a hollow fiber membrane-type breathing simulator. Contact of oxygen-containing gas of a fluid to be treated with blown to a gas chamber 9 with blood which is a fluid to be treated and flows in the inside of the hollow fiber membranes 6 from a blood storage space 27 through the membrane walls of the hollow fiber membranes 6 is carried out uniformly in the whole surface areas of the hollow fiber membranes 6 and effective membranes' surface area is attained sufficiently.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、膜壁を介して、例えばガス交換等の流体処理
がなされる中空糸膜及びこれを用いた中空糸膜型人工肺
に関するものである。
Detailed Description of the Invention [Field of Industrial Application 1] The present invention relates to a hollow fiber membrane in which fluid treatment such as gas exchange is performed through a membrane wall, and a hollow fiber membrane oxygenator using the same. It is.

[従来の技術] 近年、心臓手術等において、患者の血液を体外に導き、
これに酸素を添加し、かつ炭酸ガスを除去するために、
体外循環回路を構成する中空糸膜型人工肺が用いられて
いる。
[Prior art] In recent years, in heart surgery, etc., the patient's blood is guided outside the body.
In order to add oxygen to this and remove carbon dioxide gas,
A hollow fiber membrane oxygenator is used to constitute the extracorporeal circulation circuit.

この中空糸膜型人工肺は、 AQに、ハウジング内に複
数本の中空糸膜を束ねて、収納してなり、該中空糸膜の
内側又は外側のいずれか一方に被処理流体として血液を
循環させ、他方に処理流体として酸素含有ガスを吹送し
、中空糸膜の膜壁を介して気液接触させ、所望のガス交
換を行なうものである。このような中空糸膜型人工肺の
うち、中空糸膜の外側に血液を循環させ、その内側に酸
素含有ガスを吹送する、いわゆる外部潅流型のものは、
血流における圧力j(1失が少ないため循環回路中の人
工肺の萌に送血ポンプを設ける必要がなく、従って人体
からの落差のみによる脱血にて血液を人工肺に込ること
が可能となり、特に好ましいものである。
This hollow fiber membrane oxygenator consists of a plurality of hollow fiber membranes bundled and housed in a housing in an AQ, and blood is circulated as a fluid to be treated either inside or outside of the hollow fiber membranes. In this system, an oxygen-containing gas is blown to the other side as a processing fluid, and the gas and liquid are brought into contact with each other through the membrane wall of the hollow fiber membrane, thereby performing the desired gas exchange. Among these hollow fiber membrane oxygenators, the so-called external perfusion type oxygenator circulates blood outside the hollow fiber membrane and blows oxygen-containing gas inside the membrane.
Since the pressure loss in the bloodstream is small, there is no need to install a blood pump at the artificial lung in the circulation circuit, and therefore blood can be drawn into the artificial lung by removing blood only by the drop from the human body. Therefore, it is particularly preferable.

このような中空糸膜型人工肺に用いられる中空糸膜とし
ては、ガス透過性、機械的強度等の面から例えばポリプ
ロピレンなとの疎水性の多孔質中空糸膜が主として用い
られている。
As the hollow fiber membrane used in such a hollow fiber membrane oxygenator, a hydrophobic porous hollow fiber membrane such as polypropylene is mainly used from the viewpoint of gas permeability, mechanical strength, etc.

[発明が解決しようとする課題] ところで、上記疎水性の多孔質中空糸膜にあっては、従
来、ハウジング内において、中空糸膜と中空糸膜との間
隙が狭く、かつ軸方向に沿って積極的に変化することの
ない状態で、東ねられ、収納さtlでいた。このような
状態で、中空糸膜内部空間に血液を流し外部に酸素含有
ガスを中空糸膜束の軸方向に流すと、中空糸膜表面にお
いては酸素含有ガスの流れは層流となるのでガス交換能
の向上は一定以上望めない。また、中空糸膜を束ねるこ
とにより、中空糸膜束の間隙に酸素含有ガスが入り込み
にくく、中心部の中空糸膜は有効利用されていなかった
[Problems to be Solved by the Invention] By the way, in the above-mentioned hydrophobic porous hollow fiber membrane, conventionally, the gap between the hollow fiber membranes is narrow in the housing, and the gap between the hollow fiber membranes is narrow along the axial direction. In a state of no active change, it was laid back and stored away. In this state, when blood flows into the inner space of the hollow fiber membrane and oxygen-containing gas flows outside in the axial direction of the hollow fiber membrane bundle, the flow of oxygen-containing gas becomes laminar on the surface of the hollow fiber membrane, so the gas Improvement in exchange capacity cannot be expected beyond a certain point. Furthermore, by bundling the hollow fiber membranes, it is difficult for oxygen-containing gas to enter the gaps between the bundles of hollow fiber membranes, so that the hollow fiber membranes in the center are not effectively utilized.

また、中空糸膜が疎水性であるために、特に外Bq’s
 ?n’′流をの場合に、その間隙に、ブライミング時
に除去されなかった気泡が溜り易くなり、いわゆるエア
ートラップされた状態が生じる。これにより、trtt
 =の流通が悪くなり、またエアートラップされた気泡
の塊によって血液と酸素含有ガスとの中空糸膜の膜壁を
介する接触が阻害され、従ってイT効膜面積が低下し、
その結果、人工肺のガス交換能が低下する等、問題であ
った。
In addition, since the hollow fiber membrane is hydrophobic, it is especially
? In the case of n'' flow, air bubbles that were not removed during brimming tend to accumulate in the gap, resulting in a so-called air-trapped state. This allows trtt
= circulation becomes poor, and contact between blood and oxygen-containing gas through the membrane wall of the hollow fiber membrane is inhibited by the mass of air-trapped air bubbles, thus reducing the effective membrane area.
As a result, there were problems such as a decrease in the gas exchange ability of the oxygenator.

