JPS60215369A - Artificial lung equipped with degassing mechanism - Google Patents

Artificial lung equipped with degassing mechanism

Info

Publication number
JPS60215369A
JPS60215369A JP7091684A JP7091684A JPS60215369A JP S60215369 A JPS60215369 A JP S60215369A JP 7091684 A JP7091684 A JP 7091684A JP 7091684 A JP7091684 A JP 7091684A JP S60215369 A JPS60215369 A JP S60215369A
Authority
JP
Japan
Prior art keywords
hollow fiber
blood
gas
flow path
contact chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7091684A
Other languages
Japanese (ja)
Inventor
浜田 栄一
敦 中嶋
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP7091684A priority Critical patent/JPS60215369A/en
Publication of JPS60215369A publication Critical patent/JPS60215369A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [技術分野] 本発明は、微多孔質中空糸膜を使用した人工肺装置、よ
り詳しくはガス抜き機構を備えた人工肺装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an oxygenator using a microporous hollow fiber membrane, and more particularly to an oxygenator equipped with a gas venting mechanism.

[従来技術] 従来、中空糸膜を使用した人工肺としては、シリコーン
樹脂膜等の均質膜を使用したものと1例えば特開昭54
−180098号に代表されるポリプロピレン等の疎水
性素材からなる多孔質を使用したものの二つのタイプが
知られている。
[Prior Art] Conventionally, oxygenators using hollow fiber membranes include those using homogeneous membranes such as silicone resin membranes, and 1, for example, JP-A-54
Two types are known that use a porous material made of a hydrophobic material such as polypropylene, typified by No. 180098.

均質膜を使用した人工肺は、血液等の漏洩の心配がない
ため、長時間の体外循環に有利であると考えられている
。しかし、均質膜を介してのガス交換は、ガスが膜中に
溶解拡散し膜を透過する機構によって実施されるため1
.1IilI自身の抵抗が大きく、ガス交換性能は多孔
質膜よりかなり低い、ガスの透過性の良好なシリコーン
膜を使用した場合でも、中空糸膜としての強度を維持す
るためには膜厚を厚くせざる得ず、そのためやはりガス
の交換性能は多孔質膜に劣る。一方、多孔質膜の場合は
、ガスが多孔部を体積流で透過するためガス交換性能は
均質膜よりも良好である。
An oxygenator using a homogeneous membrane is considered advantageous for long-term extracorporeal circulation because there is no risk of leakage of blood, etc. However, gas exchange through a homogeneous membrane is carried out by a mechanism in which gas dissolves and diffuses into the membrane and permeates through the membrane.
.. 1IilI itself has a large resistance, and its gas exchange performance is considerably lower than that of porous membranes.Even when using a silicone membrane with good gas permeability, the membrane must be thick to maintain its strength as a hollow fiber membrane. As a result, the gas exchange performance is inferior to that of porous membranes. On the other hand, in the case of a porous membrane, the gas exchange performance is better than that of a homogeneous membrane because gas permeates through the pores in a volumetric flow.

高分子からなる多孔質中空糸膜を使用した人工肺装置に
於ける血液の潅流方式には、中空糸膜の内部空間に酸素
を含む気体を流し、外部空間には血液を流して血液と酸
素を含む気体とを接触させ、血液のガス、交換を実施す
る中空糸外部潅流型と、上記の場合とは逆に中空糸膜の
内部空間に血液を流し、外部空間には酸素を含む気体を
流す中空糸外部潅流型との二つのタイプが存在する。中
空糸内部潅流型の場合には、中空糸膜の内部を流れる血
液は層流となって流れるため、十分なガス交換を実施す
るためには中空糸の内径をかなり小さなものにする必要
がある。しかしながら、中空糸の内径を小さくしても血
液が層流流動する限りは、酸素摂取能が飛躍的に向上す
るものではなく、クロッキング(凝血による中空糸の閉
塞現象)が多発し、また血液を流すのにかなり高い圧力
が必要となる。
The blood perfusion method in an oxygenator that uses a porous hollow fiber membrane made of polymer involves flowing oxygen-containing gas into the inner space of the hollow fiber membrane, and flowing blood into the outer space. There is a hollow fiber external perfusion type, in which the blood is brought into contact with a gas containing oxygen, and the blood is exchanged with the gas, and the other is the hollow fiber external perfusion type, in which the blood is passed through the internal space of the hollow fiber membrane, and the external space is filled with a gas containing oxygen. There are two types: a hollow fiber external perfusion type and a hollow fiber external perfusion type. In the case of the hollow fiber internal perfusion type, the blood flowing inside the hollow fiber membrane forms a laminar flow, so the inner diameter of the hollow fiber must be made quite small in order to achieve sufficient gas exchange. . However, even if the inner diameter of the hollow fiber is reduced, as long as the blood flows laminarly, the oxygen uptake capacity will not be dramatically improved, and clocking (a phenomenon in which the hollow fiber is blocked by blood coagulation) will occur frequently. Requires quite high pressure to flow.

一方、高分子からなる多孔質中空糸膜を使用した人工肺
装置に於いて、外部潅流型方式を採用した場合には、何
らかの原因でガス側の圧力と血液側の圧力のバランスが
崩れたときに、血液が多孔質中空糸膜の内部へ侵入する
ことはないが、気体が多孔質中空糸膜の外側の血液流路
へ侵入し、中空糸濾過膜に沿って微細な気泡を生じるこ
とがある。このような気泡が人工肺装置の接触室から血
液とともに排出されることは、たとえ接触室外で脱気処
理がなされるとはいえ、安全上に問題が残る。また、こ
の気泡が長期にわたり中空糸濾過膜に付着した形で滞留
すると、中空糸濾過膜に沿って凝血が生じたり、更には
血液と酸素を含む新鮮な気体との接触がこの気泡により
妨げられるためか、血液のガス交換が次第に低下してい
くことが判明した。
On the other hand, when an external perfusion system is adopted for an oxygenator using a porous hollow fiber membrane made of polymer, if the balance between the gas side pressure and the blood side pressure is disrupted for some reason, Although blood does not enter inside the porous hollow fiber membrane, gas may enter the blood flow path outside the porous hollow fiber membrane, creating fine bubbles along the hollow fiber filtration membrane. be. The fact that such bubbles are discharged from the contact chamber of the oxygenator together with the blood poses a safety problem, even if degassing is performed outside the contact chamber. In addition, if these bubbles remain attached to the hollow fiber filtration membrane for a long period of time, blood clots may occur along the hollow fiber filtration membrane, and furthermore, the bubbles may prevent blood from coming into contact with fresh gas containing oxygen. It was found that blood gas exchange gradually decreased, perhaps because of this.

[発明の目的] 本発明の目的は、上記の問題を解決し、簡易な手段によ
り接触室内の中空糸濾過膜の外側に沿って発生した微細
な気泡を除去する手段を備えた人工肺装置を提供するこ
とにある。
[Object of the Invention] An object of the present invention is to solve the above-mentioned problems and to provide an artificial lung device equipped with means for removing fine air bubbles generated along the outside of the hollow fiber filtration membrane in the contact chamber by a simple means. It is about providing.

[発明の構成] すなわち1本発明の人工肺装置は、高分子からなる多数
の多孔質中空糸膜と、該中空糸膜の内部空間に酸素を含
む気体を流すための気体流路と、該中空糸膜の外部空間
に血液を流すための血液流路とを具備する接触室を有し
てなる人工肺装置に於いて、前記気体流路に接続する、
前記接触室の外部の気体流路に、減圧手段を備えた回路
を付設したことを特徴とする。
[Configuration of the Invention] In other words, the oxygenator of the present invention comprises: a large number of porous hollow fiber membranes made of polymer; a gas flow path for flowing gas containing oxygen into the internal space of the hollow fiber membrane; In an artificial lung device having a contact chamber equipped with a blood flow path for flowing blood into the external space of the hollow fiber membrane, connected to the gas flow path,
The present invention is characterized in that a circuit equipped with a pressure reducing means is attached to the gas flow path outside the contact chamber.

[発明を実施するための最適な態様] 以下、本発明の人工肺装置につき図面を参照しつつより
詳細に説明する。
[Optimum Mode for Carrying Out the Invention] Hereinafter, the artificial lung device of the present invention will be described in more detail with reference to the drawings.

第1図は、本発明の人工肺装置の一態様例を示す模式図
である。
FIG. 1 is a schematic diagram showing an example of one embodiment of the artificial lung device of the present invention.

本発明の人工肺装置は、基本的には接触室1と、外部血
液流路2と、外部気体流路3と、減圧装置4を有する減
圧回路5とから構成される。
The artificial lung device of the present invention basically comprises a contact chamber 1 , an external blood flow path 2 , an external gas flow path 3 , and a pressure reduction circuit 5 having a pressure reduction device 4 .

接触室l内には、高分子からなる多数の多孔質中空糸膜
と、該中空糸膜の内部空間に酸素を含む気体を流すため
の気体流路と、該中空糸膜の外部空間に血液を流すため
の血液流路が設けられており、多孔質中空糸膜を介して
血液と酸素を含む気体とが接触し、血液のガス交換が実
施され、血液中の炭酸ガスが除去されると同時に酸素が
供給される。血液のガス交換は具体的には次のようなフ
ローに従って実施される。すなわち、ガス交換が実施さ
れる血液は、外部血液流路2から接触室lの血液人口6
を介して接触室l内へ供給され、接触室l内の血液流路
を流れ、多孔質中空糸膜を介してガス交換を受けた後接
触室lの血液出ロアから外部血液流路2へ排出される。
Inside the contact chamber 1, there are a large number of porous hollow fiber membranes made of polymers, a gas flow path for flowing oxygen-containing gas into the inner space of the hollow fiber membranes, and a gas flow path for flowing oxygen-containing gas into the outer space of the hollow fiber membranes. A blood flow path is provided for the flow of blood, and the blood and oxygen-containing gas come into contact with each other through a porous hollow fiber membrane, gas exchange occurs between the blood, and carbon dioxide from the blood is removed. At the same time, oxygen is supplied. Specifically, blood gas exchange is performed according to the following flow. That is, the blood on which gas exchange is carried out is transferred from the external blood flow path 2 to the blood population 6 of the contact chamber l.
The blood is supplied into the contact chamber 1 through the contact chamber 1, flows through the blood flow path in the contact chamber 1, undergoes gas exchange via the porous hollow fiber membrane, and then flows from the blood outlet lower of the contact chamber 1 to the external blood flow path 2. be discharged.

一方、酸素を含む気体は、外部気体流路3から接触室l
内の気体人口8を介して接触室l内へ供給され、接触室
1内の気体流路および多孔質中空糸膜の内部を流れ、血
液とガス交換した後接触室lの気体出口9から外部気体
流路3へ排出される。外部気体流路3上に設けられた二
つの弁10.11は、血液のガス交換実施時には開放さ
れている。接触室の具体的な内部構造としては種々の構
造を採用することができる。
On the other hand, the gas containing oxygen is transferred from the external gas flow path 3 to the contact chamber l.
The gas is supplied into the contact chamber 1 through the gas port 8 in the contact chamber 1, flows through the gas flow path in the contact chamber 1 and inside the porous hollow fiber membrane, and after gas exchange with the blood, is supplied to the outside from the gas outlet 9 of the contact chamber 1. The gas is discharged to the gas flow path 3. The two valves 10.11 on the external gas flow path 3 are open when blood gas exchange is performed. Various structures can be adopted as the specific internal structure of the contact chamber.

本発明の人工肺装置に於いては、外部血液流路2に減圧
装置4を有する減圧回路5が付設されている。前述した
ように、長期にわたり人工肺装置を稼動させた場合には
、しばしば接触室l内の多孔質中空糸膜内部を流れる気
体が多孔質中空糸膜の外側の血液流路へ徐々に侵入し、
その結果中空糸濾過膜の外側に沿って微細な気泡が滞留
付着する。減圧回路5は、この2ようにして滞留付着し
た気泡を除去するために設けられたものである0本例に
於いては、血液出ロアの後の外部血液流路2上に付設さ
れているが、もちろん血液人口6前の外部血液流路2上
に付設されてもよい、減圧回路5を使用した気泡の除去
操作は、外部気体流路3上の二つの弁10.11を閉じ
、弁12を開き、減圧回路5を作動させることにより簡
単に除去できことが判明した。減圧回路5に設けられる
減圧装置4としては、特に高度の真空度を発生するもの
である必要はなく1通常の油圧式の真空ポンプが好適に
使用できるが、水流式アスピレータ−のようなものであ
ってもよい、気泡の除去に要する時間は、接触室1内で
使用されている多孔質中空糸膜の種類等によっても多少
異るが、通常は、 100Toor程度の減圧を0.5
〜5分程度保つことにより、はぼ完璧に中空糸膜の外側
の滞留気泡を除去することができる。
In the artificial lung device of the present invention, a pressure reduction circuit 5 having a pressure reduction device 4 is attached to the external blood flow path 2. As mentioned above, when an oxygenator is operated for a long period of time, the gas flowing inside the porous hollow fiber membrane in the contact chamber 1 often gradually invades the blood flow path outside the porous hollow fiber membrane. ,
As a result, fine air bubbles accumulate and adhere along the outside of the hollow fiber filtration membrane. The decompression circuit 5 is provided to remove the air bubbles that have accumulated and adhered in this way. In this example, it is provided on the external blood flow path 2 after the blood output lower. However, the bubble removal operation using the pressure reducing circuit 5, which may of course be attached on the external blood flow path 2 before the blood flow 6, involves closing the two valves 10, 11 on the external gas flow path 3, and It has been found that this can be easily removed by opening 12 and activating the pressure reducing circuit 5. The pressure reducing device 4 provided in the pressure reducing circuit 5 does not need to be one that generates a particularly high degree of vacuum, and a normal hydraulic vacuum pump can be suitably used; The time required to remove air bubbles may vary depending on the type of porous hollow fiber membrane used in the contact chamber 1, etc., but usually, the pressure is reduced to about 100Toor by 0.5
By keeping it for about 5 minutes, the remaining air bubbles on the outside of the hollow fiber membrane can be completely removed.

本発明の人工肺装置に於ける接触室内に設置される高分
子からなる多孔質中空糸膜としては、各種の材料からな
る中空糸膜が使用できる。しかし耐久性に優れ、かつ気
体の透過性能に優れたものとしては、ポリオレフィン系
の微多孔質中空糸膜が挙げられる。その中でも、膜の微
小空孔が一方の面から他方の面にかけて幾重にも積層し
たフィブリルとフィブリルの両端を固定する節部により
できるフィブリル間の空間で形成された微小空孔がその
フィブリル間の空間として相互につながって膜の一方の
面から他方の面まで貫通しているような膜が特に好まし
く用いられ、このような中空糸膜の例としては1例えば
ポリエチレン中空糸M(ポリエチレン中空糸El(F、
商品名、三菱レイヨン■製)が挙げられる。
Hollow fiber membranes made of various materials can be used as the porous hollow fiber membrane made of polymer installed in the contact chamber of the oxygenator of the present invention. However, a polyolefin-based microporous hollow fiber membrane has excellent durability and gas permeation performance. Among these, the micropores in the membrane are formed in the spaces between the fibrils, which are formed by the fibrils stacked many times from one surface to the other, and the knots that fix both ends of the fibrils. Particularly preferably used are membranes that are interconnected as spaces and penetrate from one side of the membrane to the other. Examples of such hollow fiber membranes include 1, for example, polyethylene hollow fibers M (polyethylene hollow fibers El (F,
Product name: Mitsubishi Rayon ■).

[本発明の効果] このような本発明の人工肺装置によれば、必要に応じて
減圧回路を作動させることにより、接触室内の中空糸濾
過膜の外側に沿って発生した微細な気泡を除去すること
が可能であり、ガス交換血液中への気泡の混入、および
中空糸膜に沿った凝血の発生を防止することができ、更
に血液のガス交換効率を常時高く維持することが可能で
ある。
[Effects of the present invention] According to the artificial lung device of the present invention, fine air bubbles generated along the outside of the hollow fiber filtration membrane in the contact chamber can be removed by operating the pressure reduction circuit as necessary. It is possible to prevent air bubbles from entering the gas exchange blood and to prevent blood clots from forming along the hollow fiber membrane, and it is also possible to maintain high blood gas exchange efficiency at all times. .

【図面の簡単な説明】[Brief explanation of the drawing]

tIS1図は1本発明の人工肺装置の一態様例を示す模
式図である。 l:接触室 2:外部血液流路 3:外部気体流路 4:減圧装置 5:減圧回路 6:血液入ロ ア:血液出口 8:気体入口 9:気体出口 l01l■=弁 特許出願人 三菱レイヨン株式会社 第 1 図
tIS1 is a schematic diagram showing one embodiment of the artificial lung device of the present invention. l: Contact chamber 2: External blood flow path 3: External gas flow path 4: Pressure reducing device 5: Pressure reducing circuit 6: Blood inlet lower: Blood outlet 8: Gas inlet 9: Gas outlet l01l■=Valve patent applicant Mitsubishi Rayon Co., Ltd. Company Figure 1

Claims (1)

【特許請求の範囲】[Claims] l)高分子からなる多数の多孔質中空糸膜と、該中空糸
膜の内部空間に酸素を含む気体を流すための気体流路と
、該中空糸膜の外部空間に血液を流すための血液流路と
を具備する接触室を有してなる人工肺装置に於いて、前
記気体流路に接続する、前記接触室の外部の気体流路に
、減圧手段を備えた回路を付設したことを特徴とする人
工肺装置。
l) A large number of porous hollow fiber membranes made of polymer, a gas flow path for flowing oxygen-containing gas into the inner space of the hollow fiber membrane, and blood for flowing blood into the outer space of the hollow fiber membrane. In an artificial lung device having a contact chamber equipped with a flow path, a circuit equipped with a pressure reducing means is attached to the gas flow path outside the contact chamber connected to the gas flow path. Characteristic artificial lung device.
JP7091684A 1984-04-11 1984-04-11 Artificial lung equipped with degassing mechanism Pending JPS60215369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7091684A JPS60215369A (en) 1984-04-11 1984-04-11 Artificial lung equipped with degassing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7091684A JPS60215369A (en) 1984-04-11 1984-04-11 Artificial lung equipped with degassing mechanism

Publications (1)

Publication Number Publication Date
JPS60215369A true JPS60215369A (en) 1985-10-28

Family

ID=13445303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7091684A Pending JPS60215369A (en) 1984-04-11 1984-04-11 Artificial lung equipped with degassing mechanism

Country Status (1)

Country Link
JP (1) JPS60215369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136199A (en) * 2016-02-03 2017-08-10 株式会社ジェイ・エム・エス In-blood microbubble removal device and cardiac and pulmonary system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136199A (en) * 2016-02-03 2017-08-10 株式会社ジェイ・エム・エス In-blood microbubble removal device and cardiac and pulmonary system

Similar Documents

Publication Publication Date Title
EP0005866B1 (en) An oxygenator
EP0044075B1 (en) Fluid separation element
WO1989002282A1 (en) Medical instrument and production thereof
JPS59228849A (en) Apparatus for removing air bubbles in liquid
JPH04669B2 (en)
JP2000084369A (en) Hallow fiber membrane type gas-liquid gas exchanging device and gas exchange
JPS60215369A (en) Artificial lung equipped with degassing mechanism
JP2002143298A (en) Blood treatment apparatus
JP2003111837A (en) Hollow fiber membrane type artificial lung
JPS5955256A (en) Hollow yarn type artificial lung
JPH0439862B2 (en)
JPS6264372A (en) Membrane type artificial lung
JPS6237993B2 (en)
JPH0759849A (en) Blood filter in common use as blood dialyzer
JPS63267367A (en) Hollow yarn type oxygenator
JPH01139073A (en) Pump-oxygenator using hollow yarn membrane
JP2515828Y2 (en) Hollow fiber type oxygenator
JP3360995B2 (en) Artificial heart lung device and oxygenator with blood reservoir
JPH0129578B2 (en)
JPH07163659A (en) Blood dialyzer using hollow fiber membrane
JPS59108564A (en) Hollow yarn type artifical long
WO2019077543A1 (en) Integrated fluid treatment device
JPH0360506B2 (en)
JPS6337973Y2 (en)
JPS633870A (en) Artificial lung