JP2000084369A - Hallow fiber membrane type gas-liquid gas exchanging device and gas exchange - Google Patents
Hallow fiber membrane type gas-liquid gas exchanging device and gas exchangeInfo
- Publication number
- JP2000084369A JP2000084369A JP25642598A JP25642598A JP2000084369A JP 2000084369 A JP2000084369 A JP 2000084369A JP 25642598 A JP25642598 A JP 25642598A JP 25642598 A JP25642598 A JP 25642598A JP 2000084369 A JP2000084369 A JP 2000084369A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- gas
- membrane
- gas exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、中空糸膜を利用し
た外部灌流型気液ガス交換装置として使用され、例えば
工業用途として、ボイラー用水の脱酸素、配管の腐食防
止を目的としたビル空調用水の脱気、半導体の製造に使
用される超純水の脱気、イオン交換水の脱気、逆浸透膜
供給水の脱気、発電用水の脱酸素及び脱炭酸ガス等に使
用される。また、食品工業用途として、ビール及び清酒
の製造、食品製造用水の脱気等に使用される。さらに、
本発明は医療用途として透析モジュールの充填液の脱気
や注射用水の脱気等に使用され、特に心臓手術時等の血
液体外循環において患者の血液を蘇生させる人工肺に好
適に適用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as an external perfusion type gas-liquid gas exchange device using a hollow fiber membrane. For example, as an industrial application, a building air conditioner for deoxidizing water for a boiler and preventing corrosion of piping. It is used for deaeration of service water, deaeration of ultrapure water used for manufacturing semiconductors, deaeration of ion exchange water, deaeration of reverse osmosis membrane supply water, deoxygenation and decarbonation gas of power generation water. It is also used in the food industry for producing beer and sake, degassing water for food production, and the like. further,
INDUSTRIAL APPLICABILITY The present invention is used as a medical application for deaeration of a filling solution of a dialysis module, deaeration of water for injection, and the like, and is particularly suitably applicable to an artificial lung for reviving a patient's blood in extracorporeal blood circulation such as during cardiac surgery.
【0002】[0002]
【従来の技術】人工肺は開心術時あるいは長期の呼吸補
助時に生体肺の代替または補助として使用され、種々の
タイフ゜が開発されている。これら人工肺は生体肺の持つ機
能の中で血液に酸素を供給し、二酸化炭素を除去するガ
ス交換機能を代行するものである。現在、中空糸膜型人
工肺が主流となっており、大きく2つの種類に分類され
る。一つは血液を中空糸内部に流しガス交換を行ういわ
ゆる内部灌流型人工肺であり、もう一つは血液を中空糸
の外側に接触させ、中空糸内部に酸素混合ガスを流しガ
ス交換を行ういわゆる外部灌流型人工肺である。外部灌
流型人工肺は血液流れの圧力損失を低く抑える事ができ
且つ、ガス交換効率に優れ、中空糸膜型人工肺の主流と
なりつつある。2. Description of the Related Art Various types of artificial lungs have been used as replacements or aids for living lungs during open heart surgery or long-term respiratory assistance. These artificial lungs substitute for the gas exchange function of supplying oxygen to blood and removing carbon dioxide among the functions of a living lung. At present, hollow fiber membrane-type artificial lungs have become the mainstream, and are roughly classified into two types. One is a so-called internal perfusion type artificial lung that performs gas exchange by flowing blood inside the hollow fiber, and the other is to perform gas exchange by bringing blood into contact with the outside of the hollow fiber and flowing oxygen mixed gas inside the hollow fiber. This is a so-called external perfusion type artificial lung. The external perfusion type oxygenator is capable of suppressing the pressure loss of the blood flow to a low level, has excellent gas exchange efficiency, and is becoming the mainstream of the hollow fiber membrane type oxygenator.
【0003】例えば特公平5−20111にはシート状
に配列されたガス透過性中空糸を多孔性芯体に巻回し、
酸素を中空糸内部を通し、血液を中空糸の外部に流し、
ガス交換を行う人工肺が開示されている。For example, in Japanese Patent Publication No. 5-201111, a gas-permeable hollow fiber arranged in a sheet shape is wound around a porous core,
Oxygen passes through the inside of the hollow fiber, blood flows outside the hollow fiber,
An oxygenator for performing gas exchange is disclosed.
【0004】特公平4−2066号公報には、隣接する
中空糸同士が互いに交差するよう環状に巻かれて、その
中心に中空部を有する環状の中空糸層を形成していると
ともに、該中空糸層における中空糸の充填率を0.45
〜0.80とした人工肺が開示されている。In Japanese Patent Publication No. Hei 4-2066, adjacent hollow fibers are wound in a circular shape so as to intersect with each other to form a circular hollow fiber layer having a hollow portion at the center thereof. The filling rate of the hollow fibers in the fiber layer is 0.45
An oxygenator with a 0.80.80 is disclosed.
【0005】特公平6−96098号公報には中空糸シ
ートを積層してハウジング内に組み込んだ人工肺におい
て中空糸シートを形成する縦糸の密度及び、シートの厚
みを特定の値とするとともにシートの中空糸密度とシー
トの積層密度の積を中空糸外径をもとに計算される値の
特定値範囲値とする事により血液のチャネリングおよび
滞留を抑えた人工肺が開示されている。[0005] Japanese Patent Publication No. 6-96098 discloses that the density of warp and the thickness of a sheet forming a hollow fiber sheet in an artificial lung in which hollow fiber sheets are laminated and incorporated in a housing are set to specific values, and the sheet thickness is reduced. An artificial lung in which channeling and stagnation of blood is suppressed by setting the product of the hollow fiber density and the lamination density of the sheet to a specific value range value calculated based on the outer diameter of the hollow fiber is disclosed.
【0006】特公平7−98061号公報には簾状中空
糸シートの積層体を角筒状のハウジングに組み込んだ人
工肺において、血液を流す方向に垂直な単位断面積当た
りの血液流量が50mL/min/cm2 の時の圧力損
失を△Pとした時に△P/T・I・n≦1なる関係を保
つことにより血流のチャネリングと滞留を抑えた人工肺
が開示されている。Japanese Patent Publication No. Hei 7-98061 discloses that in an artificial lung in which a laminate of cord-like hollow fiber sheets is incorporated in a rectangular cylindrical housing, the blood flow rate per unit cross-sectional area perpendicular to the blood flow direction is 50 mL /. An artificial lung in which channeling and stagnation of blood flow are suppressed by maintaining a relationship of ΔP / T · I · n ≦ 1 when a pressure loss at min / cm 2 is ΔP is disclosed.
【0007】通常、気液ガス交換装置に必須な要求性能
は優れたガス交換能力である。特に医療用途である人工
肺には、血液への優れた酸素供給能力及び血液からの二
酸化炭素の優れた除去能力が要求される。これに加え人
工肺には、患者に対する生体負担が小さいことが要求さ
れ、血液と直接接触する膜面積が小さく、小型で血液の
プライミング量が小さく、且つ血流の圧力損失が小さ
く、体外循環中に血液損傷を起こさない事が要求され
る。[0007] Usually, a required performance required for a gas-liquid gas exchange device is an excellent gas exchange capability. In particular, an artificial lung for medical use is required to have an excellent ability to supply oxygen to blood and an excellent ability to remove carbon dioxide from blood. In addition to this, the oxygenator is required to have a small burden on the living body to the patient, the membrane area in direct contact with the blood is small, the size is small, the priming amount of the blood is small, and the pressure loss of the blood flow is small. Is required not to cause blood damage.
【0008】膜型人工肺のガス交換性能は血液側の境膜
が律速となっていることが広く知られており、血液側の
境膜を可能な限り破壊すべく種々の人工肺の構造が盛ん
に検討されている。It is widely known that the gas exchange performance of a membrane oxygenator is rate-limiting at the blood-side membrane, and various structures of the oxygenator are used to destroy the blood-side membrane as much as possible. It is being actively studied.
【0009】近年、血流の圧力損失を低く抑えることが
でき且つ単位膜面積当たりのガス交換能力の向上が期待
できる中空糸膜外部灌流型人工肺の研究開発が活発に行
われ、商品化されつつある。しかしながら、従来の技術
は性能向上、特に血液側の境膜を効率的に破壊しそのガ
ス交効率を向上する為に必要となる技術要素が不明確で
あり、その結果としてそのガス交換効率おいて未だ満足
のゆく人工肺が開発されていない。[0009] In recent years, research and development of a hollow fiber membrane external perfusion type artificial lung capable of suppressing pressure loss of blood flow and improving gas exchange capacity per unit membrane area have been actively conducted and commercialized. It is getting. However, in the conventional technology, the technical elements required for improving performance, particularly for efficiently destroying the blood-side membrane and improving its gas exchange efficiency, are unclear, and as a result, the gas exchange efficiency is reduced. A satisfactory oxygenator has not yet been developed.
【0010】[0010]
【発明が解決しようとする課題】本研究者らは、中空糸
膜シートを積層してハウジング内に組み込んだ外部灌流
型中空糸膜型気液ガス交換装置の最適設計について鋭意
研究し、驚くべき事に、特定の範囲の外径を有する中空
糸を使用し、中空糸膜を実質的に平行に配列した特定の
中空糸膜間隔を有する中空糸シートを使用し、該中空糸
膜シートを特定の相当直径となるよう積層してハウジン
グ内に組み込むことにより従来のものと比較し飛躍的に
ガス交換効率を向上でき、且つ液流(血流)圧損をも極
めて低値に抑える事ができる外部灌流型中空糸膜型気液
ガス交換装置にかかる発明を提供する。The present inventors have made intensive studies on the optimal design of an external perfusion type hollow fiber membrane type gas-liquid gas exchange device in which hollow fiber membrane sheets are laminated and incorporated in a housing, and are surprising. In particular, using a hollow fiber having a specific range of outer diameter, using a hollow fiber sheet having a specific hollow fiber membrane interval in which hollow fiber membranes are arranged substantially in parallel, and specifying the hollow fiber membrane sheet The gas exchange efficiency can be significantly improved and the pressure loss of the liquid flow (blood flow) can be suppressed to an extremely low value as compared with the conventional one by laminating so as to have an equivalent diameter and incorporating it into the housing. An invention relating to a perfusion type hollow fiber membrane type gas-liquid gas exchange device is provided.