そこで、種々の提案がなされ、例えば中空糸膜を捲縮し
、その平均捲縮振幅、捲縮率等について一定の条件を付
すことにより、各中空糸股間において、その軸方向に沿
って幅が変化する間隙を形成するようにしたものが案出
されている。
Therefore, various proposals have been made, for example, by crimping the hollow fiber membrane and applying certain conditions to the average crimp amplitude, crimp rate, etc., the width can be increased along the axial direction at each hollow fiber crotch. Provisions have been made to create a variable gap.

本発明も、かかる問題点に鑑みなされたものであって、
その目的は、上記提案のものとは別異の条件で、中空糸
膜を捲縮することにより、中空糸膜を束ねるにあたって
、各中空糸膜間の間隙が狭くかつ積極的に変化しない状
態になるのを解消し、中空糸膜の外側を流れる血液又は
酸素含有ガスの流れに乱流を起こさせ、これによってガ
ス交換能を高め、更に、例えば中空糸膜の膜壁を介し、
内側に酸素含有ガスが吹送され、外側を血液が流れるも
のである場合に、該間隙におけるエアートラップの発生
を抑制し、血液の流れを良好にし、血液と酸素含有ガス
との接触をなす有効膜面積を十分確保し、ガス交換能を
向上させる等、該間隙における流体の流れを円滑にし、
膜壁を介して流体が接触し得る有効膜面積を積極的かつ
十分に確保し、流体処理能を向上させる中空糸膜及びそ
の中空糸膜型人工肺を提供するにある。
The present invention was also made in view of such problems,
The purpose is to crimp the hollow fiber membranes under conditions different from those proposed above, so that when the hollow fiber membranes are bundled, the gaps between each hollow fiber membrane are narrow and do not change actively. This method eliminates the turbulence in the flow of blood or oxygen-containing gas flowing outside the hollow fiber membrane, thereby increasing the gas exchange capacity, and further, for example, through the membrane wall of the hollow fiber membrane,
When oxygen-containing gas is blown inside and blood flows outside, an effective membrane that suppresses the generation of air traps in the gap, improves blood flow, and makes contact between blood and oxygen-containing gas. Smooth fluid flow in the gap by ensuring sufficient area and improving gas exchange ability,
It is an object of the present invention to provide a hollow fiber membrane and a hollow fiber membrane type oxygenator using the hollow fiber membrane, which actively and sufficiently secures an effective membrane area that can be contacted with fluid through the membrane wall, and improves fluid handling capacity.

[課題を解決するための手段] 上記従来の課題を解決するために、本発明にあっては、
膜壁を有し、該膜壁を介して5その内側又は外側のいず
れか一方の被処理流体と他方の処理流体との間で前記被
処理流体が流体処理される疎水性の多孔質中空糸膜にお
いて、捲縮率を0.1〜0.7%の範囲に設定した構成
を特徴とする中空糸膜を提案するものである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention has the following features:
A hydrophobic porous hollow fiber having a membrane wall, through which the fluid to be treated is fluid-treated between either one of the fluid to be treated and the other fluid to be treated on the inside or outside of the membrane wall. The present invention proposes a hollow fiber membrane characterized by a structure in which the crimp rate is set in the range of 0.1 to 0.7%.

上記構成においては、前記捲縮率が0.3〜0.5%で
ある構成のものが提案される。
In the above structure, a structure in which the crimp rate is 0.3 to 0.5% is proposed.

また、上記構成においては、前記中空糸膜の内径を10
0〜500μm、肉厚を27〜80μmとしてなる構成
のものが提案される。
Further, in the above configuration, the inner diameter of the hollow fiber membrane is 10
A structure having a thickness of 0 to 500 μm and a wall thickness of 27 to 80 μm is proposed.

更に、本発明は、前記被処理流体を血液とし、前記処理
流体を酸素含有ガスとし、上記中空糸膜の前記膜壁を介
してガス交換をなすとともに、前記中空糸膜がハウジン
グ内;二複数、束ねられ、収納されてなる中空糸膜型人
工肺を提案するものである。
Further, in the present invention, the fluid to be treated is blood, the fluid to be treated is an oxygen-containing gas, gas exchange is performed through the membrane wall of the hollow fiber membrane, and the hollow fiber membrane is located within the housing; We propose a hollow fiber membrane oxygenator that is bundled and housed.

上記構成により、本発明に係る中空糸膜及びこれを用い
た中空糸膜型人工肺にあっては、疎水性の多孔質中空糸
膜を捲縮し、捲縮率を0.1〜0.7%の範囲に設定し
ているので、中空糸膜と中空糸膜との間には、間隙が十
分大きくかつ中空糸膜の軸方向に沿って積極的に変化し
て形成され、例えば、中空糸膜の内側に処理流体とじて
酸素含有ガスを吹送し、外側に被処理流体として血液を
循環、流通させた場合には、該各中学糸膜の間隙が適度
に生じるので、良好な血液の流通がもたらされ、かつ血
液と酸素含有ガスとの中空糸膜の膜壁を介する接触が中
空糸膜の全面にわたって均一になされ、イ1効膜面積も
十分確保され、更に血液の流れに乱流を生じさせるので
、高いガス交換能が得られる等、該間隙における被処理
流体又は処理流体の流れが円滑になり、中空糸膜の膜壁
を介して流体が接触し得る有効膜面積が積極的かつ+“
分に確保され、流体処理能の向上が可能となる。
With the above configuration, in the hollow fiber membrane according to the present invention and the hollow fiber membrane oxygenator using the same, the hydrophobic porous hollow fiber membrane is crimped, and the crimp rate is 0.1 to 0. Since the gap is set in the range of 7%, the gap between the hollow fiber membranes is sufficiently large and actively changes along the axial direction of the hollow fiber membrane. When oxygen-containing gas is blown into the inside of the thread membrane as a treatment fluid, and blood is circulated and distributed as a fluid to be treated on the outside, appropriate gaps are created between the respective middle school thread membranes, so that good blood flow can be achieved. The blood and oxygen-containing gas are brought into contact with each other through the membrane wall of the hollow fiber membrane, and the contact between the blood and the oxygen-containing gas is made uniform over the entire surface of the hollow fiber membrane. As a result, a high gas exchange capacity is obtained, and the flow of the fluid to be treated or the fluid to be treated in the gap becomes smooth, and the effective membrane area that can be contacted by the fluid through the membrane wall of the hollow fiber membrane is increased. target+“
This makes it possible to improve fluid handling capacity.

し実施例] 以下、本発明の中空糸膜として、人工肺用のものを説明
する。
Examples] Hereinafter, a hollow fiber membrane of the present invention for use in an artificial lung will be described.

本実施例に係る中空糸膜は、その内径が100〜500
um、好ましくは、150〜300μm、肉厚が27〜
80μmで、好ましくは、40〜60μmである疎水性
の多孔質中空糸膜である。
The hollow fiber membrane according to this example has an inner diameter of 100 to 500.
um, preferably 150-300 μm, wall thickness 27-300 μm
It is a hydrophobic porous hollow fiber membrane having a diameter of 80 μm, preferably 40 to 60 μm.

この多孔質中空糸膜には、捲縮が付与されている。この
捲縮を付与するにあたっては、中空糸膜が延伸される。
This porous hollow fiber membrane is crimped. In imparting this crimp, the hollow fiber membrane is stretched.

この延伸は、中空糸膜の破断強度の向上を図るとともに
、捲縮を付与するのに適正収縮率を得るためであり、捲
縮射熱収縮率は6±2%(75°Cで30分間オーブン
処理後の収縮・V、)が良好である。
This stretching is done to improve the breaking strength of the hollow fiber membrane and to obtain an appropriate shrinkage rate for imparting crimps. Shrinkage/V,) after oven treatment is good.

捲縮にあたって、その捲縮率は、0.1〜0.7%の範
囲に設定されている。捲縮率が0.1%未満であると、
中空糸膜を、例えば人工肺中に組入れた際、中空糸と中
空糸との間隙が十分とれず、中空糸膜の外側を流れる流
体に乱流を発生させるまでには至らない。逆に捲縮率が
0.7%を越えると、例えば中空糸膜を用いて人工肺を
作成した場合に、人工肺が必要以上に大型化する虞があ
り、いずれも好ましくない。より好ましくは0.3〜0
.5%の範囲である。
In crimp, the crimp rate is set in the range of 0.1 to 0.7%. When the crimp rate is less than 0.1%,
When a hollow fiber membrane is incorporated into an oxygenator, for example, the gaps between the hollow fibers are insufficient to create turbulence in the fluid flowing outside the hollow fiber membrane. On the other hand, if the crimp rate exceeds 0.7%, for example, when an oxygenator is created using a hollow fiber membrane, there is a risk that the oxygenator will be larger than necessary, which is not preferable. More preferably 0.3-0
.. It is in the range of 5%.

上記中空糸膜は、次に示すような方法で製造することが
できる。例えば、紡糸された後、延伸法あるいは相分離
法などにより多孔質とされた中空糸膜を、適当なボビン
等にクロス巻きに捲き取って捲縮を付与し、その後、適
当な条件下、例えば60℃で24時間程度、熱処理して
捲縮状態を固定することにより得られる。この際、捲縮
の付与における熱固定が必要以上に行なわれ、膜構造が
変化し、例えば、捲縮を与える前の状態より空孔率が2
0%以上も低下するようなものにあっては、捲縮による
効果が発揮されず、また逆に熱固定が不十分に行なわれ
、人工肺の組立て時において所望の捲縮状態を保持して
いるのにかかわらず、その後の残留応力により中空糸膜
に張力がかかり捲縮が失われるようなものであってもそ
の効果が得られない。
The hollow fiber membrane described above can be manufactured by the method shown below. For example, after being spun, a hollow fiber membrane made porous by a drawing method or a phase separation method is wound cross-wound around a suitable bobbin or the like to impart crimps, and then crimped under suitable conditions, e.g. It is obtained by heat treatment at 60° C. for about 24 hours to fix the crimp state. At this time, the heat setting during the application of crimp is performed more than necessary, and the membrane structure changes, for example, the porosity becomes 2
If the crimp decreases by more than 0%, the effect of crimp will not be exhibited, and conversely, heat fixation will be insufficient, making it difficult to maintain the desired crimp state when assembling the oxygenator. Even if the crimp is lost due to tension applied to the hollow fiber membrane due to the subsequent residual stress, the effect cannot be obtained.

更に本発明の多孔質中空糸膜にあっては、空孔率が30
〜50%、好ましくは37〜43%であり、また酸素ガ
スフラックスがl 5000〜35000 E /mi
n・m”0 、 5 atm 、好ましくは22000
〜b あると、人工肺用として用いた場合、より一層優れた効
果が期待できるものとなる°。
Furthermore, in the porous hollow fiber membrane of the present invention, the porosity is 30
-50%, preferably 37-43%, and the oxygen gas flux is l5000-35000E/mi
n・m”0, 5 atm, preferably 22000
~b When used for an artificial lung, even more excellent effects can be expected.

中空糸膜の素材としては、例えばポリプロピレン、ポリ
エチレンなどのポリオレフィンやポリテトラフルオロエ
チレンなどの疎水性合成樹脂を用いることができ、その
内でも、機械的強度、耐熱性、加工性などの諸物性に優
れ、また多孔性の付与が容易であるなどの点からポリプ
ロピレンが特に良好である。
As the material for the hollow fiber membrane, for example, polyolefins such as polypropylene and polyethylene, and hydrophobic synthetic resins such as polytetrafluoroethylene can be used. Polypropylene is particularly suitable because it has excellent properties and is easy to impart porosity.

次に、上記中空糸膜を用いた中空糸膜型人工肺を図面に
基づき説明する。
Next, a hollow fiber membrane oxygenator using the above hollow fiber membrane will be explained based on the drawings.

第1図は、その中空糸膜型人工肺の第1の実施例であり
、中空糸膜6の内側に被処理流体として血液を循環、流
通させ、中空糸膜6の外側に処理流体として酸素含有ガ
スを吹送する、いわゆる内部潅流型のものである。この
中空糸膜型人工肺lは、ハウジング2を具備してなり、
このハウジング2は、筒状本体3とその両端部に形成さ
れた環状突起付き拡径部4,5とより一体的に構成され
ている。ハウジング2内には、複数の、例えば1000
0〜60000本の多孔質中空糸膜6がハウジング2の
長平方向に沿って中空糸膜束13として束ねられ、収納
されている。この中空糸膜6の両端部は、取付はカバー
4.5内において各中空糸膜6の開[1が閉塞されない
状態で隔壁7゜8により液密に支持されている。この隔
壁7゜8により、多孔質中空糸I!!26の外周面と上
記ハウジング2の内面との間にはガス室9が形成されて
いる。上記取付はカバー4.5の内、一方の取付はカバ
ー4には酸素含有ガスを供給する酸素含有ガス導入し1
)Oが設けられており、他方の取付はカバー5には酸素
含有ガスを排出する酸素含有ガス導出口1)が設けられ
ている。
FIG. 1 shows a first embodiment of the hollow fiber membrane type oxygenator, in which blood is circulated and distributed as the fluid to be treated inside the hollow fiber membrane 6, and oxygen is circulated as the fluid to be treated outside the membrane 6. It is a so-called internal perfusion type that blows the gas contained therein. This hollow fiber membrane oxygenator l includes a housing 2,
The housing 2 is integrally formed with a cylindrical main body 3 and enlarged diameter portions 4 and 5 with annular projections formed at both ends thereof. Inside the housing 2, a plurality of, for example 1000
0 to 60,000 porous hollow fiber membranes 6 are bundled together as a hollow fiber membrane bundle 13 along the longitudinal direction of the housing 2 and housed. Both ends of the hollow fiber membranes 6 are mounted within the cover 4.5 and supported in a liquid-tight manner by partition walls 7.8 with the openings 1 of each hollow fiber membrane 6 not being closed. This partition wall 7°8 allows the porous hollow fiber I! ! A gas chamber 9 is formed between the outer peripheral surface of the housing 26 and the inner surface of the housing 2. In the above installation, one of the covers 4 and 5 is installed, and the cover 4 has an oxygen-containing gas introduced to supply the oxygen-containing gas.
)O is provided, and the other attachment is provided in the cover 5 with an oxygen-containing gas outlet 1) for discharging oxygen-containing gas.

なお、中空糸膜6の充填率にあっては、筒状本体3内の
中空糸膜束13の中央部における充填率へが約55〜6
5%であり、中空系束13の両端、−)より隔壁7.8
の外面における充填率Bが約40〜50%であれば良好
であり、充填率Aが57〜63%、充填率Bが43〜4
7%であれば特に好ましい。
In addition, regarding the filling rate of the hollow fiber membrane 6, the filling rate at the center of the hollow fiber membrane bundle 13 in the cylindrical body 3 is about 55 to 6.
5%, and the partition wall 7.8 from both ends of the hollow system bundle 13, -)
It is good if the filling rate B on the outer surface of is about 40 to 50%, the filling rate A is 57 to 63%, and the filling rate B is 43 to 4.
Particularly preferred is 7%.

なお、隔壁7.8は、極性の高い高分子ボッディング材
、例えば、ポリウレタン、シリコン、エポキシ樹脂等を
ハウジング2の両端内壁面に遠心注入法を利用して流し
込み、硬化させることにより得られる。
Note that the partition wall 7.8 is obtained by pouring a highly polar polymer bodding material such as polyurethane, silicone, epoxy resin, etc. onto the inner wall surfaces of both ends of the housing 2 using a centrifugal injection method and hardening the material.

一方の隔壁7の外面は、略円錐形状の血液ボートカバー
15で覆われている。この血液ボートカバー】5は、そ
の内周面に形成された環状突起15ン1と前記取付はカ
バー4の外周面に形成された環状突起4aとが相互に係
合することにより、取付はカバー4に液密に嵌合され、
その内部には、血液ボート領域23が形成されるように
なっている。血液ボートカバー15には、血液導出口2
6が形成されている。
The outer surface of one of the partition walls 7 is covered with a blood boat cover 15 having a substantially conical shape. The blood boat cover 5 is attached to the cover by an annular protrusion 15 formed on the inner circumferential surface thereof and an annular protrusion 4a formed on the outer circumferential surface of the cover 4, which engage with each other. 4 is fluid-tightly fitted,
A blood boat region 23 is formed inside the blood vessel. The blood boat cover 15 has a blood outlet 2.
6 is formed.

他方の隔壁8には、熱交換器I2が接続されている。熱
交換1312は、ハウジング13を具備してなり、該ハ
ウジング13は、筒状本体13aと嵌合用部材13bと
よりなっている。筒状本体13a内には、複数本のステ
ンレスバイブ14が配設され、それら両端開口部が閉塞
されない状態で隔壁17.18を介して液密に支持され
ている。また、筒状本体13aの周側部には、冷温水流
通口19.20が設けられ、筒状本体13a内に冷水ま
たは温水の流路が形成され、これにより、バイブ14内
を流通する血液が所望の温度に調#、竺されるようにな
っている。前記隔壁8に対して反対側に位置する隔壁1
8の外面は、前記血液ボートカバー15と同様の血液ボ
ートカバー16でてわれている。図中、24は、血液ボ
ート領域、25は血液導入口である。嵌合用部材13b
は、拡径部5に対し、前記血液ボートカバー15と同様
に液密に嵌合され、隔壁17゜5間に血液貯留空間27
が形成されている。
A heat exchanger I2 is connected to the other partition wall 8. The heat exchanger 1312 includes a housing 13, and the housing 13 includes a cylindrical main body 13a and a fitting member 13b. A plurality of stainless steel vibrators 14 are disposed within the cylindrical main body 13a, and are supported in a liquid-tight manner via partition walls 17 and 18 with openings at both ends thereof not being closed. In addition, cold and hot water flow ports 19 and 20 are provided on the circumferential side of the cylindrical body 13a, and a cold water or hot water flow path is formed in the cylindrical body 13a. The temperature is adjusted to the desired temperature. A partition wall 1 located on the opposite side to the partition wall 8
The outer surface of 8 is covered with a blood boat cover 16 similar to the blood boat cover 15 described above. In the figure, 24 is a blood boat area, and 25 is a blood introduction port. Fitting member 13b
is liquid-tightly fitted to the enlarged diameter portion 5 in the same way as the blood boat cover 15, and a blood storage space 27 is formed between the partition wall 17°5.
is formed.

本実施例では、上記構成により、中空糸膜と中空糸膜と
の間には、間隙が十分太き(かつ中空糸膜の軸方向に沿
って積極的に変化して形成される。従って、ガス室9内
に吹送され、処理流体をなす酸素含有ガスは、該間隙を
良好に流通する。
In this example, with the above configuration, the gap is formed between the hollow fiber membranes to be sufficiently large (and to change actively along the axial direction of the hollow fiber membranes. Therefore, The oxygen-containing gas that is blown into the gas chamber 9 and forms the processing fluid flows well through the gap.

また、この酸素含有ガスと、血液貯留空間27より中空
糸t!A 6の内側を流れ、被処理流体をなす血液との
、中空糸膜の膜壁を介する接触が中空糸膜6の全面にわ
たって均一になされ、有効膜面積も十分確保される。そ
の結果、高いガス交換能を得ることができ、被処理流体
の流体処理能の向上が可能となる。
In addition, this oxygen-containing gas and the hollow fiber t! from the blood storage space 27! Contact with the blood flowing inside the A 6 and forming the fluid to be processed through the membrane wall of the hollow fiber membrane is made uniform over the entire surface of the hollow fiber membrane 6, and a sufficient effective membrane area is ensured. As a result, high gas exchange performance can be obtained, and the fluid processing performance of the fluid to be treated can be improved.

次に、本発明の中空糸膜型人工肺の第2の実施例として
、中空糸膜の外側に被処理流体として血液を循環し、中
空糸膜の内側に処理流体として酸素含有ガスを吹送する
、いわゆる外部潅流型のものを第2図に基づき説明する
。本実施例に係る中空糸膜型人工肺31は、ハウジング
32と、その両端部に設けられた酸素含有ガスボートカ
バー34.35とより構成されている。ハウジング32
内には、前記実施例と同様に、隔壁7,8を介して中空
糸膜6が支持されている。その隔壁7.8により、ハウ
ジング32内には、血液室39が形成され、酸素含有ガ
スボートカバ34.35内には、酸素含有ガスボート領
域34a、35aが形成されるようになっている。
Next, as a second embodiment of the hollow fiber membrane type oxygenator of the present invention, blood is circulated as a fluid to be treated outside the hollow fiber membrane, and oxygen-containing gas is blown as a fluid to be treated inside the hollow fiber membrane. The so-called external perfusion type will be explained based on FIG. The hollow fiber membrane type oxygenator 31 according to this embodiment is composed of a housing 32 and oxygen-containing gas boat covers 34 and 35 provided at both ends of the housing 32. Housing 32
A hollow fiber membrane 6 is supported therein via partition walls 7 and 8, as in the previous embodiment. Due to the partition 7.8, a blood chamber 39 is formed in the housing 32, and oxygen-containing gas boat regions 34a, 35a are formed in the oxygen-containing gas boat cover 34.35.

ハウジング32には血液を供給する血液導入口45及び
血液を排出する血液導出046がそれぞれ設けられてい
る。酸素含有ガスポートカバ−34.35にはそれぞれ
酸素含有ガス導入[]40および酸素含有導出口41が
形成されている。
The housing 32 is provided with a blood inlet 45 for supplying blood and a blood outlet 046 for discharging blood. An oxygen-containing gas inlet [ ] 40 and an oxygen-containing outlet 41 are formed in the oxygen-containing gas port covers 34 and 35, respectively.

本実施例にあっては、上記構成により、各中空糸膜6間
には、その間隙が十分大きくかつ中空糸膜6の軸方向に
沿って積極的に変化して形成されているので、ブライミ
ング時に除去されなかった気泡か該間隙に留り難くなり
、従って、いわゆるエアートラップされ難くなる。これ
により、該間隙における血液の流通が良好となるととも
に、エアートラップされた気泡の塊によって生ずる、血
液と酸素含有ガスとの中空糸膜6の膜壁を介する接触の
阻害が解消され、従って有効膜面積が十分確保される。
In this embodiment, with the above configuration, the gaps between the hollow fiber membranes 6 are formed to be sufficiently large and actively change along the axial direction of the hollow fiber membranes 6, so that briming is prevented. At times, it becomes difficult for air bubbles that are not removed to remain in the gap, and thus become difficult to become so-called air traps. This improves the blood circulation in the gap and eliminates the obstruction of contact between the blood and oxygen-containing gas through the membrane wall of the hollow fiber membrane 6 caused by the air-trapped mass of air bubbles. Sufficient membrane area is ensured.

また、血液の流れに乱流が生じ、ガス交換能の向上が果
される。
Further, turbulence occurs in the flow of blood, and gas exchange performance is improved.

その他の作用、効果は前述の実施例と同様であ0 以上に、実施例を挙げて本発明を説明したが本発明は上
記実施例に限定されるものではなく、発明の要旨を変更
しない範囲で種々変更可能である。
Other functions and effects are the same as those of the above-mentioned embodiments. Although the present invention has been described above with reference to embodiments, the present invention is not limited to the above-mentioned embodiments, and the gist of the invention is not changed. Various changes are possible.

次に、本発明者は、上記実施例の効果を確認するために
以下のような実験を行なった。
Next, the inventor conducted the following experiment in order to confirm the effects of the above embodiment.

(実験例) 本実験例に係る多孔質中空糸膜を次に示す方法で製造し
た。
(Experimental Example) A porous hollow fiber membrane according to this experimental example was manufactured by the method shown below.

(目分離法に属するミクロ相分離法により形成された平
均細孔半径約500人の微細孔を有する、内径180〜
220μm、肉厚的50μmのポリプロピレン製多孔質
中空糸膜を、直径97mmのボビンにクロス巻きに捲き
取り、60℃で24時間オーブン中で熱処理することに
より捲縮をかけた。ここにおいて捲縮率は第1表に示す
とおりである。
(The average pore radius formed by the micro phase separation method, which belongs to the eye separation method, is approximately 500 micropores, with an inner diameter of 180 ~
A porous hollow fiber membrane made of polypropylene having a diameter of 220 μm and a wall thickness of 50 μm was wound crosswise around a bobbin having a diameter of 97 mm, and crimped by heat treatment in an oven at 60° C. for 24 hours. Here, the crimp ratio is as shown in Table 1.

このようにして得られた中空糸膜6を用い、前述の第1
の実施例に係る中空糸膜型人工肺1と同様な人工肺(テ
ルモ(株)製、CX−II)I八を実施例1として、第
2の実施例に係る中空糸膜を人工肺31と同様な人工肺
(テルモ(株)’l、CX−E)IBを実施例2として
それぞれ作成し、酸素ガス添加能及び炭酸ガス排除能を
計測した。その結果を第1表に示す。
Using the hollow fiber membrane 6 obtained in this way, the first
An oxygenator (manufactured by Terumo Corporation, CX-II) I8 similar to the hollow fiber membrane oxygenator 1 according to Example 1 is used as Example 1, and a hollow fiber membrane according to the second example is used as oxygenator 31. An artificial lung (Terumo Corporation'1, CX-E) IB similar to the above was prepared as Example 2, and the oxygen gas addition ability and carbon dioxide removal ability were measured. The results are shown in Table 1.

(比較例) 上記実験例と比較するために、延伸法により軸方向に延
伸されて形成された平均細孔半径684人の微細孔を有
する、内径200μm、肉厚21.5μmのポリプロピ
レン製多孔質中空糸膜を、捲縮させることな(そのまま
用いて、前述の実験例と同様に人工肺を作成し、人工肺
IAに対応するものを比較例1として人工肺2A、人工
肺IBに対応するものを比較例2として人工肺2Bとし
、酸素ガス添加能及び炭酸ガス排除能を計測した。その
結果を第1表に示す。
(Comparative example) In order to compare with the above experimental example, a polypropylene porous material with an inner diameter of 200 μm and a wall thickness of 21.5 μm, having an average pore radius of 684 micropores formed by stretching in the axial direction by a stretching method. The hollow fiber membrane was used without crimping (using it as it was) to create an oxygenator in the same manner as in the above experimental example, and the one corresponding to oxygenator IA was used as comparative example 1, and the one corresponding to oxygenator 2A and oxygenator IB was used. The artificial lung 2B was used as Comparative Example 2, and the oxygen gas addition ability and carbon dioxide removal ability were measured.The results are shown in Table 1.

なお、本明細書中における各用語の定義および測定方法
は次の通りである。
Note that the definitions and measurement methods of each term in this specification are as follows.

色位−里N 中空糸膜を任意に10本抜き取り、鋭利なカミソリで2
〜3mm程度の長さに輪切りにする。万能;λ死機にコ
ンプロファイルプロジェクタ−V−12)でその断面を
映し出し、計測器にコンデジタルカウンターCM−6S
)でその外径d1、内径d2を測定し、肉厚tをt=d
 + −d 2により算出し、10本の平均値とした。
Color position - Sato N Pull out 10 hollow fiber membranes arbitrarily and use a sharp razor to remove 10 hollow fiber membranes.
Slice into rounds about ~3mm long. Versatile: Project the cross section on the λ dead machine with a ConProfile projector-V-12), and use a ConDigital counter CM-6S as a measuring instrument.
), measure its outer diameter d1 and inner diameter d2, and calculate the wall thickness t as t=d
+ - d 2 was calculated, and the average value of 10 pieces was taken as the average value.

空孔率(%) 中空糸膜を約2gとり、鋭利なカミソリにより5mm以
下の輪切りにする。得られた試料を水銀ポロシメーター
(カルロエルバ社65A型)にて1000 kg/cm
”まで圧力をかけ全細孔量(単位重さ当りの中空糸の細
孔体積)により空孔率を得る。
Porosity (%) Take about 2 g of hollow fiber membrane and cut into rounds of 5 mm or less using a sharp razor. The obtained sample was measured at 1000 kg/cm using a mercury porosimeter (Carlo Erba Model 65A).
” to obtain the porosity from the total pore volume (pore volume of the hollow fiber per unit weight).

A境圭 人工肺は、通常、使用前に滅菌されるので、その滅菌後
、該人工肺から取り出した中空糸膜について測定を行な
った。
Since the A-Kei oxygenator is usually sterilized before use, measurements were performed on the hollow fiber membrane taken out from the oxygenator after sterilization.

滅菌は、エチレンオキサイドガス滅菌により、その条件
は、次の通りである。すなわち、E OG/CO□:2
0/80(%)、温度:55〜65℃、湿度:50〜8
0%RH1圧カニ0.8〜1 、 2 kg/cm2、
エチレンオキサイド濃度:550〜150mg/E、作
用時間=150〜210分である。
Sterilization was performed by ethylene oxide gas sterilization under the following conditions. That is, E OG/CO□:2
0/80 (%), temperature: 55-65℃, humidity: 50-8
0%RH 1 pressure crab 0.8-1, 2 kg/cm2,
Ethylene oxide concentration: 550-150 mg/E, action time = 150-210 minutes.

その取出した中空糸膜のサンプル長さとして、人工肺I
A、2Aのものにあっては、70mm、人工肺IB、2
Bのものにあっては、100mmとした。
As the sample length of the hollow fiber membrane taken out, the artificial lung I
For A, 2A, 70mm, artificial lung IB, 2
For B, the length was 100 mm.

測定力C去としてはJIS L 10746.1).2
の捲縮率の測定方法を参考にした。
For measuring force C, JIS L 10746.1). 2
The method for measuring the crimp rate was used as a reference.

具体的には、試験機として、島津製作所製。Specifically, the test machine was manufactured by Shimadzu Corporation.

オートグラフ、 AGS−100Aの引張試験機を用い
、それによる引張速度としては、1mm/minとした
An Autograph AGS-100A tensile tester was used, and the tensile speed was 1 mm/min.

まず、上記サンプル長さの中空糸膜に対し、本試験機に
より1gの荷重をかけ、その際の荷重をaとし、次に、
10gの荷重をかけたときの長さをbとし、ストログラ
フのザイクル試験モードにより、Igと10gの荷重間
を3回、上記引張速度でサイクル試験を行ない、3回の
平均値をもって、a、bの各個とした。このa、bの測
定値から、次に示す計算式により捲縮率を得た。
First, a load of 1 g is applied to the hollow fiber membrane of the above sample length using this tester, and the load at that time is set as a, and then,
The length when a load of 10 g is applied is b, and a cycle test is performed between the Ig and 10 g loads three times at the above tension speed using the strograph cycle test mode, and the average value of the three times is a, b. From the measured values of a and b, the crimp ratio was obtained using the following formula.

捲縮率(%) = (b−a) /aX 100酸素ガ
スフラツクス 多孔質中空糸膜で有効長さ23cm、有効膜面積0.1
m2のものを作成し、片方の端を閉じた後、酸素で中空
糸膜内部に0.5気圧の圧力をかけ、定常状態になった
ときの酸素ガスの流量を流7′計(草野理化学機器製作
所、フロートメーター)により読み取った値とした。
Crimping rate (%) = (ba-a) /aX 100 oxygen gas flux porous hollow fiber membrane, effective length 23 cm, effective membrane area 0.1
After making one m2 and closing one end, apply a pressure of 0.5 atm inside the hollow fiber membrane with oxygen, and measure the flow rate of oxygen gas when it reaches a steady state using a flow meter (Kusano Rikagaku). The value was taken as the value read by a float meter (equipment manufacturer, float meter).

酸素ガス添加能、炭酸ガス排除 (人工肺IA及び2A) 中空糸膜6の有効長さを80mm、膜面積を3.0m2
とし、中空糸膜6の内側にウシ血液(標準静脈血)をシ
ングルパス(Single Path )で527m1
nの流量で流し、中空糸膜6の外側へ純酸素を5127
m1nの流量で流し、人工肺入口および出口のウシ血液
のpH5炭酸ガス分圧(PCO2)、酸素ガス分圧(P
O2)を血液ガス測定装置(Radiometer社製
、BGA3型)により測定し、人工肺入口と人工肺出口
との分圧差を算出した。なお人工肺モジュール仕様の詳
細は第2表に示す。
Oxygen gas addition ability, carbon dioxide gas removal (oxygenator IA and 2A) Effective length of hollow fiber membrane 6 is 80 mm, membrane area is 3.0 m2
Then, 527 ml of bovine blood (standard venous blood) was poured inside the hollow fiber membrane 6 in a single path.
Pure oxygen is supplied to the outside of the hollow fiber membrane 6 at a flow rate of 5127
The pH of bovine blood at the inlet and outlet of the oxygenator was 5 carbon dioxide partial pressure (PCO2), oxygen gas partial pressure (P
O2) was measured using a blood gas measuring device (manufactured by Radiometer, BGA type 3), and the partial pressure difference between the oxygenator inlet and the oxygenator outlet was calculated. The details of the oxygenator module specifications are shown in Table 2.

(人工肺IB及び2B) 中空糸膜6の有効長さを140mm、膜面積を5.0m
2とし、中空糸膜6の外側にウシ血液(標準静脈血)を
シングルパス(Single Path )で5 (2
/minの流量で流し、中空糸膜6の内側へ純酸素を5
β/minの流量で流し、人工肺入口および出口のウシ
血液のp H1炭酸ガス分圧(PCO□)、酸素ガス分
圧(PO2)を血液ガス測定装置(Radiomete
r社製、BGAa型)により測定し、人工肺入口と人工
肺出口との分圧差を算出した。なお人工肺モジュール仕
様の詳細は第2表に示す。
(Artificial lungs IB and 2B) The effective length of the hollow fiber membrane 6 is 140 mm, and the membrane area is 5.0 m.
2, and a single pass of bovine blood (standard venous blood) to the outside of the hollow fiber membrane 6 to
/min to supply pure oxygen to the inside of the hollow fiber membrane 6.
The pH of bovine blood at the inlet and outlet of the oxygenator was measured at a flow rate of β/min.
The partial pressure difference between the oxygenator inlet and the oxygenator outlet was calculated. The details of the oxygenator module specifications are shown in Table 2.

また、人工肺IA、IB、2A、2Bともに、標準動脈
血の性状は第3表に示す。
In addition, the properties of standard arterial blood for artificial lungs IA, IB, 2A, and 2B are shown in Table 3.

以上の結果、本発明の実施例に係る人工肺IA、IBが
、その内でも特に外部潅流型のものである人工肺IBが
優れたガス交換能を有することが明らかになった。
The above results revealed that among the artificial lungs IA and IB according to the examples of the present invention, especially the external perfusion type artificial lung IB had excellent gas exchange ability.

第1表 第2表 第3表 [発明の効果] 以上、説明したように本発明に係る中空糸膜及びこれを
用いた中空糸膜型人工肺にあっては、疎水性の多孔質中
空糸膜を捲縮し、捲縮率を0.1〜0.7%の範囲に設
定しているので、中空糸膜と中空糸膜との間には、間隙
が十分大きくかつ中空糸膜の軸方向に沿って積極的に変
化して形成され、例えば、中空糸膜の内側に処理流体と
して酸素含有ガスを吹送し、外側に被処理流体として血
液を循環、流通させた場合には、該各中空糸膜の間隙が
適度に生じるので、良好な血液の流通がもたらされ、か
つ血液と酸素含有ガスとの中空糸膜の膜壁を介する接触
が中空糸膜の全面にわたって均一になされ、有効膜面積
も十分確保され、更に血液の流れに乱流を生じさせるの
で高いガス交換能が得られる等、該間隙における被処理
流体又は処理流体の流れが円滑になり、中空糸膜の膜壁
を介して流体が接触し得る有効膜面積が積極的かつ十分
に確保され、流体処理能の向上が可能となる等、種々の
効果を奏する。
Table 1 Table 2 Table 3 [Effects of the Invention] As explained above, in the hollow fiber membrane according to the present invention and the hollow fiber membrane oxygenator using the same, the hydrophobic porous hollow fiber Since the membranes are crimped and the crimp rate is set in the range of 0.1 to 0.7%, there is a sufficiently large gap between the hollow fiber membranes and the axis of the hollow fiber membranes. For example, when oxygen-containing gas is blown into the inside of a hollow fiber membrane as a processing fluid and blood is circulated and distributed outside as a fluid to be processed, Appropriate gaps between hollow fiber membranes result in good blood circulation, and contact between blood and oxygen-containing gas through the membrane wall of the hollow fiber membrane is made uniform over the entire surface of the hollow fiber membrane, making it effective. Sufficient membrane area is ensured, and turbulence is created in the flow of blood, resulting in high gas exchange performance.The flow of the fluid to be treated or the fluid to be treated in the gap is smooth, and the membrane wall of the hollow fiber membrane is The effective membrane area that can be contacted by the fluid is positively and sufficiently secured, and various effects such as improvement in fluid processing performance are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る中空糸膜型人工肺の第1の実施例
を示す半縦断正面図、第2図は本発明に係る中空系膜型
人工肺の第2の実施例を示す半縦断正面図である。 ■、31・・・中空糸膜型人工肺 2.32・・・ハウジング 6・・・中空糸膜
FIG. 1 is a semi-longitudinal front view showing a first embodiment of a hollow fiber membrane oxygenator according to the present invention, and FIG. 2 is a semi-longitudinal front view showing a second embodiment of a hollow fiber membrane oxygenator according to the present invention. FIG. ■, 31...Hollow fiber membrane oxygenator 2.32...Housing 6...Hollow fiber membrane

Claims (4)

【特許請求の範囲】[Claims] (1)膜壁を有し、該膜壁を介して、その内側又は外側
のいずれか一方の被処理流体と他方の処理流体との間で
前記被処理流体が流体処理される疎水性の多孔質中空糸
膜において、捲縮率を0.1〜0.7%の範囲に設定し
たことを特徴とする中空糸膜。
(1) Hydrophobic porous pores having a membrane wall, through which the fluid to be treated is treated between either the inside or outside of the fluid to be treated and the other fluid to be treated. A hollow fiber membrane characterized in that the crimp rate is set in the range of 0.1 to 0.7%.
(2)前記捲縮率が0.3〜0.5%である請求項1記
載の中空糸膜。
(2) The hollow fiber membrane according to claim 1, wherein the crimp ratio is 0.3 to 0.5%.
(3)前記中空糸膜の内径を100〜500μm、肉厚
を27〜80μmとしてなる請求項1記載の中空糸膜。
(3) The hollow fiber membrane according to claim 1, wherein the hollow fiber membrane has an inner diameter of 100 to 500 μm and a wall thickness of 27 to 80 μm.
(4)前記被処理流体を血液とし、前記処理流体を酸素
含有ガスとし、請求項1乃至3のいずれか1つに記載の
中空糸膜の前記膜壁を介してガス交換をなすとともに、
前記中空糸膜がハウジング内に、複数、束ねられ、収納
されてなる中空糸膜型人工肺。
(4) The fluid to be treated is blood, the fluid to be treated is oxygen-containing gas, and gas exchange is performed through the membrane wall of the hollow fiber membrane according to any one of claims 1 to 3,
A hollow fiber membrane oxygenator comprising a plurality of the hollow fiber membranes bundled and housed in a housing.
JP1286382A 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same Expired - Fee Related JPH0763592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286382A JPH0763592B2 (en) 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286382A JPH0763592B2 (en) 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Publications (2)

Publication Number Publication Date
JPH03146121A true JPH03146121A (en) 1991-06-21
JPH0763592B2 JPH0763592B2 (en) 1995-07-12

Family

ID=17703672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286382A Expired - Fee Related JPH0763592B2 (en) 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Country Status (1)

Country Link
JP (1) JPH0763592B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488317A (en) * 1977-11-30 1979-07-13 Monsanto Co Hollow fiber for fluid separation
JPS615848A (en) * 1984-02-14 1986-01-11 東洋紡績株式会社 Bobbin for blood dialytic hollow yarn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488317A (en) * 1977-11-30 1979-07-13 Monsanto Co Hollow fiber for fluid separation
JPS615848A (en) * 1984-02-14 1986-01-11 東洋紡績株式会社 Bobbin for blood dialytic hollow yarn

Also Published As

Publication number Publication date
JPH0763592B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
CA1158510A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
JPS6327022B2 (en)
CN113509605B (en) Membrane oxygenator
JPH04669B2 (en)
US5626760A (en) Multifunction device for the treatment of blood
JPH03146121A (en) Hollow fiber membrane and hollow fiber membrane-type breathing simulator using the membrane
JPH0439862B2 (en)
JPH0321189B2 (en)
JPS6237992B2 (en)
JPH03158166A (en) Hollow fiber membrane type fluid treating device
JPH0127794Y2 (en)
JPH01115364A (en) Porous hollow yarn membrane and hollow yarn membrane type/pump oxygenator
JPS6237993B2 (en)
JPH04109956A (en) Hollow yarn type mechanical lung
JPS59108563A (en) Hollow yarn type artifical long
JPH0321188B2 (en)
JPS6131164A (en) Composite hollow yarn membrane type artificial lung
JPS6311972Y2 (en)
JPS59108564A (en) Hollow yarn type artifical long
JPS63267367A (en) Hollow yarn type oxygenator
JP3025973B2 (en) Liquid treatment equipment
JPS60150757A (en) Hollow yarn membrane type artificial lung
JPH03264074A (en) Hollow yarn film type artificial lung and thread distribution
JPH0475664A (en) Model artificial lung
JPS60225572A (en) Hollow yarn membrane type artificial lung

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees