JPS63267367A - Hollow yarn type oxygenator - Google Patents

Hollow yarn type oxygenator

Info

Publication number
JPS63267367A
JPS63267367A JP8222188A JP8222188A JPS63267367A JP S63267367 A JPS63267367 A JP S63267367A JP 8222188 A JP8222188 A JP 8222188A JP 8222188 A JP8222188 A JP 8222188A JP S63267367 A JPS63267367 A JP S63267367A
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
oxygenator
housing
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8222188A
Other languages
Japanese (ja)
Inventor
Hiromichi Fukazawa
深沢 弘道
Takashi Monzen
孝志 門前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP8222188A priority Critical patent/JPS63267367A/en
Publication of JPS63267367A publication Critical patent/JPS63267367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the perfusion of blood due to the head between a patient and an oxygenator and to enhance the oxygen adding capacity of the oxygenator, by constituting the oxygenator so that the inner diameter of the almost central part of a housing in the axial direction thereof is made min. and enlarged from the central part to both end parts thereof to change the outer diameter of a hollow yarn membrane bundle along the inner wall of the housing and the outer diameter of said hollow yarn membrane bundle is minimized at the almost central part thereof. CONSTITUTION:Blood is flowed in an oxygenator 11 from the blood inflow port 27 thereof and impinges against the outer walls of the hollow yarns 16 to flow through an annular blood flow passage 29 and rises through a blood chamber under the gravity given by a head. The inner diameter of the almost central part of a housing 15 receiving an aggregate 17 as a hollow yarn membrane bundle in the axial direction thereof is made min. and gradually enlarged from the almost central part thereof to both end part thereof while the outer diameter of the received aggregate 17 changes along the inner wall of the housing 15 and becomes min. at the almost central part thereof in the axial direction. Therefore, head perfusion is made possible by reducing the pressure drop of the oxygenator 11 and the oxygen adding capacity of the oxygenator 11 can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、体外血液循】において血液中の二酸化炭素を
除去し、血液中に酸素を添加する中空糸型人工肺に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fiber oxygenator that removes carbon dioxide from blood and adds oxygen to blood during extracorporeal blood circulation.

[従来の技術] 従来、脱型人工肺としての中空糸型人工肺は、1気泡型
人工肺に比較して、溶血、蛋白変性、血液凝固、血液付
着等の血液損傷が少なく、機構上生体肺に非掌に近いも
のとして広く認識されている。
[Prior Art] Conventionally, a hollow fiber oxygenator used as a demolding oxygenator causes less blood damage such as hemolysis, protein denaturation, blood coagulation, and blood adhesion than a single-bubble oxygenator, and is mechanically less sensitive to living organisms. It is widely recognized as being non-palmative to the lungs.

第1図は従来の中空糸型人工肺を用いた血液回路であり
、1は人工肺、2はポンプ、3は貯血槽、4は熱交換器
である。すなわち、従来の中空糸型人工肺1を用いる場
合には、ポンプ2を人工肺1より血液の流れ方向に見て
上流側(静脈側)に設けている。
FIG. 1 shows a blood circuit using a conventional hollow fiber oxygenator, where 1 is an oxygenator, 2 is a pump, 3 is a blood storage tank, and 4 is a heat exchanger. That is, when using the conventional hollow fiber oxygenator 1, the pump 2 is provided on the upstream side (venous side) of the oxygenator 1 when viewed in the blood flow direction.

[発明が解決しようとする問題点] ところで、ポンプを中空糸型人工肺よりも血液の流れ方
向に見て下流側に設けず、上記の如く上流側に設ける場
合には以下の■〜■の欠点がある。
[Problems to be Solved by the Invention] By the way, when the pump is not provided on the downstream side of the hollow fiber oxygenator in the blood flow direction, but is provided on the upstream side as described above, the following There are drawbacks.

■人]二肺に向けて強制的に血液を送ると、人下肺の内
圧が高まり、■中空糸膜と中空糸膜束の支持用隔壁材(
ポツティング材)との境界に剥離を生じ、そこから血液
が洩れたり、@血球が破壊されるおそれがある。
■Human] When blood is forcibly sent towards the second lung, the internal pressure of the human lower lung increases, and ■Hollow fiber membrane and bulkhead material for supporting the hollow fiber membrane bundle (
There is a risk of peeling at the boundary with the potting material (potting material), which may cause blood to leak or blood cells to be destroyed.

■人工肺から生体に返血する際には、心臓の拍動に近似
したタイミングで血液を吐出する拍動流ポンプを用いる
ことが生体にストレスを与えないLで好ましい、ところ
が、人工肺の上流側にこのポンプがある場合には、ポン
プを出た時点では拍動があっても、人工肺を通過する際
に拍動が消えてしまい、生体に瀉入する時には拍動がな
くなってしまう。
■When returning blood from the oxygenator to the living body, it is preferable to use a pulsatile flow pump that pumps out blood at a timing similar to the heartbeat as it does not cause stress to the living body. If this pump is on the side, even if there is a pulsation when it leaves the pump, the pulsation disappears when it passes through the oxygenator, and there is no pulsation when it enters the living body.

■ポンプから吐出される血液は新たに気泡を巻き込まな
いようにして生体に返血される必要がある。ところが、
ポンプの下流側に人工肺があると、そこで気泡を巻き込
んでしまうおそれがある。
■The blood discharged from the pump must be returned to the living body without introducing new air bubbles. However,
If an oxygenator is located downstream of the pump, there is a risk of air bubbles being trapped there.

そこで、上記■〜■の欠点を解消するため1人工肺をポ
ンプよりも血液の流れ方向に見て上流側に設け、患者と
人工肺との落差によって人工肺における血液の潅流を達
成する。いわゆる落差潅流を行なうことが望まれる。
Therefore, in order to solve the above-mentioned drawbacks (1) to (2), an oxygenator is provided upstream of the pump in the direction of blood flow, and blood perfusion in the oxygenator is achieved by the head difference between the patient and the oxygenator. It is desirable to perform so-called head perfusion.

ここで、L記落差潅流を行なう場合には、人工肺を含む
回路内圧の圧力損失を低減する必要があり、ハウジング
内に収納される中空糸膜の外側に血液を流し、かつ中空
糸膜の充填密度を低くすることが考えられる。
Here, when performing L head perfusion, it is necessary to reduce the pressure loss in the circuit including the oxygenator, and it is necessary to flow blood outside the hollow fiber membrane housed in the housing and to It is possible to lower the packing density.

しかしながら、中空糸膜の充填密度を低くした場合には
、中空系膜の表面を流れる血液の流れと中空糸膜の表面
から離れた血液の流れとを生じ、ハウジング内を流れる
血液中に酸素の濃度勾配ができ人工肺の酸素加能を低下
する。
However, when the packing density of the hollow fiber membrane is lowered, blood flows on the surface of the hollow fiber membrane and blood flows away from the surface of the hollow fiber membrane, resulting in less oxygen in the blood flowing inside the housing. A concentration gradient is created, reducing the oxygen capacity of the oxygenator.

本発明は、患者と人工肺の落差による血液の潅流すなわ
ち落差潅流を可能とし、かつ人工肺の酸素加能を向上す
ることを目的とする。
An object of the present invention is to enable blood perfusion due to the head difference between a patient and an artificial lung, that is, head perfusion, and to improve the oxygen capacity of the artificial lung.

[問題点を解決するための手段] 本発明は、多数の中空糸膜からなる中空糸膜束が筒状の
ハウジング内に収納されてなり、中空糸膜の内側に酸素
を含むガスが流れ、中空糸膜の外側を血液が泣れる人工
肺であって、前記ハウジングは軸方向の略中央部におけ
る内径を最小とし、その略中央部から両端部にかけての
内径を徐々に拡径して構成し、収納される中空糸膜束の
外径が前記ハウジング内壁に沿って変化し、中空糸膜束
の軸方向の略中央部において最も小さくなるよう構成し
たものである。
[Means for Solving the Problems] The present invention comprises a hollow fiber membrane bundle made up of a large number of hollow fiber membranes, which is housed in a cylindrical housing, and a gas containing oxygen flows inside the hollow fiber membranes. The oxygenator is an oxygenator in which blood flows through the outside of a hollow fiber membrane, and the housing has a minimum inner diameter at a substantially central portion in the axial direction, and gradually increases in inner diameter from the substantially central portion to both ends. The outer diameter of the hollow fiber membrane bundle to be housed changes along the inner wall of the housing, and is configured to be smallest at a substantially central portion in the axial direction of the hollow fiber membrane bundle.

[作用] 本発明によれば、中空糸膜束を収納するハウジングが軸
方向の略中央部における内径を最小とし、その略中央部
から両端部にかけての内径を徐々に拡径して構成され、
収納される中空糸膜束の外径が前記ハウジング内壁に沿
って変化し、中空糸膜束の軸方向の略中央部において最
も小さくなるように構成している。したがって、人工肺
内の圧力損失を低減して落差潅流を可能とし、かつ人工
肺の酸素加能を向上できる。これは以下の理由による。
[Function] According to the present invention, the housing that accommodates the hollow fiber membrane bundle is configured such that the inner diameter at the substantially central portion in the axial direction is the minimum, and the inner diameter gradually increases from the substantially central portion to both ends,
The outer diameter of the hollow fiber membrane bundle to be accommodated changes along the inner wall of the housing, and is configured to be smallest at a substantially central portion in the axial direction of the hollow fiber membrane bundle. Therefore, the pressure loss within the oxygenator can be reduced, head perfusion can be performed, and the oxygen capacity of the oxygenator can be improved. This is due to the following reasons.

中空糸膜束を絞らずに平行に配置すると血液は中空糸膜
に平行に流れ、層流が形成される(第8図(A) 参照
)、すなわち、この場合には、中空糸膜表面を流れる血
液の流速は遅く、中空糸膜表面から距離が離れるほど血
液の流速が速くなり、結果として、血液中に酸素濃度の
勾配ができ好ましくない、このような濃度勾配ができな
いようにするためには中空糸膜束全体の充填密度を高く
する必要がある。しかしながら、充填密度を高くすると
酸素加能は向上するが、圧力損失が増大し、落差潅流を
行なうことができない。
If the hollow fiber membrane bundles are arranged parallel to each other without being squeezed, blood flows parallel to the hollow fiber membranes, forming a laminar flow (see Figure 8 (A)). The flow rate of flowing blood is slow, and the further the distance from the hollow fiber membrane surface, the faster the blood flow rate, resulting in an undesirable oxygen concentration gradient in the blood. It is necessary to increase the packing density of the entire hollow fiber membrane bundle. However, although increasing the packing density improves oxygen addition, pressure loss increases and head perfusion cannot be performed.

そこで本発明の如く、中空糸膜束の中間部を絞ることに
より第8図(B)に示す通り血液の流れが中空糸膜の軸
に対して平行とならず交差するようになる。このため、
血液の流れに乱流が生じ。
Therefore, according to the present invention, by squeezing the middle part of the hollow fiber membrane bundle, the blood flow is not parallel to the axis of the hollow fiber membranes, but intersects them, as shown in FIG. 8(B). For this reason,
Turbulence occurs in the blood flow.

層流が形成されず、酸素加能が向上する。よって酸素加
能を確保する状態下で中空糸膜の充填密度を低くするこ
とができ、結果として圧力損失を低くすることができる
。これにより、ポンプを使わない落差潅流が可能となる
Laminar flow is not formed and oxygen addition is improved. Therefore, the packing density of the hollow fiber membrane can be lowered under conditions that ensure oxygen addition, and as a result, pressure loss can be lowered. This allows head perfusion without the use of a pump.

なお、中空糸膜束の絞り方としてはハウジングの中間部
に第8図(C)に示す如くの突状部を設けるのではなく
、第8図(D)に示す如くハウジング内壁を中間部方向
に漸次縮径するのがよい。
Note that the method of squeezing the hollow fiber membrane bundle is not to provide a protrusion as shown in FIG. 8(C) in the middle part of the housing, but to tighten the inner wall of the housing toward the middle part as shown in FIG. 8(D). It is best to gradually reduce the diameter.

これによりガス交換に寄与しないデッドボリュームを小
さくすることができる。
This makes it possible to reduce the dead volume that does not contribute to gas exchange.

[実施例] 第2図は本発明に係る中空糸型人工肺が適用されてなる
血液回路を示す回路図、第3図は本発明に係る中空糸型
人工肺の一実施例を示す断面図、第4図は第3図のIV
−IV線に沿う断面図、第5図は第3図のV−V線に沿
う断面図、第6図は第3図のVl−Vl線に沿う断面図
である。
[Example] Fig. 2 is a circuit diagram showing a blood circuit to which the hollow fiber oxygenator according to the present invention is applied, and Fig. 3 is a sectional view showing an embodiment of the hollow fiber oxygenator according to the present invention. , Figure 4 is IV of Figure 3.
5 is a sectional view taken along line VV in FIG. 3, and FIG. 6 is a sectional view taken along line Vl-Vl in FIG. 3.

第2図に示すように1本発明が適用される血液回路には
、静脈側から動脈側に向けて1人工肺11、貯血槽12
、ポンプ13、熱交換器14が順次介装される。
As shown in FIG. 2, a blood circuit to which the present invention is applied includes an artificial lung 11, a blood reservoir 12, and a blood storage tank 12 extending from the vein side to the artery side.
, a pump 13, and a heat exchanger 14 are installed in this order.

人工肺11は、第3図ないし第6図に示すように構成さ
れる。すなわち、筒状ハウジング15の内部空間には、
中空糸膜16の集合体(中空糸膜束)17が収納されて
いる。中空糸膜16の両端部は、該両端部を開口させた
状態で隔壁18.19を介してハウジング15に液密に
保持されている。ハウジング15の両端部には、ヘッダ
ー20.21が接合されている。へ−7ダー20の内面
と隔壁18とは、中空糸膜16の内部空間に連通ずるガ
ス波入室22を画威し、ヘッダー20には酸素を含むガ
スのガス流入ポート23が形成されている。ヘッダー2
1の内面と隔壁19とは。
The oxygenator 11 is constructed as shown in FIGS. 3 to 6. That is, in the internal space of the cylindrical housing 15,
An assembly (hollow fiber membrane bundle) 17 of hollow fiber membranes 16 is housed. Both ends of the hollow fiber membrane 16 are held liquid-tightly in the housing 15 via partition walls 18 and 19 with both ends open. Headers 20.21 are joined to both ends of the housing 15. The inner surface of the header 20 and the partition wall 18 define a gas wave inlet chamber 22 that communicates with the inner space of the hollow fiber membrane 16, and the header 20 is formed with a gas inlet port 23 for gas containing oxygen. . header 2
1 and the partition wall 19.

中空糸膜16の内部空間に連通ずるガス流出室24を画
成し、ヘッダー21には酸素を含んでいたガス流出ボー
ト25が形成されている。すなわち1人工肺11にあっ
てはガス流入ボート23かも供給される酸素、空気等の
ガスを中空糸膜16内に流通可能としている。なお、上
記ヘッダー21は特に設けず、ガス流出室24およびガ
ス流出ポート25を形成することなく、中空糸11’2
16から流出するガスを大気中に直接的に放出せしめて
も良い。
A gas outflow chamber 24 communicating with the internal space of the hollow fiber membrane 16 is defined, and a gas outflow boat 25 containing oxygen is formed in the header 21 . That is, in one oxygenator 11, the gas inflow boat 23 also allows gases such as oxygen and air to be supplied into the hollow fiber membrane 16. Note that the header 21 is not particularly provided, and the hollow fiber 11'2 is not provided with the gas outflow chamber 24 and the gas outflow port 25.
The gas flowing out from 16 may be directly released into the atmosphere.

また、隔壁18.19、ハウジング15の内面および中
空糸膜16の外面とは血液室26を画威し、ハウジング
15の両端側には、それぞれ血液室26に連通ずる血液
流入ポート27および血液流出ボート28が形成されて
いる。すなわち、人111+tillにあっては、血液
を血液室26において中空糸膜16の周囲を乱流状態で
流通可能としている。
The partition walls 18 and 19, the inner surface of the housing 15, and the outer surface of the hollow fiber membrane 16 form a blood chamber 26, and a blood inflow port 27 and a blood outflow port are provided at both ends of the housing 15, respectively, and communicate with the blood chamber 26. A boat 28 is formed. That is, for the person 111+till, blood is allowed to flow around the hollow fiber membrane 16 in the blood chamber 26 in a turbulent state.

ここで、上記ハウジング15の血液流入ポート27が設
けられている部分の内面は、ハウジング15の軸方向中
間部分の内面より外方に拡張した内面であって、中空糸
膜16の集合体17の外周部との間に、第5図に示すよ
うな環状の血液流路29を形成し、血液流路29が臨む
集合体17の全周囲から各中空糸膜16に血液を円滑に
分配可能としている。また、上記ハウジング15の拡張
された内面は、集合体17に対して血液流入ポート27
を含む方向に偏心配置され、血液流入ポート27を臨む
血液波路29の流路面積がより大とされている。すなわ
ち、上記血液流路29の流路面積を血液流入ポート27
から遠ざかるに従って漸減し、血液流路29からの血液
の分配量を集合体17の周方向において均一化し、血液
室26内においてハウジング15の軸方向に向かう血液
の流量を、集合体17の周方向に関して均一化可能とし
ている。
Here, the inner surface of the portion of the housing 15 where the blood inflow port 27 is provided is an inner surface that expands outward from the inner surface of the axially intermediate portion of the housing 15, and is An annular blood flow path 29 as shown in FIG. 5 is formed between the outer circumference and the blood flow path 29 so that blood can be smoothly distributed to each hollow fiber membrane 16 from the entire periphery of the assembly 17 facing the blood flow path 29. There is. The expanded inner surface of the housing 15 also provides a blood inflow port 27 for the assembly 17.
The blood wave path 29 facing the blood inflow port 27 has a larger flow path area. That is, the flow path area of the blood flow path 29 is determined by the blood inflow port 27.
The amount of blood distributed from the blood flow path 29 is made uniform in the circumferential direction of the assembly 17, and the flow rate of blood in the axial direction of the housing 15 within the blood chamber 26 is increased in the circumferential direction of the assembly 17. It is assumed that uniformity can be achieved.

また、上記ハウジング15の血液流出ポート28が設け
られている部分の内面は、ハウジング15の中間部分の
内面より外方に拡張した内面であって、中空糸+191
6の集合体17の外周部との間に、第6図に示すように
環状の血液流路30を形成し、各中空糸膜16の回りの
血液を、血液流路30が臨む集合体17の全周囲から、
円滑に血液流出ポート28に向けて導入筒□□□として
いる。
Further, the inner surface of the portion of the housing 15 where the blood outflow port 28 is provided is an inner surface that expands outward from the inner surface of the intermediate portion of the housing 15, and is
As shown in FIG. 6, an annular blood flow channel 30 is formed between the outer circumference of the aggregate 17 of No. 6 and the outer circumference of the aggregate 17 facing the blood flow channel 30. From all around the
The introduction tube □□□ smoothly faces the blood outflow port 28.

また、上記ハウジング15の拡張された内面は。Moreover, the expanded inner surface of the housing 15 is as follows.

集合体17に対して、血液流出ポート28を含む方向に
偏心配置され、血液流出ポート28を臨む血液流路30
の流路面積をより大としている。すなわち、血液波路3
0の流路面積を血液流出ポート28に向けて漸増するこ
とにより、ハウジング15の容積を過大として生体から
の体外血液循環績(プライミング容積)を過多とするこ
となく、生体の安全を確保する状態下で、血液流路30
への血液の導入量を集合体17の周方向において均−化
し、血液室26内においてハウジング15の軸方向に向
かう血液の流1j)を集合体17の周方向に関して均一
化可能としている。
A blood flow path 30 is arranged eccentrically in a direction including the blood outflow port 28 with respect to the aggregate 17 and faces the blood outflow port 28.
The flow path area is made larger. That is, blood wave path 3
By gradually increasing the flow path area of 0 toward the blood outflow port 28, the safety of the living body is ensured without making the volume of the housing 15 too large and causing an excessive amount of extracorporeal blood circulation (priming volume) from the living body. Below, the blood flow path 30
The amount of blood introduced into the blood chamber 26 is equalized in the circumferential direction of the assembly 17, and the blood flow 1j) directed in the axial direction of the housing 15 within the blood chamber 26 can be made uniform in the circumferential direction of the assembly 17.

また、ハウジング15は、軸方向の略中央部における内
径を最小とし、その略中央部から両端部における内径を
除々に拡径するテーパ状とし、集合体17の外径がハウ
ジング15の内壁に沿って変化し、その軸方向の略中央
部において最も小さくなるように絞っている。すなわち
、人工肺11は、ハウジング15が加える集合体17の
絞りにより、集合体17の横断面における血液の流れを
均一化するとともに、集合体17の軸方向における血液
の流速を変化させることによって乱流状態の発生を促進
し、ガス交換効率を良好化可能としている。なお、ハウ
ジング15の内面が前記テ・−パ状とされるとともに、
該テーパ状内面と、血清流路29.30を画成する内面
とが図示されるようなテーパ状接続面によって接続され
ていることから、プライミング時に排出されるべき空気
が、血液室26内に滞溜することなく、ハウジング15
の内面に沿って円滑に移動し、後述する空気抜きポート
31から確実に璋出可能となっている。なお、第7図に
示す人工肺11Aにおけるように、血液室26Aを画成
するハウジング15Aの内面に、血液の流れ方向におい
て不連続に突出する部分P1、P2がある場合には、プ
ライミング時の空気がそれら突出部分P1.P2によっ
て捕捉せしめられ、血液室26Aからの空気の排出を完
全に行なうことができず妥当でない。
Further, the housing 15 has a tapered shape in which the inner diameter is minimized at the substantially central portion in the axial direction, and the inner diameter gradually increases from the substantially central portion to both ends, so that the outer diameter of the aggregate 17 is adjusted along the inner wall of the housing 15. It is narrowed down so that it is smallest at approximately the center in the axial direction. That is, the artificial lung 11 uniformizes the flow of blood in the cross section of the assembly 17 by constricting the assembly 17 applied by the housing 15, and also reduces turbulence by changing the blood flow velocity in the axial direction of the assembly 17. This promotes the generation of a flow state and improves gas exchange efficiency. Note that the inner surface of the housing 15 is formed into the tapered shape, and
Since the tapered inner surface and the inner surface defining the serum flow path 29,30 are connected by a tapered connecting surface as shown, the air to be exhausted during priming can be drawn into the blood chamber 26. Housing 15 without stagnation
It moves smoothly along the inner surface of the air vent, and can be reliably ejected from an air vent port 31, which will be described later. In addition, when the inner surface of the housing 15A defining the blood chamber 26A has portions P1 and P2 that protrude discontinuously in the blood flow direction, as in the oxygenator 11A shown in FIG. Air flows through these protruding portions P1. The air is trapped by P2, making it impossible to completely exhaust the air from the blood chamber 26A.

ここで、中空糸膜16としてはマイクロポーラス膜が用
いられている。すなわち、中空糸膜16は、多孔性ポリ
オレフィン系樹脂、例えばポリプロピレン、ポリエチレ
ンといったものからなり、特にポリプロピレンが好適で
ある。この中空糸膜16は、壁の内部と外部を連通ずる
多数の細孔をイfしている。細孔の内径は約100〜1
000 p−1肉厚は約10〜50用、平均孔径は約2
00〜2000人かつ空孔率は20〜80%である。こ
のマイクロポーラス膜からなる中空糸膜16を用いる場
合には、気体の移動が体積咬として行なわれるため、気
体の移動における膜抵抗が少なくなり、高いガス交換性
能を得ることが可能となる。なお、中空糸膜16は、必
ずしもマイクロポーラス膜によらず、気体の移動を溶解
、拡散によって行なうシリコーン製膜等を用いるもので
あっても良い。
Here, a microporous membrane is used as the hollow fiber membrane 16. That is, the hollow fiber membrane 16 is made of a porous polyolefin resin such as polypropylene or polyethylene, with polypropylene being particularly suitable. This hollow fiber membrane 16 has a large number of pores communicating between the inside and outside of the wall. The inner diameter of the pore is approximately 100-1
000 p-1 wall thickness is about 10-50, average pore diameter is about 2
00-2000 people and the porosity is 20-80%. When using the hollow fiber membrane 16 made of this microporous membrane, gas movement is performed as a volumetric membrane, so the membrane resistance in gas movement is reduced, making it possible to obtain high gas exchange performance. Note that the hollow fiber membrane 16 is not necessarily a microporous membrane, but may be one using a silicone membrane or the like that performs gas movement by dissolution and diffusion.

ところで、前記隔壁18.19は、以下のような遠心注
入法によって形成されている。すなわち、まず、ハウジ
ング15の長さより長い多数の中空糸膜16を用意し、
この両開口端を粘度の高い樹脂によって目止めをした後
、ハウジング15内に並べて位置せしめる。この後、中
空糸膜16の各両端を完全に覆って、ハウジング15の
長手方向に定めた回転中心口りに、ハウジング15の中
心軸を回転の半径方向に置く状態下でハウジング15を
回転させながら、血液流入ボート27゜血液流出ポート
28側から高分子ボッティング材を流入する。流し終っ
て樹脂が硬化すれば、樹脂の外端面部を鋭利な刃物で切
断して中空糸膜16の両開口端を表面に露出させること
によって、隔壁18.19を形成している。したがって
隔壁18.19の血液室26を臨む表面は、第3図およ
び第4図に示すような円筒状凹面となる。
By the way, the partition walls 18 and 19 are formed by the following centrifugal injection method. That is, first, prepare a large number of hollow fiber membranes 16 that are longer than the length of the housing 15,
After sealing both open ends with a highly viscous resin, they are placed side by side in the housing 15. Thereafter, the housing 15 is rotated with both ends of the hollow fiber membrane 16 completely covered and the central axis of the housing 15 placed in the rotation center opening defined in the longitudinal direction of the housing 15 in the radial direction of rotation. At the same time, the polymer botting material is introduced from the blood inflow port 27 and the blood outflow port 28 side. After the resin has hardened after pouring, the outer end surface of the resin is cut with a sharp knife to expose both open ends of the hollow fiber membrane 16 to the surface, thereby forming partition walls 18 and 19. Therefore, the surface of the septum 18, 19 facing the blood chamber 26 becomes a cylindrical concave surface as shown in FIGS. 3 and 4.

なお、上記実施例においては、ハウジング15に、使用
状態下で血液流出ポート28より上方に位置し、血液室
26内と連通ずる空気抜きポート31を備えている。空
気抜きポー)31には着脱自在の通気性かつ菌不透過性
のフィルター32が装着されておりプライミングの際取
りはずしプライミング終了後装着し、人工肺使用時に発
生した空気を抜く際に細菌による人工肺11の汚染を防
止可能としている・ 一上記空気抜きポート31は、プライミング時に、生理
食塩水等の充填液によって排除される血液回路および人
工肺ll内の空気を外部に放出町俺とし、排出後には、
栓を装着されて気密に密封可能とされている。
In the above embodiment, the housing 15 is provided with an air vent port 31 that is located above the blood outflow port 28 and communicates with the inside of the blood chamber 26 under use. A removable breathable and bacteria-impermeable filter 32 is attached to the air vent port 31. It is removed during priming and attached after priming, and when the air generated during use of the oxygenator is vented, bacteria are removed from the oxygenator 11. During priming, the air vent port 31 releases the air inside the blood circuit and the artificial lung, which is removed by the filling fluid such as physiological saline, to the outside, and after evacuation,
It is equipped with a stopper and can be sealed airtight.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

人工肺は、例えば関心術などにおいて使用されるもので
、血液循環回路(第2図)の途中に設置される。なお血
液は通常4交/■inの流量で取り出される。
The artificial lung is used, for example, in surgical procedures, and is installed in the middle of the blood circulation circuit (FIG. 2). Note that blood is usually taken out at a flow rate of 4 cycles/inch.

まず人工肺ll内に血液を流入する前に、ヘパリンを混
入した生理食塩水を血液流入ボート28から流入させ人
工肺ll内の血液室26の全ての空気を除去する。この
際空気抜きボート31(フィルター32をはずす)には
貯血槽につながっているチューブを接続し、血液流出ボ
ート28は、空気抜きボート31と同様にチューブを接
続するか、またそうでない場合はキャップ等で封止する
0人工肺11内の空気抜きが完了した後に、空気抜きボ
ー)31にフィルター32を装着しキャップ(図示しな
い)をして封止するや一定の落差(1m程度)をもって
脱血された血液を人工肺11の血液流入ボート27から
流入させる。
First, before blood flows into the artificial lung 11, physiological saline mixed with heparin is introduced from the blood inflow boat 28 to remove all the air in the blood chamber 26 within the artificial lung 11. At this time, connect the tube connected to the blood storage tank to the air purge boat 31 (remove the filter 32), and connect the tube to the blood outflow boat 28 in the same way as the air purge boat 31, or if not, use a cap etc. After the air in the oxygenator lung 11 is sealed, the filter 32 is attached to the air vent 31 and the cap (not shown) is placed on the cap (not shown). is caused to flow in from the blood inflow boat 27 of the oxygenator 11.

流入した血液は血液流入ボート27付近の中空糸16の
外壁に当たるとともに1人工肺内部に設けられた環状の
血液流路29を流れ、そして落差により与えられた重力
で血液室26をF昇する。また、酸素、空気等の酸素を
含むガスがガス流入ボート23から中空糸膜16の内部
に供給される。このガスは中空糸膜16の内部を経て、
ガス流入ボート25から外部に排出される。この際、血
液は中空糸+1’J l 6を介してガス流入ボートか
ら流入した酸素と血液中の二酸化炭素とを交換する。そ
して酸素化された血液は、血液流路30を通り血液流出
ボート28から流出し、貯血槽12に貯留され、送血ポ
ンプ13を介し熱交換器工4を通って適応温度に加温ま
たは冷却され人体に送血される。
The inflowing blood hits the outer wall of the hollow fiber 16 near the blood inflow boat 27, flows through an annular blood flow path 29 provided inside one oxygenator, and moves up the blood chamber 26 due to the gravity given by the head. Further, a gas containing oxygen such as oxygen or air is supplied from the gas inflow boat 23 into the hollow fiber membrane 16 . This gas passes through the inside of the hollow fiber membrane 16,
The gas is discharged from the gas inflow boat 25 to the outside. At this time, the blood exchanges oxygen flowing from the gas inflow boat through the hollow fiber +1'J l 6 with carbon dioxide in the blood. Then, the oxygenated blood flows out from the blood outflow boat 28 through the blood flow path 30, is stored in the blood storage tank 12, and is heated or cooled to an appropriate temperature through the blood pump 13 and the heat exchanger 4. blood is sent to the human body.

しかして、上記実施例によれば、中空糸膜束としての集
合体17を収納するハウジング15が軸方向の略中央部
における内径を最小とされ、その略中央部から両端部に
かけての内径を徐々に拡径して構成され、収納される集
合体17の外径がハウジング15の内壁に沿って変化し
、集合体17の軸方向の略中央部において最も小さくな
るように構成している。したがって、人工肺11の圧力
損失を低減して落差潅流を可能とし、かつ人工肺11の
酸素加能を向上できる。
According to the embodiment described above, the inner diameter of the housing 15 that houses the assembly 17 as a hollow fiber membrane bundle is minimized at approximately the center in the axial direction, and the inner diameter gradually increases from the approximately center to both ends. The outer diameter of the assembly 17 to be housed changes along the inner wall of the housing 15, and is configured to be smallest at approximately the center of the assembly 17 in the axial direction. Therefore, the pressure loss of the artificial lung 11 can be reduced, head perfusion can be performed, and the oxygen capacity of the artificial lung 11 can be improved.

すなわち、集合体17の中間部を絞ることにより第8図
(B)に示した通り血液の流れが中空糸1lI216の
軸に対して平行とならず交差するようになる。このため
、血液の流れに乱流が生じ、暦法が形成されず、酸素加
能が向上する。よって、酸素加能を確保する状態下で中
空糸膜16の充填密度を低くすることができ、結果とし
て圧力損失を低くすることができる。これにより、ポン
プを使わない落差潅流が可能となる。
That is, by squeezing the middle part of the aggregate 17, the blood flow is not parallel to the axis of the hollow fiber 1lI216, but intersects with it, as shown in FIG. 8(B). This causes turbulence in the blood flow, prevents the formation of a calendar, and improves oxygenation. Therefore, the packing density of the hollow fiber membranes 16 can be lowered under conditions that ensure oxygen addition, and as a result, pressure loss can be lowered. This allows head perfusion without the use of a pump.

したがって、患者と人工肺11の落差による血液の潅流
すなわち落差潅流を可能とし、かつ人工肺11の酸素加
能を向」ニすることができる。
Therefore, blood perfusion due to the head difference between the patient and the artificial lung 11, that is, head perfusion, can be made possible, and oxygenation of the artificial lung 11 can be directed.

[発明の効果] 以−Lのように、本発明は、多数の中空糸膜からなる中
空糸膜束が筒状のハウジング内に収納されてなり、中空
糸膜の内側に酸素を含むガスが流れ、中空糸膜の外側を
血液が流れる人工肺であって、前記ハウジングは軸方向
の略中央部における内径を最小とし、その略中央部から
両端部にかけての内径を徐々に拡径して構成し、収納さ
れる中空糸膜束の外径が前記ハウジング内壁に沿って変
化し、中空糸膜束の軸方向の略中央部において最も小さ
くなるよう構成するようにしたものである。したがって
、患者と人工肺の落差による血液の潅流すなわち落差潅
流を可能とし、かつ人工肺の酸素加能を向上することが
できる。
[Effects of the Invention] As shown in L below, the present invention has a hollow fiber membrane bundle made up of a large number of hollow fiber membranes housed in a cylindrical housing, and a gas containing oxygen inside the hollow fiber membranes. An artificial lung in which blood flows outside the hollow fiber membrane, the housing having a minimum inner diameter at approximately the center in the axial direction, and gradually increasing the inner diameter from the approximately center to both ends. However, the outer diameter of the hollow fiber membrane bundle to be accommodated changes along the inner wall of the housing, and is configured to be smallest at approximately the center in the axial direction of the hollow fiber membrane bundle. Therefore, blood perfusion due to the head difference between the patient and the oxygenator, that is, head perfusion, can be made possible, and the oxygen capacity of the oxygenator can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例に係る脱型人工肺が適用されてなる血液
回路を示す回路図、第2図は本発明に係る中空糸型人工
肺が適用されてなる血液回路を示す回路図、第3図は本
発明に係る中空糸型人工肺の一実施例を示す断面図、第
4図は第3図の■−■線に沿う断面図、第5図は第3図
のV−V線に沿う断面図、第6図は第3図のVl−Vl
線に沿う断面図、第7図は従来例に係る中空糸を人工肺
を示す断面図、第8図(A)〜(D)は本発明の詳細な
説明する模式図である。 11・・・人工肺、 15・・・ハウジング、 16・・・中空糸膜。 17・・・集合体、 18.19・・・隔壁、 23・・・ガス流入ボート。 26・・・血液室、 27・・・血液魔人ポート、 28・・・血清波山ボート、 29.30・・・血液流路。
FIG. 1 is a circuit diagram showing a blood circuit to which a conventional demolding oxygenator is applied, and FIG. 2 is a circuit diagram showing a blood circuit to which a hollow fiber oxygenator according to the present invention is applied. 3 is a cross-sectional view showing an embodiment of the hollow fiber oxygenator according to the present invention, FIG. 4 is a cross-sectional view taken along the line ■-■ in FIG. 3, and FIG. 5 is a cross-sectional view taken along the line V-V in FIG. 3. 6 is a cross-sectional view taken along Vl-Vl in Fig. 3.
7 is a sectional view showing a conventional hollow fiber oxygenator, and FIGS. 8(A) to 8(D) are schematic diagrams illustrating the present invention in detail. 11... Artificial lung, 15... Housing, 16... Hollow fiber membrane. 17...Aggregation, 18.19...Bulkhead, 23...Gas inflow boat. 26...Blood chamber, 27...Blood demon port, 28...Serum wave mountain boat, 29.30...Blood channel.

Claims (2)

【特許請求の範囲】[Claims] (1)多数の中空糸膜からなる中空糸膜束が筒状のハウ
ジング内に収納されてなり、中空糸膜の内側に酸素を含
むガスが流れ、中空糸膜の外側を血液が流れる人工肺で
あって、前記ハウジングは軸方向の略中央部における内
径を最小とし、その略中央部から両端部にかけての内径
を徐々に拡径して構成し、収納される中空糸膜束の外径
が前記ハウジング内壁に沿って変化し、中空糸膜束の軸
方向の略中央部において最も小さくなるよう構成したこ
とを特徴とする中空糸型人工肺。
(1) An oxygenator in which a hollow fiber membrane bundle consisting of a large number of hollow fiber membranes is housed in a cylindrical housing, gas containing oxygen flows inside the hollow fiber membranes, and blood flows outside the hollow fiber membranes. The housing has a minimum inner diameter at approximately the center in the axial direction, and gradually increases the inner diameter from the approximately center to both ends, such that the outer diameter of the hollow fiber membrane bundle to be accommodated is the same. A hollow fiber oxygenator characterized in that the hollow fiber membrane bundle changes along the inner wall of the housing and becomes smallest at a substantially central portion in the axial direction of the hollow fiber membrane bundle.
(2)前記中空糸膜が、マイクロポーラス膜である特許
請求の範囲第1項に記載の中空糸型人工肺。
(2) The hollow fiber oxygenator according to claim 1, wherein the hollow fiber membrane is a microporous membrane.
JP8222188A 1988-04-05 1988-04-05 Hollow yarn type oxygenator Pending JPS63267367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8222188A JPS63267367A (en) 1988-04-05 1988-04-05 Hollow yarn type oxygenator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8222188A JPS63267367A (en) 1988-04-05 1988-04-05 Hollow yarn type oxygenator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16397582A Division JPS5955256A (en) 1982-09-22 1982-09-22 Hollow yarn type artificial lung

Publications (1)

Publication Number Publication Date
JPS63267367A true JPS63267367A (en) 1988-11-04

Family

ID=13768355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8222188A Pending JPS63267367A (en) 1988-04-05 1988-04-05 Hollow yarn type oxygenator

Country Status (1)

Country Link
JP (1) JPS63267367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114348U (en) * 1991-03-26 1992-10-08 テルモ株式会社 Hollow fiber oxygenator
EP1810704A3 (en) * 2006-01-19 2007-08-29 Terumo Kabushiki Kaisha Oxygenator
US7431754B2 (en) 2004-07-23 2008-10-07 Terumo Kabushiki Kaisha Artificial lung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382220A (en) * 1986-09-22 1988-04-13 Aisin Warner Ltd Raising and reversing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382220A (en) * 1986-09-22 1988-04-13 Aisin Warner Ltd Raising and reversing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114348U (en) * 1991-03-26 1992-10-08 テルモ株式会社 Hollow fiber oxygenator
US7431754B2 (en) 2004-07-23 2008-10-07 Terumo Kabushiki Kaisha Artificial lung
US7947113B2 (en) 2004-07-23 2011-05-24 Terumo Kabushiki Kaisha Artificial lung
US8142546B2 (en) 2004-07-23 2012-03-27 Terumo Kabushiki Kaisha Artificial lung
EP1810704A3 (en) * 2006-01-19 2007-08-29 Terumo Kabushiki Kaisha Oxygenator
US7749435B2 (en) 2006-01-19 2010-07-06 Terumo Kabushiki Kaisha Oxygenator
US8685320B2 (en) 2006-01-19 2014-04-01 Terumo Kabushiki Kaisha Oxygenator

Similar Documents

Publication Publication Date Title
US5230862A (en) Apparatus for extracorporeal blood oxygenation
EP0306613A1 (en) Hollow fiber-type artificial lung
US8496874B2 (en) Integrated centrifugal blood pump-oxygenator, an extracorporeal life support system and a method of de-bubbling and priming an extracorporeal life support system
US4376095A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
CN113509605B (en) Membrane oxygenator
JP2014511197A (en) Degassing oxygenator for processing blood in an extracorporeal blood circuit
JPH04669B2 (en)
TWI815547B (en) Integrated membrane oxygenator
WO2023284152A1 (en) Membrane oxygenator having built-in filter
JP3742711B2 (en) Medical heat exchanger
JPS63267367A (en) Hollow yarn type oxygenator
JPS6237992B2 (en)
JP3284568B2 (en) Inlet header for oxygenator and oxygenator using it
JP2003111837A (en) Hollow fiber membrane type artificial lung
JPS63267366A (en) Hollow yarn type oxygenator
JPS6237993B2 (en)
JPS5967963A (en) Hollow yarn type artificial lung
JP3360995B2 (en) Artificial heart lung device and oxygenator with blood reservoir
JP2515828Y2 (en) Hollow fiber type oxygenator
JPH02156957A (en) Hollow fiber film type oxygen enriching device
CA1254467A (en) Hollow fiber type oxygenator
JPH06245997A (en) Blood concentrating device-containing artificial lung
JPH0448065B2 (en)
JPH031875A (en) Membrane type oxygenator
JPS60215369A (en) Artificial lung equipped with degassing mechanism