【0011】[0011]
【課題を解決するための手段】即ち本発明は、(1)外
部灌流型中空糸膜型気液ガス交換装置において、中空糸
膜の外径 が150μm〜390μmであり、中空糸膜の
間隔が120μm〜280μmである中空糸膜が実質的
に平行に配列された中空糸膜シートを使用し、(式1) Dv=4×(シート積層体の占める全空間体積)/(中
空糸膜の全有効外表面積) で計算される相当直径が165μm〜325μmとなる
よう積層された状態でハウシ゛ンク゛内に組み込まれているこ
とを特徴とする外部灌流型中空糸膜型気液カ゛ス交換装置
であり、(2)中空糸膜の外径が180μm〜250μ
mであり、且つ中空糸シートの中空糸間隔が150μm〜
260μmであり且つDvが215μm〜320μmで
あることを特徴とする(1)の外部灌流型中空糸膜型気
液カ゛ス交換装置であり、(3)中空糸膜が 中空糸膜の酸
素透過速度が5×10−5[cm3(STP)/cm2/
s/cmHg]〜350×10−5[cm3(STP)/
cm2/s/cmHg]であるポリ(4−メチルペンテ
ン−1)系樹脂からなる中空糸非対称膜であることを特
徴とする(1)または(2)に記載の外部灌流型気液カ゛
ス交換装置であり、(4)外部灌流型中空糸膜型気液カ゛ス
交換装置において、中空糸膜の外径 が150μm〜39
0μmであり、中空糸膜の間隔が120μm〜280μ
mである中空糸膜が実質的に平行に配列された中空糸膜
シートを使用し、(式1) Dv=4×(シート積層体の占める全空間体積)/(中
空糸膜の全有効外表面積) で計算される相当直径が165μm〜325μmとなる
よう積層された状態でハウジング内に組み込まれている
ことを特徴とする外部灌流型中空糸膜型気液ガス交換装
置を使用し、液体を積層された中空糸膜シートに実質的
に垂直にクロスして流すことによりガス交換を行う事を
特徴とする気液カ゛ス交換方法である。The present invention provides (1) an outer perfusion type hollow fiber membrane type gas-liquid gas exchange device, wherein the outer diameter of the hollow fiber membrane is 150 μm to 390 μm and the interval between the hollow fiber membranes is Using a hollow fiber membrane sheet in which hollow fiber membranes of 120 μm to 280 μm are arranged substantially in parallel, (Equation 1) Dv = 4 × (total space volume occupied by the sheet laminate) / (total of hollow fiber membranes) An external perfusion type hollow fiber membrane type gas-liquid gas exchange device, which is incorporated in a housing in a state where the equivalent diameter calculated by the effective external surface area is 165 μm to 325 μm, 2) The outer diameter of the hollow fiber membrane is from 180 μm to 250 μm
m, and the hollow fiber interval of the hollow fiber sheet is 150 μm or more.
(1) The gas-liquid gas-exchange device of (1), wherein the hollow fiber membrane has an oxygen permeation rate of 260 μm and Dv of 215 μm to 320 μm. 5 × 10-5 [cm3 (STP) / cm2 /
s / cmHg] to 350 x 10-5 [cm3 (STP) /
cm2 / s / cmHg], which is a hollow fiber asymmetric membrane made of a poly (4-methylpentene-1) -based resin, wherein the gas-liquid gas exchange device according to (1) or (2) is used. (4) In the external perfusion type hollow fiber membrane type gas-liquid gas exchange device, the outer diameter of the hollow fiber membrane is 150 μm to 39 μm.
0 μm, and the interval between the hollow fiber membranes is 120 μm to 280 μm.
m, using a hollow fiber membrane sheet in which hollow fiber membranes are arranged substantially in parallel, (Equation 1) Dv = 4 × (total space volume occupied by the sheet laminate) / (total effective volume of the hollow fiber membrane) Using an external perfusion type hollow fiber membrane type gas-liquid gas exchange device characterized in that it is incorporated in a housing in a state where the equivalent diameter calculated by the following formula is 165 μm to 325 μm. A gas-liquid gas exchange method characterized in that gas exchange is performed by crossing and flowing substantially vertically through the laminated hollow fiber membrane sheets.
【0012】ここで言う相当直径(Dv)とは(式1)
Dv=4×(シート積層体の占める全空間体積)/(中
空糸膜の全有効外表面積)で計算される値であり、ここ
で式の分子は中空糸膜シート積層体の占める体積から中
空糸膜の占める体積を差し引いた空間の体積である。Here, the equivalent diameter (Dv) is defined by (Equation 1).
Dv = 4 × (total space volume occupied by the sheet laminate) / (total effective external surface area of the hollow fiber membrane), wherein the molecule of the formula is calculated from the volume occupied by the hollow fiber membrane sheet laminate This is the volume of the space obtained by subtracting the volume occupied by the thread membrane.
【0013】[0013]
【発明の実施の形態】本発明の実施の形態の典型的なも
の及び最良の状態は、後記の実施例に具体的に示される
が、その概要は以下の通りである。BEST MODE FOR CARRYING OUT THE INVENTION The typical and best modes of the embodiment of the present invention will be specifically shown in the examples described later, and the outline thereof is as follows.
【0014】本発明の中空糸の外径は150μm〜39
0μmであれば良く、適用用途により適切な外径を選択
できる。The outer diameter of the hollow fiber of the present invention is from 150 μm to 39 μm.
The outer diameter may be 0 μm, and an appropriate outer diameter can be selected depending on the application.
【0015】また、中空糸膜の膜厚は15μm〜80μ
mである事が好ましい。膜厚は中空糸膜の強度及び耐久
性を支配し、膜を構成する素材及び膜の構造、及び本発
明の適用用途等に最適な膜厚を選定できる。一般に外径
が細ければ強度、耐久性保持のために必要となる膜厚も
薄くできる。The thickness of the hollow fiber membrane is 15 μm to 80 μm.
m is preferred. The film thickness governs the strength and durability of the hollow fiber membrane, and the optimum film thickness can be selected for the material constituting the membrane, the structure of the membrane, and the application of the present invention. Generally, the smaller the outer diameter, the thinner the film thickness required for maintaining strength and durability.
【0016】驚くべき事に本発明において、膜モジュー
ル内の中空糸の充填率を同じとしても中空糸の外径を本
発明の範囲内において細くするほどガス交換効率を向上
させることができる。さらに、細径化により中空糸の耐
久性及び強度を飛躍的に向上でき好ましいが、中空糸外
径が150μm以下となると膜モジュール製造時におけ
るハンドリングが困難となる。Surprisingly, in the present invention, the gas exchange efficiency can be improved as the outer diameter of the hollow fiber is reduced within the range of the present invention, even if the filling rate of the hollow fiber in the membrane module is the same. Furthermore, although the durability and strength of the hollow fiber can be dramatically improved by reducing the diameter, it is preferable. However, when the outer diameter of the hollow fiber is 150 μm or less, handling at the time of manufacturing a membrane module becomes difficult.
【0017】中空糸内側に酸素含有気体を流し中空糸外
側を流れる血液とガス交換を行う人工肺用途として好適
に使用する場合、ガス交換効率を高め、少ない膜面積で
十分なガス交換能力を有し、小型で血液のプライミング
量が小さい人工肺モジュールを実現する為には細径中空
糸が好ましいが、一方中空糸外径を細くする事により内
径は必然的に細くなる。When the oxygen-containing gas flows inside the hollow fiber and is preferably used as an artificial lung for gas exchange with blood flowing outside the hollow fiber, the gas exchange efficiency is increased and the gas exchange capacity is sufficient with a small membrane area. Although a small-diameter hollow fiber is preferable in order to realize a small-sized artificial lung module with a small amount of blood priming, an inner diameter is necessarily narrowed by reducing the outer diameter of the hollow fiber.
【0018】気相側の気体圧力は、血液側に気泡が発生
しないように、血液側の圧力と比較し十分に低く保つ必
要がある。また、臨床使用中には血液側から中空糸内に
相当量の水蒸気が透過し、使用条件によっては、この水
蒸気が人工肺ガス出口で凝集し、中空糸膜が閉塞し、ガ
ス交換能力の経時的な低下を引き起こす場合がある。こ
れらを現象を防止するために中空糸の内径はある程度の
太さが必要とされる。The gas pressure on the gas phase side must be kept sufficiently lower than the pressure on the blood side so as to prevent air bubbles from being generated on the blood side. Also, during clinical use, a considerable amount of water vapor permeates into the hollow fiber from the blood side, and depending on the use conditions, this water vapor condenses at the outlet of the artificial lung gas, the hollow fiber membrane is closed, and the gas exchange capacity with time increases. May cause a significant decline. To prevent these phenomena, the inside diameter of the hollow fiber needs to be a certain thickness.
【0019】人工肺用途として好ましくは外径が180
μm〜250μmの範囲であり、内径は140μm以上
が好ましい。特にECMOやPCPS用途等の数日から
数週間に亘る連続使用の可能性のある用途においては、
中空糸の外径は200μm〜250μが好ましく、内径
は150μm以上が好ましい。Preferably, the outer diameter is 180 for use in artificial lungs.
It is in the range of μm to 250 μm, and the inner diameter is preferably 140 μm or more. Especially for applications that can be used continuously for several days to several weeks, such as ECMO and PCPS applications,
The outer diameter of the hollow fiber is preferably 200 μm to 250 μm, and the inner diameter is preferably 150 μm or more.
【0020】本発明では、中空糸膜が少なくとも同一積
層面においては中空糸膜間隔が均等間隔で平行に配列さ
れた中空糸膜シートを積層しハウジング内に組み込んで
使用する事をも特徴とする。The present invention is also characterized in that hollow fiber membrane sheets in which the hollow fiber membranes are arranged in parallel at equal intervals on at least the same lamination surface are stacked and used in a housing. .
【0021】中空糸膜シートの形成方法に制限は無く例
えばポリエステル、ポリアミド、ポリウレタン、ポリア
クリルニトリル等からなるのモノフィラメント又はマル
チフィラメントからなる糸を縦糸として、横糸となる中
空糸膜を均等間隔で編組する事により好ましく形成でき
る。工業的に中空糸膜シートを形成する方法として例え
ばラッセル編み等が知られている。There is no limitation on the method of forming the hollow fiber membrane sheet. For example, a monofilament or multifilament yarn made of polyester, polyamide, polyurethane, polyacrylonitrile, or the like is used as a warp, and hollow fiber membranes serving as wefts are braided at equal intervals. By doing so, it can be formed preferably. As a method of industrially forming a hollow fiber membrane sheet, for example, Russell knitting and the like are known.
【0022】縦糸の太さは5〜30デニールが好まし
い。特にポリエステルからなる10〜25デニールのマ
ルチフィラメントは柔軟性と強度に優れ、また経時変化
が少なく、シート形成時及び経時的にも中空糸に損傷与
える事がなく、特に好ましい。The thickness of the warp is preferably 5 to 30 denier. In particular, a 10 to 25 denier multifilament made of polyester is particularly preferable because it has excellent flexibility and strength, has little change with time, and does not damage the hollow fiber during sheet formation and with time.
【0023】本発明は中空糸膜シートの中空糸膜の間隔
が120μm〜280μmの範囲であり、且つ(式1)
で表される積層された中空糸シートの相当直径Dvが16
5μm〜325μmの範囲である事を特徴とする。これ
により高いガス交換効率と低液流圧損を同時に満足する
外部灌流型気液ガス交換装置を実現できる。In the present invention, the interval between the hollow fiber membranes of the hollow fiber membrane sheet is in the range of 120 μm to 280 μm, and (Equation 1)
The equivalent diameter Dv of the laminated hollow fiber sheet represented by
It is characterized by being in the range of 5 μm to 325 μm. As a result, it is possible to realize an external perfusion type gas-liquid gas exchange device that simultaneously satisfies high gas exchange efficiency and low liquid pressure loss.
【0024】また、中空糸膜シートの積層数は20層以
上である事が好ましく、さらに好ましくは50層以上で
あり、最も好ましくは70層以上である。本発明に記載
の外部灌流方式によるガス交換効率は中空糸膜シートの
中空糸膜間隔を狭くし、且つDvを小さくすることによ
り程飛躍的に向上できるが、中空糸膜の間隔が120μ
m以下及び/又はDvが165μm以下となると液流の
圧損が極めて大きくなり、各種産業実用用途への展開の
範囲が限られる。The number of laminated hollow fiber membrane sheets is preferably 20 or more, more preferably 50 or more, and most preferably 70 or more. The gas exchange efficiency by the external perfusion method according to the present invention can be significantly improved by reducing the interval between the hollow fiber membranes of the hollow fiber membrane sheet and decreasing Dv.
When m or less and / or Dv is 165 μm or less, the pressure loss of the liquid flow becomes extremely large, and the range of development to various industrial practical uses is limited.
【0025】シートの中空糸膜間隔及びDvは気液カ゛ス
交換装置の適用用途の要求性能に応じて本発明の範囲で
適宜選択することができる。The hollow fiber membrane interval and Dv of the sheet can be appropriately selected within the scope of the present invention according to the required performance of the application of the gas-liquid gas exchange device.
【0026】例えば、水からの溶存気体の脱気用として
使用される半導体製造用超純水の製造において、比較的
処理流量が少なく、溶存酸素濃度1ppb以下の高度の
脱気が要求されるサブシステムでの適用を目的とする場
合、中空糸間隔は120μm〜260μmが好ましく、
Dvは165μm〜260μmが好ましい。For example, in the production of ultrapure water for semiconductor production used for degassing of dissolved gas from water, a sub flow that requires a relatively low processing flow rate and a high degree of deaeration with a dissolved oxygen concentration of 1 ppb or less is required. For the purpose of application in a system, the interval between the hollow fibers is preferably 120 μm to 260 μm,
Dv is preferably from 165 μm to 260 μm.
【0027】また、電力用水の製造等の溶存酸素濃度5
0PPB程度の比較的低脱気水準の水を多量に必要とす
る用途には中空糸シートの中空糸膜の間隔は200μm
〜280μmが好ましく、Dvは200μm〜325μ
mが好ましい。In addition, the concentration of dissolved oxygen in the production of power water is 5%.
For applications requiring a large amount of water with a relatively low degassing level of about 0 PPB, the interval between the hollow fiber membranes of the hollow fiber sheet is 200 μm.
280 μm is preferable, and Dv is 200 μm to 325 μm.
m is preferred.
【0028】医療用途である人工肺に使用する場合、低
血流圧損と高い気体交換効率が要求されることから中空
糸膜シートの中空糸間隔は150μm〜260μmが好
ましく、Dvは215μm〜325μmであることが好
ましい。When used for an artificial lung for medical use, the interval between hollow fibers of the hollow fiber membrane sheet is preferably 150 μm to 260 μm, and Dv is 215 μm to 325 μm because low blood flow pressure loss and high gas exchange efficiency are required. Preferably, there is.
【0029】人工肺用途に於いて特に数日に亘る長期連
続使用を前提とするPCPS及びECMO等の用途にお
いては、中空糸間隔が180μm〜260mであり、D
vが230μm〜325μmが好適である。In applications such as PCPS and ECMO which are premised on long-term continuous use for several days in artificial lung applications, the interval between hollow fibers is 180 μm to 260 m, and D
v is preferably 230 μm to 325 μm.
【0030】本発明に適用する中空糸膜は適度の耐久性
と機械的強度及びガス透過性を有しておれば良くその素
材、製法、膜構造等特に制限は無く、例えば、膜素材と
してポリエチレン、ポリプロピレン、ポリブチレン、ポ
リ(4−メチルペンテン−1)等のポリオレフィン系樹
脂、ジメチルシロキサン等のシリコーン系樹脂、ポリテ
トラフルオロエチレン、パーフルオロアルコキシフッ素
樹脂等の各種フッ素樹脂、各種ポリイミド系樹脂が好適
に使用できる。The hollow fiber membrane applied to the present invention is not particularly limited as long as it has appropriate durability, mechanical strength and gas permeability, and there are no particular restrictions on its material, manufacturing method, membrane structure, and the like. Polyolefin resins such as polypropylene, polybutylene and poly (4-methylpentene-1), silicone resins such as dimethylsiloxane, various fluororesins such as polytetrafluoroethylene and perfluoroalkoxy fluororesins, and various polyimide resins are preferable. Can be used for
【0031】また、中空糸膜の膜構造においては、微多
孔膜、均質膜、不均質膜、複合膜、ウレタン等の薄膜を
微多孔膜で挟んだいわゆるサンドイッチ構造を有する各
種膜が適用できる。As the membrane structure of the hollow fiber membrane, various membranes having a so-called sandwich structure in which a thin film such as a microporous membrane, a homogeneous membrane, a heterogeneous membrane, a composite membrane, or a urethane is sandwiched between microporous membranes can be applied.
【0032】また、これら膜の製造法にも制限は無く例
えば、溶融法、湿式法、乾湿式等で製造された膜が適用
できる。The method for producing these films is not limited, and for example, films produced by a melting method, a wet method, a dry-wet method and the like can be applied.
【0033】特に、ポリ(4−メチルペンテン−1)系
樹脂を膜素材とする膜壁に緻密層を有する中空糸不均質
膜は酸素、窒素、炭酸ガス等のガスの透過性に優れ、疎
水性が高く水蒸気バリヤー性に優れ工業用及び、医療用
の気液ガス交換装置に最も好適である。中空糸膜の緻密
層の形成位置に特に制限は無く、中空糸膜の外表面及び
/又は内表面に形成していても良いが、特に中空糸膜の
外表面に緻密層を形成しているポリ(4−メチルペンテ
ン−1)系樹脂からなる中空糸膜は、血液の補体活性が
低く、血液との親和性に優れ、且つ長期に亘り血漿リーク
が無く、ガス交換性能の低下も無く外部灌流型人工肺用
として最も好適に適用される。また、ポリ(4−メチル
ペンテン−1)系樹脂は人工肺用として一般使用されて
いるポリプロピレンと比較し素材自体のガス透過性が約
10倍であり、本質的に中空糸膜壁を連通した微多孔部
分でのみしかガス交換を行わないポリプロピレン微多孔
膜と比較し、膜表面全体でガス交換を行うことができ極
めて好ましい。In particular, a heterogeneous hollow fiber membrane having a dense layer on the membrane wall made of a poly (4-methylpentene-1) -based resin has excellent permeability for gases such as oxygen, nitrogen and carbon dioxide, and is hydrophobic. It has high water vapor barrier properties and is most suitable for industrial and medical gas-liquid gas exchange equipment. The formation position of the dense layer of the hollow fiber membrane is not particularly limited, and may be formed on the outer surface and / or the inner surface of the hollow fiber membrane. However, the dense layer is particularly formed on the outer surface of the hollow fiber membrane. A hollow fiber membrane made of a poly (4-methylpentene-1) resin has a low complement activity of blood, has excellent affinity with blood, has no long-term plasma leak, and has no deterioration in gas exchange performance. It is most suitably applied for external perfusion type artificial lung. The poly (4-methylpentene-1) -based resin has a gas permeability of about 10 times that of the material itself as compared with polypropylene generally used for artificial lungs, and has essentially communicated with the hollow fiber membrane wall. Compared with a microporous polypropylene membrane in which gas exchange is performed only in the microporous portion, gas exchange can be performed on the entire membrane surface, which is extremely preferable.
【0034】溶融法によるポリ(4−メチルペンテン−
1)系樹脂を膜素材とする不均質膜については、例えば
特願平5−6656号公報、及び特公平7−12134
0号公報に開示されている。Poly (4-methylpentene) obtained by a melting method
1) Regarding a heterogeneous film using a base resin as a film material, for example, Japanese Patent Application No. 5-6656 and Japanese Patent Publication No. 7-12134
No. 0 discloses this.
【0035】また、湿式法もしくは乾湿式法等の溶剤を
使用し樹脂溶液の相分離を利用して膜を形成させるポリ
(4−メチルペンテン−1)系樹脂を膜素材とする不均
質膜は、例えば”Journal of Membrane Science 118(19
96)49-61”及び”POLYMER,1989,Vol 30,December ヘ゜ーシ゛
2279-2282”等に記載の方法を応用して公知の紡糸法に
より容易に製造する事ができる。本発明は、膜のガス透
過性の指標となる中空糸膜の酸素透過速度が5×10−
5[cm3(STP)/cm2/s/cmHg]〜350
×10−5[cm3(STP)/cm2/s/cmHg]
のポリ(4−メチルペンテン−1)系樹脂を膜素材とす
る不均質膜を適用する事を特長とし、適用用途分野に応
じて本発明の範囲内で最適なガス透過特性を有する膜を
選択できる。A heterogeneous film made of poly (4-methylpentene-1) -based resin, which forms a film by using a solvent such as a wet method or a dry-wet method and utilizing the phase separation of a resin solution, is used. For example, “Journal of Membrane Science 118 (19
96) 49-61 ”and“ POLYMER, 1989, Vol 30, December base
2279-2282 "etc., and can be easily produced by a known spinning method. In the present invention, the oxygen transmission rate of the hollow fiber membrane which is an index of gas permeability of the membrane is 5 × 10 5 −
5 [cm3 (STP) / cm2 / s / cmHg] to 350
× 10-5 [cm3 (STP) / cm2 / s / cmHg]
It is characterized by applying a heterogeneous film made of poly (4-methylpentene-1) -based resin as a film material, and selects a film having an optimum gas permeation characteristic within the scope of the present invention according to an application field. it can.
【0036】人工肺に適用する場合、膜の酸素透過速度
は好ましくは10×10−5[cm3(STP)/cm2
/s/cmHg]〜350×10−5[cm3(STP)
/cm2/s/cmHg]であり、さらに好ましくは2
5×10−5[cm3(STP)/cm2/s/cmH
g]〜350×10−5[cm3(STP)/cm2/s
/cmHg]である。酸素透過速度はASTM D14
34に準じて測定した値である。When applied to an artificial lung, the oxygen transmission rate of the membrane is preferably 10 × 10 −5 [cm 3 (STP) / cm 2
/ S / cmHg] to 350 x 10-5 [cm3 (STP)
/ Cm2 / s / cmHg], and more preferably 2
5 × 10 −5 [cm3 (STP) / cm2 / s / cmH
g] to 350 × 10 −5 [cm 3 (STP) / cm 2 / s
/ CmHg]. Oxygen transmission rate is ASTM D14
This is a value measured according to No. 34.
【0037】膜の酸素透過速度が5×10−5[cm3
(STP)/cm2/s/cmHg]以下であると、特に
血液からの炭酸ガスの除去能力に劣り、必要となる膜面
積の増大を招きコンパクトな人工肺の実現が困難とな
る。The oxygen transmission rate of the membrane is 5 × 10 −5 [cm 3
(STP) / cm2 / s / cmHg] or less, particularly, the ability to remove carbon dioxide from blood is inferior, and the required membrane area is increased, making it difficult to realize a compact oxygenator.
【0038】本発明の中空糸膜型気液ガス交換装置に適
用する、ガス交換にあずかる実質的な有効膜面積が大き
いポリ(4−メチルペンテン−1)系樹脂からなる不均
質膜の酸素透過速度の上限は350×10−5[cm3
(STP)/cm2/s/cmHg]である。Oxygen permeation through a heterogeneous membrane made of a poly (4-methylpentene-1) resin having a large effective membrane area for gas exchange and applied to the hollow fiber membrane type gas-liquid gas exchange apparatus of the present invention. The upper limit of the speed is 350 × 10-5 [cm3
(STP) / cm2 / s / cmHg].
【0039】膜の酸素透過速度が高い事自体による不都
合は特に無いものの、膜の酸素透過速度のさらなる増加
は、製膜時において血漿の漏出を許す膜壁を貫く大きな
孔径、いわゆるピンホールの発生の可能性を増長する結
果を招く。人工肺に適用する場合、膜の緻密層の緻密度
は連通孔の孔径は大きくとも0.04μm以下である事
が好ましくまたその面積開口率は3%以下である事が好
ましい。本発明はまた液流圧損を極めて低く抑え、気体
と液体との間で高効率でガス交換を行う方法を提示す
る。即ち、外部灌流型中空糸膜型気液カ゛ス交換装置にお
いて、中空糸膜の外径 が150μm〜390μmであ
り且つ隣り合う中空糸膜の間隔が120μm〜280μ
mとなるよう中空糸膜が実質的に平行に配列された中空
糸膜シートがDvが165μm〜325μmとなるよう
積層された状態で人工肺ハウジング内に組み込まれてい
ることを特徴とする中空糸膜型気液カ゛ス交換装置を使用
し、液体を積層された中空糸膜シート面に実質的に垂直
に横切るように流しガス交換を行う事を特徴とする。Although there is no particular inconvenience due to the high oxygen permeation rate of the membrane itself, a further increase in the oxygen permeation rate of the membrane is caused by the occurrence of a so-called pinhole, which is a large pore diameter penetrating the membrane wall that allows plasma to leak during membrane formation. Results in a greater likelihood of When applied to an artificial lung, the denseness of the dense layer of the membrane is preferably not more than 0.04 μm at the maximum, and the area aperture ratio is preferably not more than 3%. The present invention also provides a method for performing gas exchange between a gas and a liquid with high efficiency while keeping the liquid flow pressure loss extremely low. That is, in the external perfusion type hollow fiber membrane type gas-liquid gas exchange device, the outer diameter of the hollow fiber membrane is 150 μm to 390 μm, and the interval between adjacent hollow fiber membranes is 120 μm to 280 μm.
m, wherein the hollow fiber membrane sheets in which the hollow fiber membranes are arranged substantially parallel to each other so as to have a Dv of 165 μm to 325 μm are incorporated in the artificial lung housing in a state of being laminated. It is characterized in that gas is exchanged by using a membrane-type gas-liquid gas exchange device and flowing liquid substantially perpendicularly across the surface of the laminated hollow fiber membrane sheet.
【0040】液体を中空糸膜シートとクロスフローとす
ることにより液流の撹拌効率を高め、これにより、気体
ー液体系のガス交換効率の律速となっているガスの移動
に対する液体側の境膜の厚さを効率良く低減できる。こ
れにより極めて高いガス交換効率を実現できる。By making the liquid into a cross flow with the hollow fiber membrane sheet, the efficiency of stirring the liquid flow is increased, and thus the liquid-side boundary film for the gas movement, which is the rate-limiting gas-liquid system gas exchange efficiency. Can be efficiently reduced. Thereby, extremely high gas exchange efficiency can be realized.
【0041】驚くべき事に、本発明によれば、液体の流
量増加に伴う膜を介しての気体と液体間のガス移動効率
の向上度合いを特異的に高める事ができる。これにより
ガス交換能を大幅に向上を実現している。これは本発明
により、液体側のガス移動境膜層の薄膜化の液体流速依
存性を極めて大きくできる為であると推定している。む
ろんこれは本発明をなんら制限するものでは無い。Surprisingly, according to the present invention, the degree of improvement in the efficiency of gas transfer between the gas and the liquid through the membrane as the flow rate of the liquid increases can be specifically increased. As a result, the gas exchange ability is greatly improved. It is presumed that this is because the present invention can greatly increase the liquid flow velocity dependence of thinning the liquid-side gas transfer film layer. Of course, this does not limit the invention in any way.
【0042】本発明に記載のごとく中空糸膜シートを積
層する事によりクロスフローでの液流圧損が、中空糸膜
シートの中空糸の方向に平行して液体を流す場合の液流
圧損と比較し、極めて低くできる。これにより、クロス
フーロータイプの気液ガス交換装置を容易に構成するこ
とができる。By laminating the hollow fiber membrane sheets as described in the present invention, the liquid flow pressure loss in the cross flow is compared with the liquid flow pressure loss when the liquid flows in parallel to the direction of the hollow fibers in the hollow fiber membrane sheet. And extremely low. Thereby, a cross-fouro type gas-liquid gas exchange device can be easily configured.
【0043】本発明を実施するにあたり、本発明に記載
の外部灌流型中空糸膜型気液カ゛ス交換装置の好ましい実
施形態のいくつかの例のモデルを図1、図2、図3に示
す。In practicing the present invention, models of some preferred embodiments of the external perfusion type hollow fiber membrane type gas-liquid gas exchange apparatus according to the present invention are shown in FIGS. 1, 2 and 3.
【0044】図1は多孔のパイプの周りに中空糸膜シー
トを巻気付け、円筒状のハウジングに組み込んだ外部灌
流型気液ガス交換装置のモデル図である。図中実線で示
す矢印は液体の流れをモデル的に示している。図中6は
樹脂封止部であり、ウレタン樹脂及び/又はエポキシ樹
脂及び/又はシリコーン樹脂等を使用し中空糸をハウジ
ングに液密に支持固定している。中空糸膜は両封止樹脂
の外側にその内側を開口している。人工肺として使用す
る場合は図中1より血液を中空糸簾を巻き付けた多孔パ
イプに流し入れる。血液は主にその多孔部より中空糸簾
巻体の半径方向に均等に流れ、シート巻き体とハウジン
グの空間部を流れて図中2から排出される。この間、図
中3より、例えば酸素混合ガスを適切な流量で中空糸内
部に流し込み中空糸膜を介して血液に酸素を供給すると
共に、血液から炭酸ガスを除去する。また、必要に応じ
て、例えば、多孔パイプの内部及び/又は外側にフィン
タイプやチューブタイプ゜等の熱交換機構を付与する事
ができる。図3に示す外部灌流型気液ガス交換装置のモ
デル図は中心の多孔パイプを中央の仕切で二つの部分に
分割している事を特長としている。図中1より流し入れ
た液体は多孔パイプの多孔部より中空糸膜シート巻き体
の中空糸間隔をクロスフローで半径方向に流れ、再び中
空糸膜シートをクロスして多孔パイプ内に流入して図中
2より流出する。FIG. 1 is a model diagram of an external perfusion type gas-liquid gas exchange device in which a hollow fiber membrane sheet is wound around a porous pipe and incorporated in a cylindrical housing. Arrows shown by solid lines in the figure schematically show the flow of the liquid. In the figure, reference numeral 6 denotes a resin sealing portion, which uses a urethane resin and / or an epoxy resin and / or a silicone resin to support and fix the hollow fibers to the housing in a liquid-tight manner. The hollow fiber membrane has an opening inside the outside of both sealing resins. When used as an artificial lung, blood is poured into a perforated pipe around which a hollow fiber is wound from 1 in the figure. The blood mainly flows uniformly from the porous portion in the radial direction of the hollow fiber wrapper, flows through the space between the sheet wrapper and the housing, and is discharged from 2 in the figure. In the meantime, from FIG. 3, for example, an oxygen mixed gas is flowed into the inside of the hollow fiber at an appropriate flow rate to supply oxygen to the blood via the hollow fiber membrane and remove carbon dioxide from the blood. If necessary, for example, a heat exchange mechanism such as a fin type or a tube type II can be provided inside and / or outside the perforated pipe. The model diagram of the external perfusion type gas-liquid gas exchange device shown in FIG. 3 is characterized in that the central perforated pipe is divided into two parts by a central partition. In the figure, the liquid poured from 1 flows radially in a cross flow from the porous portion of the porous pipe through the hollow fiber interval of the hollow fiber membrane sheet winding, crosses the hollow fiber membrane sheet again, and flows into the porous pipe. It flows out from the middle 2.
【0045】人工肺として使用する場合、血液を流すと
同時に図3中3より酸素混合ガスを中空糸の内側に流し
入れガス交換を行う事ができる。また、工業用途として
脱気された水等を製造する場合、図3中の3及び/又は
4から真空ポンプ等で中空糸内部を減圧し液体の脱気を
行うことができる。When used as an artificial lung, it is possible to exchange oxygen by injecting an oxygen mixed gas into the inside of the hollow fiber from 3 in FIG. When producing degassed water or the like for industrial use, the inside of the hollow fiber can be depressurized by a vacuum pump or the like from 3 and / or 4 in FIG. 3 to degas the liquid.
【0046】図3にモデルで示す基本構造を有する気液
ガス交換装置は、液体がシートとクロスして流れる実質
のシート厚を厚くでき、液流速度を上げる事ができる。
これにより、液体側の撹拌効果向上させ、液側境膜をさ
らに薄くでき、ガス交換効率の大幅な向上が期待でき
る。The gas-liquid gas exchange device having the basic structure shown in the model in FIG. 3 can increase the substantial sheet thickness in which liquid flows crossing the sheet, and can increase the liquid flow velocity.
As a result, the stirring effect on the liquid side can be improved, the liquid-side boundary film can be further thinned, and a significant improvement in gas exchange efficiency can be expected.
【0047】図4は角筒型ハウジングに中空糸膜シート
を積層し組み込んだ形状を有する気液ガス交換装置のモ
デル図である。人工肺用として使用する場合は図中1よ
り血液を流し入れ中空糸シート積層面に垂直に血液を流
しガス交換を行う事ができる。また必要に応じて血液入
り側に熱交換機構を付与する事ができる。FIG. 4 is a model diagram of a gas-liquid gas exchange device having a shape in which hollow fiber membrane sheets are laminated and incorporated in a rectangular cylindrical housing. When used as an artificial lung, gas can be exchanged by pouring blood from FIG. 1 and flowing blood perpendicularly to the lamination surface of the hollow fiber sheet. If necessary, a heat exchange mechanism can be provided on the blood entry side.
【0048】[0048]
【実施例】実施例1 中空糸外径260μm、内径205μm、膜の酸素透過
速度40×10−5[cm3(STP)/cm2/s/c
mHg]のポリ(4−メチルペンテン−1)系樹脂を素
材とする中空糸不均質膜を使用し、20デニールのポリ
エステルのマルチフィラメントを縦糸として中空糸打ち
込み本数を21本/cmとした中空糸間隔が227μm
の中空糸膜シートをラッセル編みにより形成した。この
中空糸膜シートを相当直径Dvが320μmとなるよう
に図5にモデル図で示す様に折り畳み積層した。次いで
この中空糸シート積層体を図4にモデル図で示すごとく
角筒型モジュールに組み込み、中空糸の両端をポリウレ
タン樹脂で公知の遠心封止法により封止し、モジュール
の両端面に中空の内側が開口するよう端面をカッティン
グした。また、液体(血液)がシート折り畳み体の側面
からリークしないようにシート積層体の両側面とハウジ
ング側面をウレタン樹脂を使用し接着し、血液が通過す
る有効断面積が約50cm2で有効膜面積(中空糸外
径)が約1.2m2である角筒型のモジュールを作成し
た。AAMI(ASSOCIATION FOR THE ADOVANCEMENT OF
MEDICAL INSTRUMENTATION)に準じ、酸素飽和度:65
%、ヘモグロビン:12g/dL、過剰塩基:0mEq/
L、溶存二酸化炭素分圧:45mmHg、温度37℃に
調整した牛血を使用して、図4中1より牛血を流し入れ
ると同時に図中3より酸素ガスをV/Q=1(ガス流量/
血液流量)で中空糸内部に流し入れモジュールのガス交
換性能能を測定した。標準O2(酸素)血液流量が6.5
L/minであり、標準CO2(二酸化炭素)血液流量
が5.8L/minであった。またモジュールを流れる
血液流量が6L/minの時の血流圧力損失は48mm
Hgであった。Example 1 Hollow fiber outer diameter 260 μm, inner diameter 205 μm, oxygen transmission rate of the membrane 40 × 10 −5 [cm 3 (STP) / cm 2 / s / c]
mHg], using a hollow fiber heterogeneous membrane made of a poly (4-methylpentene-1) -based resin as a material, and using a 20-denier polyester multifilament as a warp yarn and setting the number of hollow fibers to 21 / cm. 227 μm spacing
Was formed by Russell knitting. This hollow fiber membrane sheet was folded and laminated as shown in the model diagram in FIG. 5 so that the equivalent diameter Dv became 320 μm. Next, this hollow fiber sheet laminate is assembled into a rectangular tube type module as shown in the model diagram in FIG. 4, and both ends of the hollow fiber are sealed with a polyurethane resin by a known centrifugal sealing method. The end face was cut so as to open. Further, both sides of the sheet laminate and the side of the housing are bonded using urethane resin so that liquid (blood) does not leak from the side of the folded sheet, and the effective cross-sectional area through which blood passes is about 50 cm2 and the effective membrane area ( A rectangular tube type module having a hollow fiber outer diameter of about 1.2 m2 was prepared. AAMI (ASSOCIATION FOR THE ADOVANCEMENT OF
MEDICAL INSTRUMENTATION), oxygen saturation: 65
%, Hemoglobin: 12 g / dL, excess base: 0 mEq /
L, using a bovine blood adjusted to a partial pressure of dissolved carbon dioxide of 45 mmHg and a temperature of 37 ° C., pouring the bovine blood from 1 in FIG. 4 and simultaneously converting the oxygen gas from V / Q = 1 (gas flow rate /
(Gas flow rate), the gas exchange performance of the module poured into the hollow fiber was measured. Standard O 2 (oxygen) blood flow of 6.5
L / min, and the standard CO 2 (carbon dioxide) blood flow rate was 5.8 L / min. The blood flow pressure loss when the blood flow through the module is 6 L / min is 48 mm.
Hg.
【0049】ここで、標準O2血液流量とは、37℃で
12g/dLのHbを含有し、O2飽和度65%で過剰
塩基(BE)0の血液が、人工肺を通ることによりその
O2含有量が45mL/L(標準状態)だけ増加させる
ことのできる最大血液流量を示し、標準CO2血流量と
は37℃で12g/dLのHbを含有し、O2飽和度6
5%で過剰塩基(BE)0の血液が、人工肺を通ること
によりそのCO2含有量が38mL/L(標準状態)だ
け減少させることのできる最大血液流量を示す。Here, the standard O 2 blood flow rate means that the blood containing 12 g / dL of Hb at 37 ° C., 65% O 2 saturation, and 0 excess base (BE) is passed through an artificial lung. It indicates the maximum blood flow at which the O 2 content can be increased by 45 mL / L (standard condition), which means that the standard CO 2 blood flow contains 12 g / dL of Hb at 37 ° C. and an O 2 saturation of 6
5% excess base (BE) 0 blood shows the maximum blood flow rate at which its CO 2 content can be reduced by 38 mL / L (standard condition) by passing through an artificial lung.
【0050】実施例2 外径225μm、内径170μm、膜の酸素透過速度5
4×10−5[cm3(STP)/cm2/s/cmHg]のポリ
(4−メチルペンテン−1)系樹脂を素材とする中空糸
膜不均質膜を使用し、20デニールのポリエステルのマ
ルチフィラメントを縦糸として中空糸打ち込み本数を2
4本/cmとし、中空糸間隔を200μmとした中空糸
膜シートをラッセル編みにより形成した。このシートを
相当直径が280μmとなるように積層し、実施例1と
同様に血液が通過する有効面積が約50m2で有効巻き
面積が1.2m2である角筒型のモジュールを作成し
た。実施例1と同様に牛血を使用してモジュールのガス
交換性能を測定した。結果、標準O2血液流量が15.
3L/minであり、標準CO2血液流量が13L/m
inであった。またモジュールを流れる血液流量が6L
/minの時の血流圧力損失は52mmHgであった。Example 2 O.D. 225 μm, I.D. 170 μm, oxygen permeation rate of membrane 5
20 denier polyester multifilament using a hollow fiber membrane heterogeneous membrane made of 4 × 10-5 [cm3 (STP) / cm2 / s / cmHg] poly (4-methylpentene-1) -based resin The number of hollow fibers driven into the warp is 2
A hollow fiber membrane sheet having 4 fibers / cm and a hollow fiber interval of 200 μm was formed by Russell knitting. This sheet was laminated so as to have an equivalent diameter of 280 μm, and a rectangular tube-shaped module having an effective area of about 50 m 2 for passing blood and an effective winding area of 1.2 m 2 was prepared as in Example 1. The gas exchange performance of the module was measured using bovine blood in the same manner as in Example 1. As a result, the standard O 2 blood flow was 15.
3 L / min and standard CO 2 blood flow of 13 L / m
was in. The blood flow through the module is 6L
The blood flow pressure loss at / min was 52 mmHg.
【0051】実施例3 外径205μm、内径150μm、膜の酸素透過速度が
67×10−5[cm3(STP)/cm2/s/cmHg]
のポリ(4−メチルペンテン−1)系樹脂を素材とする
中空糸膜不均質膜を使用し、20デニールのポリエステ
ルのマルチフィラメントを縦糸として中空糸の打ち込み
本数を約28本/cmとし、中空糸間隔を約158μm
とした中空糸膜シートをラッセル編みにより作成した。
このシートを相当直径が215μmとなるよう積層
し、実施例1と同様に血液が通過する有効面積が約50
cm2で有効巻き面積が1.2m2である角筒型のモジ
ュールを作成した。実施例1と同様に牛血を使用してモ
ジュールのガス交換能を測定した。血液流量が16L/
minの時に酸素移行量が48mL/minであり標準
O2血液流量は測定不能であった。標準CO2血液流量は
15.2mL/minであった。またモジュールを流れ
る血液流量が6L/minの時の血流圧力損失は120
mmHgであった。Example 3 The outer diameter was 205 μm, the inner diameter was 150 μm, and the oxygen permeation rate of the membrane was 67 × 10 −5 [cm 3 (STP) / cm 2 / s / cmHg].
Using a hollow fiber membrane heterogeneous membrane made of poly (4-methylpentene-1) -based resin described above, using 20 denier polyester multifilaments as warp yarns and setting the number of hollow fibers to be about 28 / cm, Approximately 158μm
The hollow fiber membrane sheet was prepared by Russell knitting.
This sheet is laminated so that the equivalent diameter is 215 μm, and the effective area through which blood passes is about 50 as in Example 1.
A square tube type module having an effective winding area of 1.2 m 2 in cm 2 was prepared. As in Example 1, the gas exchange capacity of the module was measured using bovine blood. Blood flow is 16L /
At the time of min, the oxygen transfer rate was 48 mL / min, and the standard O 2 blood flow rate could not be measured. The standard CO 2 blood flow was 15.2 mL / min. When the blood flow through the module is 6 L / min, the blood pressure loss is 120
mmHg.
【0052】実施例4 外径330μm、内径220μm、膜の酸素透過速度が
72×10−5[cm3(STP)/cm2/cmHg]のポ
リ(4−メチルペンテ−1)系樹脂を素材とした中空糸
膜不均質を使用し、20デニールのポリエステルからな
るマルチフィラメントを縦糸として中空糸打ち込み本数
21本/cmとし、中空糸間隔約154μmとした中空
糸シートをラッセル編みににより形成した。この中空糸
シートを図1中7にモデル図で示す多数の孔をあけた直
径約2cmの円筒パイプに、パイプと中空糸シートの巻
き初めのクリアランスが約0.2cmであり、中空糸シ
ートの占める部分の相当直径が290μmとなるようス
パイラル状に巻きつけた。次いでこの中空糸シート巻き
体を、内径約7.5cmの円筒状ハウジングに組み入
れ、モジュールの両端をポリウレタン樹脂を使用し公知
の遠心封止法により封止し、次いでモジュールの両端面
をカッティングし中空糸膜の内側を開口させた。中空糸
シート巻き体の有効長が約6cmで、中空糸シート巻体
の外周部と円筒ハウジングとのクリアランスが約0.5
cmで、中空糸有効膜面積が1.2m2の円筒型モジュ
ールを作成した。Example 4 Hollow made of poly (4-methylpente-1) resin having an outer diameter of 330 μm, an inner diameter of 220 μm, and an oxygen permeation rate of the membrane of 72 × 10 −5 [cm 3 (STP) / cm 2 / cmHg]. A hollow fiber sheet was formed by Russell knitting using a non-homogeneous fiber membrane, a multifilament made of 20 denier polyester as a warp, the number of hollow fibers being driven at 21 fibers / cm, and the interval between hollow fibers of about 154 μm. This hollow fiber sheet is formed into a cylindrical pipe having a diameter of about 2 cm and having a large number of holes as shown in the model diagram in FIG. 1 and the clearance at the beginning of winding of the pipe and the hollow fiber sheet is about 0.2 cm. It was wound spirally so that the equivalent diameter of the occupied portion was 290 μm. Next, this hollow fiber sheet roll is incorporated into a cylindrical housing having an inner diameter of about 7.5 cm, both ends of the module are sealed by a known centrifugal sealing method using a polyurethane resin, and then both ends of the module are cut to form a hollow. The inside of the thread membrane was opened. The effective length of the hollow fiber sheet winding is about 6 cm, and the clearance between the outer periphery of the hollow fiber sheet winding and the cylindrical housing is about 0.5 cm.
cm and a cylindrical module having a hollow fiber effective membrane area of 1.2 m2.
【0053】実施例1と同様に牛血を調整し、図1中1
より牛血を流し入れると同時に図中3より酸素ガスをV
/Q=1で中空糸内側に流し入れガス交換性能を測定し
た。結果、標準O2血液流量が7.8L/minであ
り、標準CO2血液流量が6.3L/minであった。Bovine blood was prepared in the same manner as in Example 1, and 1 in FIG.
At the same time, the cow gas is poured and oxygen gas
At / Q = 1, the gas exchange performance was measured by pouring inside the hollow fiber. As a result, the standard O 2 blood flow rate was 7.8 L / min, and the standard CO 2 blood flow rate was 6.3 L / min.
【0054】また、モデル実験により中心部の多孔管か
ら流れ出た血液は中空糸巻き体をほぼ垂直に半径方向に
流れ中空糸シート巻き体とモジュール外側ハウジングと
の間隙に達し図1中2より流出する事を確認した。In the model experiment, the blood flowing out of the central perforated tube flows through the hollow fiber wound body in the radial direction almost vertically and reaches the gap between the hollow fiber sheet wound body and the outer housing of the module and flows out from 2 in FIG. I confirmed the thing.
【0055】実施例5 実施例2で使用した中空糸膜シートを使用し、図3中9
にモデル図で示す中心部に仕切を設けた外周に多数の孔
を有する直径約30mmの円筒パイプに、パイプと中空
糸シートの巻き初めのクリアランスが約0.2cmであ
り、中空糸シートの占める部分の相当直径が265μm
となるようにスパイラル状に巻きつけた。次いでこの中
空糸シート巻き体を、内径約7cmの円筒状ハウジング
に組み入れ、モジュールの両端をポリウレタン樹脂を使
用し公知の遠心封止法により封止し、次いでモジュール
の両端面をカッティングし中空糸の内側を開口させた。
中空糸シート巻き体の有効長が約6cmで、中空糸膜有
効膜面積が1.2m2の円筒型モジュールを作成した。Example 5 Using the hollow fiber membrane sheet used in Example 2, 9 in FIG.
As shown in the model diagram, in a cylindrical pipe having a large number of holes on the outer periphery provided with a partition at the center, the clearance at the beginning of winding of the pipe and the hollow fiber sheet is about 0.2 cm, and the hollow fiber sheet occupies The equivalent diameter of the part is 265μm
And wound it in a spiral. Next, this hollow fiber sheet winding body is assembled into a cylindrical housing having an inner diameter of about 7 cm, both ends of the module are sealed by a known centrifugal sealing method using a polyurethane resin, and then both ends of the module are cut to form a hollow fiber. The inside was opened.
A cylindrical module having an effective length of a hollow fiber sheet roll of about 6 cm and an effective area of a hollow fiber membrane of 1.2 m2 was prepared.
【0056】実施例1と同様に牛血を調整し、図3中1
より牛血を流し入れると同時に図中3より酸素ガスをV
/Q=1で中空糸内側に流し入れガス交換性能を測定し
た。血液流量が16mL/minにおいて、血液への酸
素移行量は約50mL/minで、CO2除去量は約4
2mL/minであり、酸素、二酸化炭素共に標準血液
流量は測定できないほど大きかった。また、血液流量6
L/minの時の血流圧力損失は77mmHgであっ
た。Bovine blood was adjusted in the same manner as in Example 1, and 1 in FIG.
At the same time, the cow gas is poured and oxygen gas
At / Q = 1, the gas exchange performance was measured by pouring inside the hollow fiber. At a blood flow rate of 16 mL / min, the oxygen transfer rate to the blood is about 50 mL / min, and the CO 2 removal rate is about 4
It was 2 mL / min, and both oxygen and carbon dioxide were so large that the standard blood flow could not be measured. In addition, blood flow 6
The blood flow pressure loss at L / min was 77 mmHg.
【0057】また、モデル実験により図3に実線の矢印
で流れを示すように、中心部の多孔管から流れ出た血液
は中空糸シート巻き体をほぼ垂直に半径方向に流れ中空
糸シート巻き体とモジュール外側ハウジングとの間隙に
達し、次いで中空糸膜シート巻き体をほぼ垂直に多孔パ
イプ側に流れ込み図3中2より流出する事を確認した。As shown by the solid arrows in FIG. 3 in the model experiment, the blood flowing out of the central perforated tube flows almost vertically through the hollow fiber sheet winding in the radial direction, and the blood flows out of the hollow fiber sheet winding. It was confirmed that the space reached the gap with the outer housing of the module, and then the wound hollow fiber membrane sheet flowed almost vertically to the perforated pipe side and flowed out from 2 in FIG.
【0058】実施例6 中空糸外径が180μm、内径120μm、膜の酸素透
過速度が25×10−5[cm3/Cm2/cmHg]のポ
リ(4−メチルペンテ−1)系樹脂を素材とした中空糸
不均質膜を使用し、20デニールのポリエステルからな
るマルチフィラメントを縦糸として中空糸打ち込み本数
31本/cmとし、中空糸間隔約147μmとした中空
糸膜シート 作成した。このシートを外周に多数の穴を
開口させた呼び径約3cmのパイプにシート巻き体の相
当直径が190μmとなるように巻付け、中空糸膜外径
基準の膜面積が90m2のシート巻き体を作成した。こ
のシート巻き体を呼び径25cmの硬質塩化ビニルパイ
プからなる長さ約50cmのモジュールケースに装填
し、封止樹脂としてウレタン樹脂及びエポキシ樹脂を使
用して公知の遠心封止法により第1図にモデル図で示す
工業用の外部灌流型モジュールを作成した。図1中の3
及び4を排気速度約48m3/hrの油回転式真空ポン
プに接続し、中空糸膜の内側の真空圧力を約23mmH
gに保ちながら、図1中1より25℃の空気で飽和した
水を流し入れた。図1中2より流れ出た脱気水の溶存酸
素濃度をポーラグラフィック酸素濃度計により測定し
た。溶存酸素濃度が約1ppbに脱気された水を約36
L/min得ることができた。Example 6 A hollow fiber made of a poly (4-methylpente-1) resin having a hollow fiber outer diameter of 180 μm, an inner diameter of 120 μm, and an oxygen permeation rate of 25 × 10 −5 [cm 3 / Cm 2 / cmHg] was used. Using a heterogeneous yarn membrane, a hollow fiber membrane sheet was prepared in which multifilaments made of 20 denier polyester were used as warp yarns and the number of hollow fibers was 31 / cm and the interval between hollow fibers was about 147 μm. This sheet is wound around a pipe having a nominal diameter of about 3 cm having a large number of holes opened on the outer periphery so that the equivalent diameter of the sheet winding becomes 190 μm, and a sheet winding having a membrane area based on the outer diameter of the hollow fiber membrane of 90 m2 is wound. Created. This sheet wound body is loaded into a module case of about 50 cm in length made of a hard vinyl chloride pipe having a nominal diameter of 25 cm, and a urethane resin and an epoxy resin are used as a sealing resin, as shown in FIG. 1 by a known centrifugal sealing method. An industrial external perfusion module was created as shown in the model diagram. 3 in FIG.
And 4 were connected to an oil rotary vacuum pump having a pumping speed of about 48 m3 / hr, and the vacuum pressure inside the hollow fiber membrane was set to about 23 mmH.
g, water saturated with air at 25 ° C. from 1 in FIG. 1 was poured. The dissolved oxygen concentration of the degassed water flowing out from 2 in FIG. 1 was measured by a polarographic oximeter. The water degassed to a dissolved oxygen concentration of about 1 ppb
L / min could be obtained.
【0059】比較例1 外径260μm、内径205μm、膜の酸素透過速度3
0×10−5[cm3(STP)/cm2/s/cmH
g]のポリ(4−メチルペンテン−1)系樹脂を素材と
する 中空糸不均質膜を使用し、30デニールのポリエ
ステルのマルチフィラメントを縦糸として中空糸打ち込
み本数を22本/cmとした中空糸間隔を204μmの
中空糸シートをラッセル編みにより形成した。このシー
トを相当直径Dvが360μmとなるように積層し、実
施例1と同様に血液が通過する有効断面積が50cm2
で有効膜面積が(中空糸外径基準)が1.2m2である
角筒型のモジュールを作成した。Comparative Example 1 Outer diameter 260 μm, inner diameter 205 μm, oxygen permeation rate 3 of membrane
0 × 10-5 [cm3 (STP) / cm2 / s / cmH
g], using a hollow fiber heterogeneous membrane made of poly (4-methylpentene-1) -based resin as a raw material, and using 30 denier polyester multifilaments as warp yarns and forming hollow fibers into 22 / cm hollow fibers. A hollow fiber sheet having an interval of 204 μm was formed by Russell knitting. This sheet was laminated so that the equivalent diameter Dv became 360 μm, and the effective cross-sectional area through which blood passed was 50 cm 2 as in Example 1.
Thus, a prismatic module having an effective membrane area of 1.2 m 2 (based on the outer diameter of the hollow fiber) was prepared.
【0060】実施例1と同様に牛血を使用してガス交換
性能を測定した。結果、標準O2血液流量が4.2L/
minであり、標準CO2血液流量が3.8L/min
であった。まモジュールを流れる血液流量が6L/mi
nの時の血流圧力損失は46mmHgであった。Gas exchange performance was measured using bovine blood in the same manner as in Example 1. As a result, the standard O 2 blood flow was 4.2 L /
min, and the standard CO 2 blood flow rate is 3.8 L / min.
Met. The blood flow through the module is 6L / mi
The blood pressure loss at the time of n was 46 mmHg.
【0061】比較例2 外径約260μm、内径約200μm、膜の酸素透過速
度が約400×10−5[cm3 /cm2/s/cmHg]
のポリプロピレン系樹脂を素材とする中空糸微多孔膜を
使用し、30デニールのポリエステルからなるマルチフ
ィラメントを縦糸として中空糸打ち込み本数を18本/
cmとし、中空糸間隔を313μmとした中空糸シート
を形成した。このシートを相当直径Dvが275μmと
なるよう積層し、実施例1と同様に血液が通過する有効
断面積が約50cm2で有効膜面積が1.2m2である
角筒型のモジュールを作成した。実施例1と同様に牛血
を使用してモジュールのガス交換性能を測定した。結
果、標準O2血液流量が2.9L/minであり、標準
CO2血液流量が2.5L/minであった。またモジ
ュールを流れる血液流量が6L/minの時の血流圧力
損失は46mmHgであった。Comparative Example 2 The outer diameter is about 260 μm, the inner diameter is about 200 μm, and the oxygen transmission rate of the membrane is about 400 × 10 −5 [cm 3 / cm 2 / s / cmHg].
Using a hollow fiber microporous membrane made of polypropylene resin as a material, the number of hollow fibers driven is 18 / multifilament made of 30 denier polyester.
cm, and a hollow fiber sheet having a hollow fiber interval of 313 μm was formed. This sheet was laminated so that the equivalent diameter Dv was 275 μm, and a rectangular tube type module having an effective sectional area of about 50 cm 2 through which blood passed and an effective membrane area of 1.2 m 2 was prepared as in Example 1. The gas exchange performance of the module was measured using bovine blood in the same manner as in Example 1. As a result, the standard O 2 blood flow rate was 2.9 L / min, and the standard CO 2 blood flow rate was 2.5 L / min. The blood flow pressure loss when the blood flow through the module was 6 L / min was 46 mmHg.
【0062】比較例3 外径約380μm、内径約330μm、膜の酸素透過速
度が約700×10−5[cm3 /cm2/s/cmHg]
のポリプロピレン系ポリマーを素材とする中空糸微多孔
膜を使用し、30デニールのポリエステルからなるマル
チフィラメントを縦糸として中空糸打ち込み本数を17
本/cmとし、中空糸間隔を約220μmとした中空糸
シートを形成した。この中空糸シートを相当直径Dvが
約470μmとなるよう積層し、実施例1と同様に血液
が通過する有効面積が約50cm2で有効巻き面積が
1.2m2である角筒型のモジュールを作成した。実施
例1と同様に牛血を使用してモジュールのガス交換性能
を測定した。結果、標準O2血液流量が2.3L/mi
nであり、標準CO2血液流量が2.2L/minであ
った。またモジュールを流れる血液流量が6L/min
の時の血流圧力損失は42mmHgであった。Comparative Example 3 The outer diameter is about 380 μm, the inner diameter is about 330 μm, and the oxygen transmission rate of the membrane is about 700 × 10 −5 [cm 3 / cm 2 / s / cm Hg].
The hollow fiber microporous membrane made of polypropylene polymer is used, and the number of hollow fibers to be driven is 17 using multifilaments made of 30 denier polyester as warp yarns.
The hollow fiber sheet was formed with the number of fibers / cm and the interval between the hollow fibers being about 220 μm. This hollow fiber sheet was laminated so that the equivalent diameter Dv was about 470 μm, and a rectangular tube type module having an effective area for blood passage of about 50 cm 2 and an effective winding area of 1.2 m 2 was prepared as in Example 1. . The gas exchange performance of the module was measured using bovine blood in the same manner as in Example 1. As a result, the standard O 2 blood flow was 2.3 L / mi.
n, and the standard CO 2 blood flow was 2.2 L / min. The blood flow rate through the module is 6 L / min.
At that time, the blood flow pressure loss was 42 mmHg.
【0063】[0063]
【発明の効果】中空糸膜シートを積層してモジュールに
組み込んだ外部灌流型気液ガス交換装置において、中空
糸膜の外径及び、実質的に中空糸を平行に配列したシー
トの中空糸膜間隔及び、(式1) Dv=4×(シート積層体の占める全空間体積)/(中
空糸膜の全有効外表面積) で表される相当直径を規定し、液体をシート積層面にク
ロスして流す事により外部灌流型気液ガス交換装置のガ
ス交換効率を大幅に向上できる。特に、血液への優れた
酸素供給能力と、血液からの優れた二酸化炭素除去能力
が要求され、且つ小型で、低プライミング量で、且つ低
血流圧損であることが要求される人工肺に最適に適用で
きる。According to the present invention, in an external perfusion type gas-liquid gas exchange device in which hollow fiber membrane sheets are stacked and assembled into a module, the outer diameter of the hollow fiber membrane and the hollow fiber membrane of a sheet in which hollow fibers are arranged substantially in parallel are provided. The distance and the equivalent diameter expressed by (Expression 1) Dv = 4 × (total space volume occupied by the sheet laminate) / (total effective outer surface area of the hollow fiber membrane) are defined, and the liquid is crossed over the sheet laminate surface. The gas exchange efficiency of the external perfusion type gas-liquid gas exchange device can be greatly improved by flowing the gas. Particularly, it is most suitable for an artificial lung that requires excellent oxygen supply capacity to blood and excellent ability to remove carbon dioxide from blood, and is required to be small, low in priming amount, and low in blood pressure drop. Applicable to
【0064】[0064]
【図1】本発明の実施例で用いた円筒型の外部灌流型気
液ガス交換装置の構造を示すモデル図であり、図中矢印
は液体の流れのモデルを示す。FIG. 1 is a model diagram showing a structure of a cylindrical external perfusion type gas-liquid gas exchange device used in an embodiment of the present invention, and arrows in the figure show a model of a liquid flow.
【図2】図1及び図3に構造のモデル図を示す円筒型の
外部灌流型気液ガス交換装置に組み込んだ中空糸膜シー
トの積層状態を示すモデル図である。FIG. 2 is a model diagram showing a laminated state of hollow fiber membrane sheets incorporated in a cylindrical external perfusion type gas-liquid gas exchange device whose model diagrams are shown in FIGS. 1 and 3.
【図3】本発明の実施例で用いた多孔パイプの中心部に
仕切を有する円筒型の外部灌流型ガス交換装置の構造モ
デル図である。図中矢印は液体の流れのモデルを示す。FIG. 3 is a structural model diagram of a cylindrical external perfusion gas exchange device having a partition at the center of a perforated pipe used in an embodiment of the present invention. The arrow in the figure indicates a model of the flow of the liquid.
【図4】本発明で用いた角筒型の外部灌流型気液ガス交
換装置の構造モデル図であり、図中矢印は液体の流れの
モデルを示す。FIG. 4 is a structural model diagram of an external perfusion type gas-liquid gas exchange device of a rectangular tube type used in the present invention, wherein arrows in the figure indicate models of liquid flow.
【図5】図4の角型の外部灌流型気液ガス交換装置に組
み込んだ中空糸膜シートの積層状態を示すモデル図であ
る。FIG. 5 is a model diagram showing a laminated state of hollow fiber membrane sheets incorporated in the rectangular external perfusion type gas-liquid gas exchange device of FIG.
1,2 液体流入/流出口 3,4 ガス流入/流出口,脱気口 5 中空糸膜 6 封止樹脂部 7 多孔パイプ 8 中空糸膜シート縦糸 9 多孔パイプ 1, 2 Liquid inflow / outflow port 3, 4 Gas inflow / outflow port, deaeration port 5 Hollow fiber membrane 6 Sealing resin part 7 Perforated pipe 8 Hollow fiber membrane sheet warp 9 Perforated pipe
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA03 AA05 AA25 BB06 CC06 GG02 KK15 KK19 KK23 LL05 LL12 LL13 PP08 PP13 PP16 4D006 GA32 HA02 HA05 HA08 HA19 JA02B JA02Z JA25A JA25B JA25Z MA01 MA06 MA22 MA23 MA25 MA31 MA33 MB03 MC22 MC22X MC23 MC28 MC30 MC58 MC65 NA04 NA05 NA21 PA10 PB02 PB09 PB62 PB64 PC02 PC12 PC31 PC44 PC45 PC48 4D011 AA17 AC10 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4C077 AA03 AA05 AA25 BB06 CC06 GG02 KK15 KK19 KK23 LL05 LL12 LL13 PP08 PP13 PP16 4D006 GA32 HA02 HA05 HA08 HA19 JA02B JA02Z JA25A JA25B JA25Z MA01 MA06 MA22 MA23 MC22 MC28 MC30 MC58 MC65 NA04 NA05 NA21 PA10 PB02 PB09 PB62 PB64 PC02 PC12 PC31 PC44 PC45 PC48 4D011 AA17 AC10
Claims (4)
おいて、中空糸膜の外径が150μm〜390μmであ
り、中空糸膜の間隔が120μm〜280μmである中
空糸膜が実質的に平行に配列された中空糸膜シートを使
用し、(式1) Dv=4×(シート積層体の占める全空間体積)/(中
空糸膜の全有効外表面積) で計算される相当直径(Dv)が165μm〜325μ
mとなるように積層された状態でハウジング内に組み込
まれていることを特徴とする外部灌流型中空糸膜型気液
ガス交換装置。In an external perfusion type hollow fiber membrane type gas-liquid gas exchange apparatus, the hollow fiber membrane having an outer diameter of 150 μm to 390 μm and an interval between the hollow fiber membranes of 120 μm to 280 μm is substantially used. Using hollow fiber membrane sheets arranged in parallel, the equivalent diameter (Dv) calculated by (Equation 1) Dv = 4 × (total space volume occupied by the sheet laminate) / (total effective external surface area of the hollow fiber membrane) ) Is 165 μm to 325 μm
m. An external perfusion type hollow fiber membrane type gas-liquid gas exchange device characterized in that it is incorporated in a housing in a state of being stacked so as to be m.
であり、且つ中空糸膜シートの中空糸膜間隔が150μ
m〜260μmであり、且つDvが215μm〜325
μmであることを特徴とする請求項 1記載の外部灌流
型中空糸膜型気液ガス交換装置。2. The hollow fiber membrane has an outer diameter of 180 μm to 250 μm.
And the hollow fiber membrane interval of the hollow fiber membrane sheet is 150 μm.
m to 260 μm, and Dv is 215 μm to 325
The external perfusion type hollow fiber membrane type gas-liquid gas exchange device according to claim 1, characterized in that it is μm.
×10−5[cm3(STP)/cm2/s/cmHg]
〜350×10−5[cm3(STP)/cm2/s/c
mHg]であるポリ(4−メチルペンテン−1)系樹脂
からなる中空糸不均質膜であることを特徴とする請求項
1または2に記載の外部灌流型気液カ゛ス交換装置。3. The hollow fiber membrane has an oxygen permeation rate of 5
× 10-5 [cm3 (STP) / cm2 / s / cmHg]
~ 350 × 10-5 [cm3 (STP) / cm2 / s / c
3. The external perfusion type gas-liquid gas exchange device according to claim 1, wherein the device is a hollow fiber heterogeneous membrane made of a poly (4-methylpentene-1) -based resin having a mHg of 3 μm.
おいて、中空糸膜の外径が120μm〜390μmであ
り、中空糸膜の間隔が120μm〜280μmである中
空糸膜が実質的に平行に配列された中空糸膜シートを使
用し、(式1) Dv=4×(シート積層体の占める全空間体積)/(中
空糸膜の全有効外表面積) で計算される相当直径(Dv)が165μm〜325μ
mとなるように積層された状態でハウジング内に組み込
まれている外部灌流型中空糸膜型気液ガス交換装置を使
用し、液体を積層された中空糸膜シートに実質的に垂直
にクロスして流すことによりガス交換を行う事を特徴と
する気液カ゛ス交換方法。4. The external perfusion type hollow fiber membrane-type gas-liquid gas exchange device, wherein the hollow fiber membrane has an outer diameter of 120 μm to 390 μm, and the interval between the hollow fiber membranes is substantially 120 μm to 280 μm. Using hollow fiber membrane sheets arranged in parallel, the equivalent diameter (Dv) calculated by (Equation 1) Dv = 4 × (total space volume occupied by the sheet laminate) / (total effective external surface area of the hollow fiber membrane) ) Is 165 μm to 325 μm
The liquid is crossed substantially perpendicularly to the laminated hollow fiber membrane sheet by using an external perfusion type hollow fiber membrane type gas-liquid gas exchange device incorporated in the housing in a state where the liquid is laminated so as to be m. A gas-liquid gas exchange method characterized by performing gas exchange by flowing air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25642598A JP4026037B2 (en) | 1998-09-10 | 1998-09-10 | Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25642598A JP4026037B2 (en) | 1998-09-10 | 1998-09-10 | Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000084369A true JP2000084369A (en) | 2000-03-28 |
JP4026037B2 JP4026037B2 (en) | 2007-12-26 |
Family
ID=17292496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25642598A Expired - Lifetime JP4026037B2 (en) | 1998-09-10 | 1998-09-10 | Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4026037B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002035557A (en) * | 2000-07-28 | 2002-02-05 | Dainippon Ink & Chem Inc | Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein |
JP2002147802A (en) * | 2000-11-06 | 2002-05-22 | Nok Corp | Humidifier |
JP2002370006A (en) * | 2001-06-15 | 2002-12-24 | Mitsubishi Rayon Co Ltd | Liquid treatment apparatus and treatment method using the same |
EP1160002A3 (en) * | 2000-06-02 | 2003-02-12 | Celgard, Inc. | Degassing a liquid with a membrane contactor |
JP2005305432A (en) * | 2001-03-22 | 2005-11-04 | Celgard Inc | System for debubbling ink |
JP2006280391A (en) * | 2005-03-31 | 2006-10-19 | Terumo Corp | Cassette for infusion pump with deaeration module and portable infusion pump used for the same |
JP2007203187A (en) * | 2006-02-01 | 2007-08-16 | Pokka Corp | Washing method of hollow fiber deairing membrane |
JP2007283292A (en) * | 2006-03-24 | 2007-11-01 | Nok Corp | Hollow fiber membrane module |
KR100826852B1 (en) * | 2000-09-28 | 2008-05-02 | 조르그 클렘므 | Method and device for producing singulet oxygen |
JP2010269307A (en) * | 2010-06-29 | 2010-12-02 | Nipro Corp | Hollow fiber microporous membrane and membrane oxygenator formed by incorporating the same |
JP2014104383A (en) * | 2012-11-26 | 2014-06-09 | Nok Corp | Hollow fiber membrane module |
EP2777801A3 (en) * | 2013-03-15 | 2014-11-26 | Maquet Cardiopulmonary AG | Device for eliminating CO2 from patient blood |
WO2015118607A1 (en) * | 2014-02-04 | 2015-08-13 | Nok株式会社 | Hollow fiber membrane module |
JP2016500306A (en) * | 2012-12-22 | 2016-01-12 | ディエムエフ・メディカル・インコーポレーテッド | Anesthesia circuit with hollow fiber membrane |
KR101721849B1 (en) * | 2016-06-24 | 2017-04-04 | 한국산업기술시험원 | Gas separation membrane module |
KR101747272B1 (en) * | 2010-05-20 | 2017-06-14 | 코오롱인더스트리 주식회사 | Hollow Fiber Membrane Module and Method for Manufacturing the same |
WO2023127743A1 (en) * | 2021-12-28 | 2023-07-06 | Dic株式会社 | Degassing module and method for degassing liquid |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5890827B2 (en) * | 2011-03-31 | 2016-03-22 | テルモ株式会社 | Artificial lung |
-
1998
- 1998-09-10 JP JP25642598A patent/JP4026037B2/en not_active Expired - Lifetime
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1160002A3 (en) * | 2000-06-02 | 2003-02-12 | Celgard, Inc. | Degassing a liquid with a membrane contactor |
JP2002035557A (en) * | 2000-07-28 | 2002-02-05 | Dainippon Ink & Chem Inc | Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein |
KR100826852B1 (en) * | 2000-09-28 | 2008-05-02 | 조르그 클렘므 | Method and device for producing singulet oxygen |
EP1338852A4 (en) * | 2000-11-06 | 2006-05-31 | Nok Corp | Humidifier |
EP1338852A1 (en) * | 2000-11-06 | 2003-08-27 | Nok Corporation | Humidifier |
KR100834121B1 (en) * | 2000-11-06 | 2008-06-02 | 엔오케이 가부시키가이샤 | Humidifier |
JP2002147802A (en) * | 2000-11-06 | 2002-05-22 | Nok Corp | Humidifier |
JP4610715B2 (en) * | 2000-11-06 | 2011-01-12 | Nok株式会社 | Humidifier |
JP2005305432A (en) * | 2001-03-22 | 2005-11-04 | Celgard Inc | System for debubbling ink |
JP2002370006A (en) * | 2001-06-15 | 2002-12-24 | Mitsubishi Rayon Co Ltd | Liquid treatment apparatus and treatment method using the same |
JP2006280391A (en) * | 2005-03-31 | 2006-10-19 | Terumo Corp | Cassette for infusion pump with deaeration module and portable infusion pump used for the same |
JP2007203187A (en) * | 2006-02-01 | 2007-08-16 | Pokka Corp | Washing method of hollow fiber deairing membrane |
JP2007283292A (en) * | 2006-03-24 | 2007-11-01 | Nok Corp | Hollow fiber membrane module |
KR101747272B1 (en) * | 2010-05-20 | 2017-06-14 | 코오롱인더스트리 주식회사 | Hollow Fiber Membrane Module and Method for Manufacturing the same |
JP2010269307A (en) * | 2010-06-29 | 2010-12-02 | Nipro Corp | Hollow fiber microporous membrane and membrane oxygenator formed by incorporating the same |
JP2014104383A (en) * | 2012-11-26 | 2014-06-09 | Nok Corp | Hollow fiber membrane module |
JP2016500306A (en) * | 2012-12-22 | 2016-01-12 | ディエムエフ・メディカル・インコーポレーテッド | Anesthesia circuit with hollow fiber membrane |
US10076620B2 (en) | 2012-12-22 | 2018-09-18 | Dmf Medical Incorporated | Anesthetic circuit having a hollow fiber membrane |
US10960160B2 (en) | 2012-12-22 | 2021-03-30 | Dmf Medical Incorporated | Anesthetic circuit having a hollow fiber membrane |
EP2777801A3 (en) * | 2013-03-15 | 2014-11-26 | Maquet Cardiopulmonary AG | Device for eliminating CO2 from patient blood |
WO2014177944A3 (en) * | 2013-03-15 | 2015-05-21 | Maquet Cardiopulmonary Ag | Carbon dioxide removal system |
US10201649B2 (en) | 2013-03-15 | 2019-02-12 | MAQUET CARDIOPULMONARY GmbH | Carbon dioxide removal system |
WO2015118607A1 (en) * | 2014-02-04 | 2015-08-13 | Nok株式会社 | Hollow fiber membrane module |
KR101721849B1 (en) * | 2016-06-24 | 2017-04-04 | 한국산업기술시험원 | Gas separation membrane module |
WO2023127743A1 (en) * | 2021-12-28 | 2023-07-06 | Dic株式会社 | Degassing module and method for degassing liquid |
Also Published As
Publication number | Publication date |
---|---|
JP4026037B2 (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000084369A (en) | Hallow fiber membrane type gas-liquid gas exchanging device and gas exchange | |
JP4795536B2 (en) | Potting a tubular bundle into the housing | |
KR0161292B1 (en) | Spiral wound gas permeable membrane module and apparatus and method for using the same | |
US7585412B2 (en) | Specialized hollow fiber membranes for plasmapheresis and ultrafiltration | |
JPH0286817A (en) | Hollow yarn-type fluid treating device | |
JPWO2012133372A1 (en) | Artificial lung | |
CN110099705B (en) | Heat exchanger and artificial lung | |
EP1557185A1 (en) | Device for treating blood for extracorporeal circulation | |
US20220409797A1 (en) | Extracorporeal blood conditioning devices and methods | |
EP3082899B1 (en) | Partial radial heat exchanger and oxygenator | |
EP0041692B1 (en) | Blood oxygenator | |
JP2975000B2 (en) | Composite hollow fiber membrane for artificial lung | |
US11534536B2 (en) | Heat exchanger and oxygenator | |
JPH02109572A (en) | Hollow yarn type fluid treating device | |
JP2010213851A (en) | Blood treatment device | |
JPH02213356A (en) | Fluid treatment apparatus | |
JP2792048B2 (en) | Hollow fiber type fluid treatment device | |
JPH11197469A (en) | Spiral membrane module | |
JP2003111837A (en) | Hollow fiber membrane type artificial lung | |
JP2827228B2 (en) | Hollow fiber type fluid treatment device | |
JPH10296005A (en) | Method for ultradeaeration of liquid and deaeration apparatus thereof | |
JP2974999B2 (en) | Membrane oxygenator | |
JP5347602B2 (en) | Blood processing equipment | |
JP2023177563A (en) | artificial lung | |
JP3753448B2 (en) | External perfusion type dissolved fiber removal hollow fiber membrane module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050704 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070926 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |