JP2002035557A - Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein - Google Patents

Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein

Info

Publication number
JP2002035557A
JP2002035557A JP2000228784A JP2000228784A JP2002035557A JP 2002035557 A JP2002035557 A JP 2002035557A JP 2000228784 A JP2000228784 A JP 2000228784A JP 2000228784 A JP2000228784 A JP 2000228784A JP 2002035557 A JP2002035557 A JP 2002035557A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
microporous membrane
microporous
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000228784A
Other languages
Japanese (ja)
Other versions
JP5138840B2 (en
Inventor
Masayoshi Takatake
正義 高武
Toshikazu Suganuma
俊和 菅沼
Katsuji Kuroki
勝二 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2000228784A priority Critical patent/JP5138840B2/en
Publication of JP2002035557A publication Critical patent/JP2002035557A/en
Application granted granted Critical
Publication of JP5138840B2 publication Critical patent/JP5138840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hollow fiber microporous membrane capable of developing sufficient blood plasma leak resistance and stable and excellent gas exchange capacity even in long-term continuous use, and an oxygenator having the same incorporated therein. SOLUTION: The hollow fiber microporous membrane, which comprises a hydrophobic material of which the oxygen gas flux is 10×10-3-500×10-5 [cm3 (STP)/cm2/sec/cmHg] and the ethanol flux is 2-80 [ml/min/m2] and which has open cells with a mean pore radius of 0.008-0.07 μm, and the oxygenator having the same incorporated therein have excellent oxygen and carbon dioxide exchange capacity and blood plasma leak resistance enabling continuous use over long period of time of one week or more as compared with a conventional microporous membrane and an oxygenater having the same incororated therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、血液体外循環にお
いて、血液に酸素を添加し、一酸化炭素又は二酸化炭素
等の炭酸ガスを除去するための膜型人工肺に関する。
The present invention relates to a membrane oxygenator for adding oxygen to blood and removing carbon dioxide such as carbon monoxide or carbon dioxide in extracorporeal blood circulation.

【0002】[0002]

【従来の技術】現在、人工肺は短時間の使用となる直視
下開心術等で広く使用されている。近年、術中術後の連
続した心肺補助や、未熟児の呼吸補助、さらには急性心
不全患者の心補助用等として長時間の連続使用が可能な
人工肺の開発が切に望まれている。また、術中の患者の
負荷を軽減するため、血液充填量が少なく、血液と接触
する膜面積が少ないガス交換効率に優れた小型でコンパ
クトな人工肺の実現が求められている。しかしながら前
記の先行技術はコンパクト、小型化を実現するために必
要な十分なガス交換性能と血漿の漏れが無く長期に亘り
使用可能ないわゆる長期耐久性の両方の要求を必ずしも
満足するものはなかった。
2. Description of the Related Art At present, an artificial lung is widely used in open-heart surgery under direct vision, which requires a short time. In recent years, there has been an urgent need for the development of an artificial lung that can be used continuously for a long period of time for continuous cardiopulmonary support during and after surgery, respiratory support for premature infants, and cardiac support for patients with acute heart failure. Further, in order to reduce the burden on the patient during the operation, there is a demand for a small and compact oxygenator having a small blood filling amount, a small membrane area in contact with blood, and excellent gas exchange efficiency. However, the above prior arts do not necessarily satisfy both requirements of sufficient gas exchange performance necessary for realizing compactness and miniaturization and so-called long-term durability that can be used for a long time without plasma leakage. .

【0003】例えば、シリコーン膜に代表される均質膜
を組み込んだ人工肺が挙げられるが、該均質膜は血漿漏
出の懸念は無いもののガス交換性能に劣り、従って大き
な膜面積、即ち大型の人工肺を必要とし、多量のプライ
ミング血液が必要とされることから、生体負荷が大き
く、適用範囲が限られていた。
[0003] For example, there is an oxygenator incorporating a homogeneous membrane typified by a silicone membrane, but the homogeneous membrane is inferior in gas exchange performance although there is no concern about plasma leakage, and therefore has a large membrane area, that is, a large oxygenator. And a large amount of priming blood is required, so that the biological load is large and the application range is limited.

【0004】また、ポリプロピレン製微多孔膜を組み込
んだ人工肺が開発されているが、該微多孔膜は短時間の
使用に於いては優れたガス交換性能を示すものの、血液
灌流時間経過とともに微多孔部より血漿成分が漏れだし
使用不能となる欠点を有している。
Although an artificial lung incorporating a microporous membrane made of polypropylene has been developed, the microporous membrane exhibits excellent gas exchange performance when used for a short period of time, but the microporous membrane becomes finer as blood perfusion time elapses. There is a disadvantage that the plasma component leaks out of the porous portion and becomes unusable.

【0005】ポリプロピレン製微多孔膜を組み込んだ人
工肺としては、例えば、特公平3−21188号公報に
は溶融法で製造された孔径と空孔率を規定したポリプロ
ピレン多孔性膜の人工肺への適用が開示されている。
[0005] As an artificial lung incorporating a microporous polypropylene membrane, for example, Japanese Patent Publication No. 3-21188 discloses an artificial lung using a polypropylene porous membrane having a defined pore size and porosity produced by a melting method. Application is disclosed.

【0006】また、特公平4−39371号公報には温
度誘発型相分離法(TIPS法)により製造されたポリ
オレフィンからなる中空糸膜であって、中空糸の内面側
に比較的緻密な層を有し、外面側に平均粒径0.1μm
〜10μmの独立粒子の集合体状層を有し、且つ膜壁を
貫く微細な連通孔径を有し、膜の空孔率と酸素ガスのフ
ラックスを特定した中空糸膜の人工肺への適用が開示さ
れている。
Japanese Patent Publication No. 4-39371 discloses a hollow fiber membrane made of polyolefin produced by a temperature-induced phase separation method (TIPS method), wherein a relatively dense layer is formed on the inner surface side of the hollow fiber. With an average particle size of 0.1 μm on the outer surface
A hollow fiber membrane having an aggregated layer of independent particles of 10 μm to 10 μm and having a fine communication pore diameter penetrating the membrane wall, and specifying the porosity of the membrane and the flux of oxygen gas, can be applied to an artificial lung. It has been disclosed.

【0007】さらにまた、特開平5−64663号広報
にはTIPS法により製造される多孔質ポリプロピレン
中空糸膜であって、中空糸内面の開孔率を10%未満、
空孔率が1〜35%、酸素ガスフラックスが10〜10
00[ml/min/m2/mmHg]、透水率が0.0
1〜1.0[ml/min/m2/mmHg]であり、
優れたガス交換性能と長期に亘り血漿が漏出せず耐久性
に優れた多孔質中空糸膜が開示されている。
Furthermore, Japanese Patent Application Laid-Open No. 5-64663 discloses a porous polypropylene hollow fiber membrane produced by the TIPS method, wherein the hollow fiber inner surface has a porosity of less than 10%,
The porosity is 1 to 35%, and the oxygen gas flux is 10 to 10
00 [ml / min / m 2 / mmHg], water permeability is 0.0
1 to 1.0 [ml / min / m 2 / mmHg],
There is disclosed a porous hollow fiber membrane having excellent gas exchange performance, excellent plasma durability over a long period of time, and excellent durability.

【0008】しかし、これらは本発明に比べ平均孔径が
大きく、短時間の使用に於いては酸素ガス交換性能では
優れる点があるものの、血液灌流時間経過とともに微多
孔部より血漿成分が漏れだすため長期耐久性に劣ってい
た。
[0008] However, these have a larger average pore diameter than the present invention, and although they have an advantage in oxygen gas exchange performance when used for a short time, plasma components leak from the microporous part with the passage of blood perfusion time. It had poor long-term durability.

【0009】また、特開昭60−150757号公開広
報には溶融法で製造される微多孔中空糸膜の空孔率が3
0〜90vol%、透水圧が4kg/cm2以上であ
り、バブルポイントが7kg/cm2〜15kg/cm2
の範囲の短冊状に開孔した微小孔径を有するポリエチレ
ン製中空糸膜の人工肺への適用が開示されている。しか
し、短冊状に開孔しており本発明とは異なるものであ
る。
Further, Japanese Patent Application Laid-Open Publication No. Sho 60-150575 discloses that the porosity of a microporous hollow fiber membrane produced by a melting method is 3%.
0 to 90 vol%, water permeation pressure is 4 kg / cm 2 or more, and bubble point is 7 kg / cm 2 to 15 kg / cm 2.
The application of a hollow fiber membrane made of polyethylene having a small pore diameter formed in a strip shape in the range of (1) to an artificial lung is disclosed. However, it is opened in a strip shape, which is different from the present invention.

【0010】一方、これら問題の一部改良を目的として
特許公報第2700170号には、膜壁を連通するいわ
ゆる連通孔を実質的に有せず、従ってエタノールを液体
として実質的に透過しない非多孔薄膜層を有する中空糸
微多孔膜を組み込んだ人工肺が提案されている。該微多
孔膜は酸素透過速度が1×10-6 [cm3(STP)/
cm2/sec/cmHg]以上でありかつエタノールを
実質的に不透過とする遮断層を有し、空孔率が7〜50
%であるポリオレフィン系重合体からなる中空糸膜を使
用した膜型人工肺が開示されているが、この人工肺は耐
血漿リーク性及び血液への酸素の供給能力においては大
幅な改善が認められるものの血液からの炭酸ガスの除去
性能において必ずしも満足のゆくものではなかった。
On the other hand, for the purpose of partially improving these problems, Japanese Patent Publication No. 2700170 discloses a non-porous material which does not substantially have a so-called communication hole communicating with a membrane wall and therefore does not substantially transmit ethanol as a liquid. An artificial lung incorporating a microporous hollow fiber membrane having a thin film layer has been proposed. The microporous membrane has an oxygen transmission rate of 1 × 10 −6 [cm 3 (STP) /
cm 2 / sec / cmHg] or more, and has a barrier layer that is substantially impermeable to ethanol, and has a porosity of 7 to 50.
%, A membrane-type oxygenator using a hollow fiber membrane made of a polyolefin-based polymer is disclosed. However, this oxygenator has significant improvements in plasma leak resistance and ability to supply oxygen to blood. However, the performance of removing carbon dioxide from blood was not always satisfactory.

【0011】このように現行広く使用されているポリプ
ロピレン樹脂からなる微多孔膜は短期の使用に限り優れ
た酸素ガス交換性能を示すものの、血漿リークの発生に
より長時間の連続使用は不可能であった。可使用時間の
信頼限界は高々6時間程度であった。術中の血漿リーク
は患者に重大な結果を引き起こし、術中の人工肺の交換
は多大な手間と大きな危険性を伴うものであった。
As described above, a microporous membrane made of a polypropylene resin which is currently widely used exhibits excellent oxygen gas exchange performance only for short-term use, but cannot be used continuously for a long time due to plasma leak. Was. The reliability limit of the usable time was at most about 6 hours. Intraoperative plasma leaks have serious consequences for the patient, and replacement of the oxygenator during the operation has been a tremendous effort and risk.

【0012】さらには、通常の開心術への適用のみなら
ず長時間に亘る開心術への適用、さらにはECMOやP
CPS等の1週間以上の長期の連続使用が必要となる補
助循環分野への適用に於いても十分な耐血漿リーク性と
安定した優れたガス交換性能を発揮出来る中空糸微多孔
膜、それを組み込んだ人工肺は現在までに知られていな
い。
Further, the present invention is applied not only to normal open heart surgery but also to open heart surgery for a long time.
A hollow fiber microporous membrane capable of exhibiting sufficient plasma leak resistance and stable and excellent gas exchange performance even in applications to the assisted circulation field, which requires long-term continuous use such as CPS for one week or more, The implanted oxygenator has not been known to date.

【0013】[0013]

【発明が解決しようとする課題】膜を介して行われる血
液相と気体相間のガス移動の機構に関し、通常の開心術
への適用のみならず長時間に亘る開心術への適用、さら
にはECMOやPCPS等の1週間以上の長期の連続使
用が必要となる補助循環分野への適用に於いても十分な
耐血漿リーク性と安定した優れたガス交換性能を発揮出
来る中空糸微多孔膜、それを組み込んだ人工肺を提供す
ることを課題とする。
The present invention relates to a mechanism of gas transfer between a blood phase and a gas phase through a membrane, which is applied not only to normal open heart surgery but also to open heart surgery for a long time, and furthermore, to ECMO. And microporous hollow fiber membranes that can exhibit sufficient plasma leak resistance and stable and excellent gas exchange performance even in applications to the assisted circulation field, which requires long-term continuous use such as PCPS or PCPS for one week or more. An object of the present invention is to provide an artificial lung incorporating the same.

【0014】[0014]

【課題を解決するための手段】本発明者らは、血液−気
体間のガス交換性能に優れ、かつ長時間の使用において
も血漿の漏出を完全に防止できる、微多孔膜について鋭
意研究した結果、特定の特性値で特徴付けられたポリオ
レフィン系重合体からなる膜が従来の微多孔膜に比べ
て、優れた酸素及び炭酸ガス交換性能を有し、かつ1週
間以上の長期の連続使用が可能な耐血漿リーク性を備え
た中空糸微多孔膜を見出し、本発明を発見した。
DISCLOSURE OF THE INVENTION The present inventors have conducted intensive studies on a microporous membrane which is excellent in blood-gas gas exchange performance and which can completely prevent plasma leakage even after long use. A membrane made of a polyolefin polymer characterized by specific characteristics has superior oxygen and carbon dioxide gas exchange performance compared to a conventional microporous membrane, and can be used continuously for a long period of one week or more. The present inventors have found a hollow fiber microporous membrane having excellent plasma leak resistance, and have discovered the present invention.

【0015】即ち本発明は、That is, the present invention provides:

【0016】(1)疎水性の素材からなる微多孔中空糸
膜の酸素ガスフラックスが10×10 ? 5[cm3(ST
P)/cm2/s/cmHg]?500×10? 5[cm
3(STP)/cm2/s/cmHg]であって連通孔の
平均孔半径が0.008μm?0.07μmであって、
開孔率が0.02〜2%であって、膜のエタノールフラ
ックスが2ml/min/m2?80ml/min/m2
であることを特徴とする中空糸微多孔膜、
(1) Microporous hollow fiber made of hydrophobic material
The oxygen gas flux of the film is 10 × 10 ? Five[CmThree(ST
P) / cmTwo/ S / cmHg]? 500 × 10? Five[Cm
Three(STP) / cmTwo/ S / cmHg] of the communication hole
The average pore radius is between 0.008 μm and 0.07 μm,
The porosity is 0.02 to 2%, and the ethanol
Box is 2ml / min / mTwo? 80ml / min / mTwo
A hollow fiber microporous membrane,

【0017】(2)疎水性の素材がポリ(4−メチルペ
ンテン−1)系ポリマーからなることを特徴とする上記
(1)に記載の中空糸微多孔膜、
(2) The microporous hollow fiber membrane according to the above (1), wherein the hydrophobic material comprises a poly (4-methylpentene-1) polymer.

【0018】(3)中空糸微多孔膜が溶融紡糸法により
製造された膜であることを特徴とする上記(1)又は
(2)に記載の中空糸微多孔膜、
(3) The microporous hollow fiber membrane according to (1) or (2), wherein the microporous hollow fiber membrane is a membrane produced by a melt spinning method.

【0019】(4)上記(1)〜(3)のいずれか一項
に記載の中空糸微多孔膜を組み込んだ膜型人工肺、を提
供することにある。
(4) An object of the present invention is to provide a membrane oxygenator incorporating the microporous hollow fiber membrane according to any one of the above (1) to (3).

【0020】[0020]

【発明の実施の形態】本発明をさらに詳しく説明する。
本発明に用いる膜は、膜内部に微細な細孔(空隙)を有
し、かつ膜の表裏が実質上細孔によって連通している連
通孔を有する微多孔膜である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail.
The membrane used in the present invention is a microporous membrane having fine pores (voids) inside the membrane and having communication holes in which the front and back surfaces of the membrane are substantially communicated by the pores.

【0021】本発明で用いられる「疎水性の素材」と
は、水との接触角が90°以上の素材を意味する。具体
的には、ポリプロピレン、ポリエチレン、ポリブチレ
ン、ポリ4−メチル−1−ペンテン等のポリオレフィン
系樹脂、4フッ化エチレン、4フッ化エチレンぺルフル
オロアルコキシビニルエーテ共重合体、ポリビニリデン
フロライド等のフッ素樹脂、又はポリアセタール樹脂等
が挙げられる。
The "hydrophobic material" used in the present invention means a material having a contact angle with water of 90 ° or more. Specifically, polyolefin resins such as polypropylene, polyethylene, polybutylene and poly-4-methyl-1-pentene, tetrafluoroethylene, tetrafluoroethylene perfluoroalkoxyvinylate copolymers, polyvinylidene fluoride, etc. Fluororesin, polyacetal resin and the like can be mentioned.

【0022】膜素材の疎水性は高いほど好ましく、この
点から、疎水性が高くかつ加工が容易である、ポリオレ
フィン系樹脂が好ましく、その中でもポリ4−メチル−
1−ペンテン系樹脂が特に好ましい。
The higher the hydrophobicity of the membrane material, the more preferable. From this point, a polyolefin resin, which has high hydrophobicity and is easy to process, is preferable.
1-pentene resins are particularly preferred.

【0023】本発明の微多孔膜を人工肺に適用した場
合、連通孔径が大きいほど、またその開孔率が高いほど
血漿リークの発生の危険性が増す。一方、膜に充分な酸
素及び一酸化炭素及び二酸化炭素(以上以下、「炭酸ガ
ス」という)のガス交換性能を賦与するためには膜に連
通孔が存在し、かつ膜が適切なガス透過性を有する必要
がある。
When the microporous membrane of the present invention is applied to an artificial lung, the risk of plasma leakage increases as the diameter of the communicating hole increases and the porosity increases. On the other hand, in order to impart sufficient gas exchange performance of oxygen, carbon monoxide, and carbon dioxide (hereinafter referred to as "carbon dioxide") to the membrane, the membrane has a communication hole and the membrane has an appropriate gas permeability. Need to have

【0024】したがって本発明に用いる膜は、連通孔の
平均孔半径が0.008〜0.07μm、好ましくは
0.01〜0.045μm、更に好ましくは0.02〜
0.040μmのものであり、開孔率は0.02〜2
%、好ましくは0.05〜1.5%、更に好ましくは
0.3〜1.2%である。
Accordingly, the membrane used in the present invention has an average pore radius of the communication holes of 0.008 to 0.07 μm, preferably 0.01 to 0.045 μm, more preferably 0.02 to 0.045 μm.
0.040 μm, and the porosity is 0.02 to 2
%, Preferably 0.05 to 1.5%, more preferably 0.3 to 1.2%.

【0025】但し、本発明で言う平均連通孔半径は、1
974年、ジャーナルオブアプライドポリマーサイエン
ス(Journal of Applied Polymer Science VOL.18,PP.8
05-819)第18号805ページ記載の方法により求める
ことができる。本発明の平均連通孔半径は窒素ガスを使
用して測定した値である。
However, the average communicating hole radius referred to in the present invention is 1
974, Journal of Applied Polymer Science VOL.18, PP.8
05-819) No. 18, page 805. The average communication hole radius of the present invention is a value measured using nitrogen gas.

【0026】即ち、ガスフラックスの圧力依存性より平
均連通孔径を求めた。算出は下の式に基づいて行った。
That is, the average communicating hole diameter was determined from the pressure dependency of the gas flux. The calculation was performed based on the following equation.

【0027】J=K×ΔP/L ・・・(1) J:ガス流量、ΔP:圧力差、L:膜厚J = K × ΔP / L (1) J: gas flow rate, ΔP: pressure difference, L: film thickness

【0028】K=K0+(B0/η)×ΔP1・・・(2) K0:クヌーセン透過係数、B0:幾何学的ファクター η:ガス粘度、ΔP1:平均圧力=(P1+P2)/2K = K 0 + (B 0 / η) × ΔP 1 (2) K 0 : Knudsen permeability coefficient, B 0 : geometric factor η: gas viscosity, ΔP 1 : average pressure = (P1 + P2) / 2

【0029】 r=(B0/K0)(3/16)(2RT/π)1/2? 1/2 ・・・(3) r:平均連通孔径、M:ガス分子量R = (B 0 / K 0 ) (3/16) (2RT / π) 1/2 M ? 1/2 (3) r: average communicating hole diameter, M: gas molecular weight

【0030】圧力を変えてガスフラックスを測定し、
(2)よりグラフの傾き(=B0/η)、切片(=K0
を求める。平均連通孔径rはこれらの値を(3)へ代入
して求める。
The gas flux is measured by changing the pressure,
From (2), the slope of the graph (= B 0 / η) and the intercept (= K 0 )
Ask for. The average communication hole diameter r is obtained by substituting these values into (3).

【0031】また、本発明でいう開孔率は以下の方法に
より求める。上記の方法で求めた平均連通孔径及びエタ
ノールフラックスの値から算出する。
The porosity referred to in the present invention is determined by the following method. It is calculated from the average communicating hole diameter and the value of ethanol flux obtained by the above method.

【0032】ε=8LVη/(r2ΔP) L:膜厚、V:エタノールフラックス、η:エタノール
粘度、r:平均連通孔径、ΔP:膜壁内外圧力差
Ε = 8LVη / (r 2 ΔP) L: film thickness, V: ethanol flux, η: ethanol viscosity, r: average communicating hole diameter, ΔP: pressure difference between membrane wall and outside

【0033】血漿リークは基本的に親水化された微多孔
部より発生する。また、微多孔膜の連通孔径はある程度
の分布をもって存在する。
The plasma leak basically occurs from the microporous portion that has been hydrophilized. In addition, the communication pore diameter of the microporous membrane exists with a certain distribution.

【0034】本発明における好ましい中空糸微多孔膜
は、膜の連通孔径の最大値を示す指標となるバブルポン
ト(液体としてエタノールを使用)が10kgf/cm
2以上を示す微多孔膜である。
In the preferred microporous hollow fiber membrane of the present invention, a bubble pump (using ethanol as a liquid) which is an index indicating the maximum value of the communicating pore diameter of the membrane is 10 kgf / cm.
It is a microporous membrane showing two or more.

【0035】本発明の微多孔膜における、気体−気体系
で測定した際の膜壁を透過するの酸素のガス流量、即
ち、酸素フラックスは10×10-5〜500×10
-5[cm3(STP)/cm2/sec/cmHg]、好ま
しくは10×10-5〜250×10 -5[cm3(STP)
/cm2/sec/cmHg]である(ASTM D14
34に準ずる測定法で計算)。
Gas-gas system in the microporous membrane of the present invention
The gas flow rate of oxygen passing through the membrane wall when measured at
And the oxygen flux is 10 × 10-Five~ 500 × 10
-Five[cmThree(STP) / cmTwo/ Sec / cmHg], preferred
Or 10 × 10-Five~ 250 × 10 -Five[cmThree(STP)
/ CmTwo/ Sec / cmHg] (ASTM D14
34).

【0036】本発明の中空糸微多孔膜の酸素、窒素、炭
酸ガス等の非凝集性ガスは、膜を介した気体−気体系に
よる測定の場合、各々のガスフラックスはほぼ同じ値と
なるが、膜を介した血液とのガス交換性能を調べると、
炭酸ガスの場合は、酸素の場合とは大きく異なることが
明らかとなった。従って、上述の酸素フラックスは10
×10-5[cm3(STP)/cm2/sec/cmHg]
未満である場合であっても酸素の交換性能にはさほど大
きな低下は認めらないが、一方、充分な炭酸ガスの除去
能力を発揮するためには膜の酸素フラックスが少なくと
も10×10-5[cm3(STP)/cm2/sec/c
mHg]以上必要である。
The non-aggregating gas such as oxygen, nitrogen and carbon dioxide in the microporous hollow fiber membrane of the present invention has substantially the same gas flux when measured by a gas-gas system through the membrane. When examining the gas exchange performance with blood through the membrane,
It became clear that the case of carbon dioxide was significantly different from the case of oxygen. Therefore, the above-mentioned oxygen flux is 10
× 10 -5 [cm 3 (STP) / cm 2 / sec / cmHg]
Even if it is less than 10, the oxygen exchange performance does not significantly decrease, but on the other hand, the oxygen flux of the film is at least 10 × 10 −5 [ cm 3 (STP) / cm 2 / sec / c
mHg] or more.

【0037】また、本発明の微多孔膜の酸素フラックス
の上限は500×10-5[cm3(STP)/cm2/s
ec/cmHg]である。これより大きいと治療及び手
術中における血液ガス濃度コントロールが困難となる。
The upper limit of the oxygen flux of the microporous membrane of the present invention is 500 × 10 −5 [cm 3 (STP) / cm 2 / s
ec / cmHg]. If it is larger than this, it becomes difficult to control the blood gas concentration during treatment and surgery.

【0038】本発明の微多孔膜の示すエタノールフラッ
クスは膜の酸素ガスフラックスと同様に連通孔の存在の
度合を示す指標となる。本発明における膜のエタノール
フラックスは膜をエタノールで十分濡らした後、中空糸
内側もしくは外側より0.5kgf/cm2の差圧を負荷し
膜の反対側より液体として漏れ出てきたエタノールの量
を測定することにより求めることができる。本発明のエ
タノールフラックスは中空糸の外径を基準として、2〜
80[ml/min/m2]、好ましくは7〜60[m
l/min/m2]、さらに好ましくは32〜40[m
l/min/m2]である。
The ethanol flux of the microporous membrane of the present invention is an index indicating the degree of the existence of the communication holes, similarly to the oxygen gas flux of the membrane. In the present invention, the ethanol flux of the membrane is obtained by, after sufficiently wetting the membrane with ethanol, applying a differential pressure of 0.5 kgf / cm 2 from the inside or outside of the hollow fiber to the amount of ethanol leaked out as a liquid from the opposite side of the membrane. It can be determined by measuring. Ethanol flux of the present invention, based on the outer diameter of the hollow fiber, 2 to
80 [ml / min / m 2 ], preferably 7 to 60 [m
1 / min / m 2 ], more preferably 32 to 40 [m
1 / min / m 2 ].

【0039】2[ml/min/m2]未満では膜が十
分なガス交換性能、特に血液中からの炭酸ガス除去性能
能力を発揮することができない。80[ml/min/
2]より大きいと、長期に亘る血液循環において血漿
リークを防止しかつ安定したガス交換性能を得る事がで
きない。
If it is less than 2 [ml / min / m 2 ], the membrane cannot exhibit sufficient gas exchange performance, in particular, performance of removing carbon dioxide from blood. 80 [ml / min /
m 2 ], it is not possible to prevent plasma leak and obtain stable gas exchange performance in blood circulation over a long period of time.

【0040】本発明によれば治療の種類、適用される患
者の状態等により人工肺に要求される特性が異なる場合
に於いても最適な特性を有する中空糸微多孔膜を選択で
きる。例えば新生児の呼吸不全に対する呼吸補助を目的
としたECMO等長期に亘る耐血漿リーク性と安定した
ガス交換性能が要求される場合には連通孔半径の上限値
が0.04μmで、エタノールフラックスの上限値が4
5ml/min/m2である本発明の中空糸微多孔膜が
好適に適用できる。
According to the present invention, a microporous hollow fiber membrane having optimum characteristics can be selected even when the characteristics required for an artificial lung differ depending on the type of treatment, the condition of the patient to be applied, and the like. For example, when long-term plasma leak resistance and stable gas exchange performance are required such as ECMO for the purpose of assisting respiratory failure of newborn infants, the upper limit of the communication hole radius is 0.04 μm, and the upper limit of ethanol flux is Value is 4
The microporous hollow fiber membrane of the present invention having a flow rate of 5 ml / min / m 2 can be suitably applied.

【0041】また、例えば大人の重度胸部大動脈疾患等
の手術中に多量の血液灌流を要求される場合には酸素フ
ラックスの下限値が40×10-5[cm3(STP)/c
2/sec/cmHg]で、連通孔平均半径の下限値が
0.02μmであり、エタノールフラックスの下限値が
15ml/min/m2の中空糸微多孔膜が好適に適用
できる。
When a large amount of blood perfusion is required during an operation such as severe thoracic aortic disease in an adult, the lower limit of the oxygen flux is 40 × 10 −5 [cm 3 (STP) / c].
m 2 / sec / cmHg], the lower limit of the average radius of the communication holes is 0.02 μm, and the lower limit of the ethanol flux is 15 ml / min / m 2 .

【0042】本発明の中空糸微多孔膜は、人工肺の生体
適合性の向上を目的として一般に行われている各種処
理、例えばヘパリン化合物等で膜の血液接触面を抗血栓
処理しても良く、また、プラズマ処理、コロナ放電処理
等での膜表面の親水化も実施してもよい。本発明の中空
糸微多孔膜はかかる表面処理においても優れたガス交換
性能と耐血漿リーク性を何ら損なうことは無い。
The microporous hollow fiber membrane of the present invention may be subjected to various treatments generally performed for the purpose of improving the biocompatibility of an artificial lung, for example, an antithrombotic treatment of the blood contact surface of the membrane with a heparin compound or the like. Alternatively, the surface of the film may be made hydrophilic by plasma treatment, corona discharge treatment, or the like. The microporous hollow fiber membrane of the present invention does not impair the excellent gas exchange performance and plasma leak resistance even in such a surface treatment.

【0043】本発明の中空糸膜を人工肺モジュールに組
み込む場合、中空糸をバンドル化した状態で組み込んで
も良くまた必要に応じて中空糸の間隔が均一となるよう
該中空糸膜をシート状に配列して使用しても良い。
When the hollow fiber membrane of the present invention is incorporated into an artificial lung module, the hollow fiber may be incorporated in a bundled state, and if necessary, the hollow fiber membrane may be formed into a sheet so that the intervals between the hollow fibers are uniform. They may be arranged and used.

【0044】本発明の中空糸は、横断面形状が実質的に
円形又は楕円形の中空糸であればよく、寸法は特に制限
されないが、好ましくは外径が150μm〜400μ
m、内径が120μm〜360μm、膜厚が15μm〜
60μmである。
The hollow fiber of the present invention may be a hollow fiber having a substantially circular or elliptical cross-sectional shape, and the size is not particularly limited, but preferably the outer diameter is 150 μm to 400 μm.
m, inner diameter is 120 μm to 360 μm, and film thickness is 15 μm
60 μm.

【0045】なお、本発明の中空糸を用い、内部灌流で
人工肺として使用する場合には通常の中空糸繊維の内側
の総面積が0.1〜7m2で、中空繊維の本数が1,0
00〜100,000本となるように中空繊維を包含
し、また、そのガス交換部の大きさが外径25cm以
下、長さ30cm以下となる円筒状タイプのものが代表
的である。
When the hollow fiber of the present invention is used as an artificial lung by internal perfusion, the total area of ordinary hollow fiber fibers is 0.1 to 7 m 2 , and the number of hollow fibers is 1, 0
A typical example is a cylindrical type in which the hollow fibers are included so that the number becomes 100 to 100,000, and the size of the gas exchange portion is 25 cm or less in outer diameter and 30 cm or less in length.

【0046】さらに外部灌流で用いる場合には、通常中
空繊維の外側の総面積が0.1〜3.5cm2で、中空
繊維の本数が1,000〜60,000本となるように
中空繊維を包含し、また、そのガス交換部の大きさが、
外径20cm以下、長さ30cm以下の円筒状タイプの
ものが代表的である。
Further, when used in external perfusion, the hollow fibers are usually arranged so that the total area outside the hollow fibers is 0.1 to 3.5 cm 2 and the number of hollow fibers is 1,000 to 60,000. And the size of the gas exchange part is
A cylindrical type having an outer diameter of 20 cm or less and a length of 30 cm or less is typical.

【0047】本発明の中空糸微多孔膜の製造方法に制限
は無く、従来公知の製造法により製造できる。
The method for producing the microporous hollow fiber membrane of the present invention is not limited, and can be produced by a conventionally known production method.

【0048】例えば、結晶性の熱可塑性高分子樹脂を熱
溶融しその紡糸過程で素材に温度勾配とせん断力とを効
果的に紡糸方向へ作用させ積層ラメラ構造を成長させ、
さらに必要に応じて熱処理を実施した後、延伸し、該積
層したラメラ結晶の界面を開列させることにより微多孔
膜化するわゆる溶融紡糸法、
For example, a crystalline thermoplastic polymer resin is thermally melted, and a temperature gradient and a shearing force are effectively applied to the material in the spinning process in the spinning direction to grow a laminated lamellar structure.
Furthermore, after performing a heat treatment as needed, stretching is performed, and a so-called melt spinning method for forming a microporous film by opening the interface of the laminated lamellar crystals,

【0049】ポリマーを適当な溶剤に溶解したドープ液
を非溶剤中に導き相分離を引き起こすことにより微多孔
膜化するいわゆる湿式製膜法、
A so-called wet film forming method in which a dope solution obtained by dissolving a polymer in an appropriate solvent is introduced into a non-solvent to cause phase separation to form a microporous film.

【0050】又は高分子素材にその熱溶融下で該ポリマ
ーに容易に分散する有機充填剤や必要に応じて結晶核形
成剤を混練し、該溶融混練物を必要に応じて該高分子素
材を溶解しない液体中で冷却固化し、ついで該混練物を
適当な液体で抽出除去することにより微多孔膜を得る、
いわゆる熱誘発型相分離法、等が挙げられる。
Alternatively, the polymer material is kneaded with an organic filler which easily disperses in the polymer under heat melting and, if necessary, a crystal nucleating agent, and the melt-kneaded material is optionally mixed with the polymer material. Solidification by cooling in a liquid that does not dissolve, and then extracting and kneading the kneaded material with an appropriate liquid to obtain a microporous membrane,
A so-called heat-induced phase separation method may be used.

【0051】溶融紡糸法は膜の寸法、連通孔の孔径、開
孔率等の制御が容易であり均一な特性を有する膜を安定
して生産する事ができ、さらに添加剤や溶剤等を使用せ
ず得られる膜の安全性に優れることから、最も好ましい
製造方法である。
In the melt spinning method, it is easy to control the dimensions of the membrane, the diameter of the communicating holes, the opening ratio, and the like, and it is possible to stably produce a membrane having uniform characteristics. This is the most preferable production method because the obtained film is excellent in safety.

【0052】溶融紡糸法により得られる中空糸微多孔膜
のガスフラックス、連通孔径及びその開孔率等の膜特性
は使用する結晶性高分子素材の結晶化特性に大きく影響
を受ける。例えば高密度ポリエチレンやポリプロピレン
等の高結晶性高分子素材を使用し本発明の中空糸微多孔
膜を製造する場合には公知の溶融紡糸法において結晶の
成長をやや抑える条件を適用すれば良い。
The membrane properties of the microporous hollow fiber membrane obtained by the melt spinning method, such as the gas flux, the diameter of the communicating pores and the porosity thereof, are greatly affected by the crystallization properties of the crystalline polymer material used. For example, when the hollow fiber microporous membrane of the present invention is manufactured using a highly crystalline polymer material such as high density polyethylene or polypropylene, conditions for slightly suppressing crystal growth in a known melt spinning method may be applied.

【0053】また、ポリエチレンやポリプロピレンと比
較し結晶性の劣る熱可塑性高分子樹脂、例えばポリ4−
メチル−1ペンテン等の樹脂を使用する場合には、紡糸
時により結晶を成長させる条件範囲に調整し、必要に応
じて、紡出糸に熱処理を施した後に延伸する事により本
発明の中空糸微多孔膜を調製することが出来る。
Further, a thermoplastic polymer resin having lower crystallinity than polyethylene or polypropylene, for example, poly 4-
When a resin such as methyl-1 pentene is used, the hollow fiber of the present invention is adjusted by adjusting the range of conditions for growing crystals during spinning and, if necessary, stretching the spun yarn after heat treatment. A microporous membrane can be prepared.

【0054】更に、詳しく本発明における溶融紡糸法と
は、本発明の疎水性の素材を中空糸内部にガス強制供給
可能な2重円管ノズルを用い樹脂の融点〜融点+100
℃で、中空状に溶融ストランドを押し出し、紡糸筒周囲
より微風(1m/sec以下)を吹きつけ(室温程度±3
0)℃で冷却固化させつつ、100〜2,000程度の
紡糸ドラフトでスプールに巻き付け、
Further, in detail, the melt spinning method in the present invention refers to a method of using a double circular nozzle capable of forcibly supplying the hydrophobic material of the present invention to the inside of a hollow fiber using a melting point of resin to melting point + 100.
At ℃, the molten strand is extruded in a hollow shape, and a breeze (1 m / sec or less) is blown around the spinning cylinder (about ± 3 at room temperature).
0) While cooling and solidifying at ° C, wind it around a spool with a spinning draft of about 100 to 2,000,

【0055】ついで、スプールに巻き付けたまま(Tg
+50)℃(但し、Tgはガラス転移点)以上から融点
未満の雰囲気中で1分〜24時間熱処理を行う。次にこ
れを延伸倍率1.1〜3.0倍でローラー間延伸を行
い、連続して(融点−50)℃〜(融点−20)℃の雰
囲気中で中空糸の収縮力に拮抗する張力を加えつつ、わ
ずか(0.8〜0.9倍)に弛緩しながら数秒間熱固定
を行うことを意味し、該方法により本発明の中空糸微多
孔膜を製造することができる。
Then, while being wound on the spool (Tg
+50) ° C. (however, Tg is a glass transition point) or higher and lower than the melting point, for 1 minute to 24 hours. Next, this is stretched between rollers at a stretching ratio of 1.1 to 3.0 times, and continuously tensioned against the contraction force of the hollow fiber in an atmosphere of (melting point −50) ° C. to (melting point −20) ° C. Means that heat setting is performed for a few seconds while relaxing slightly (0.8 to 0.9 times) while adding the microporous membrane of the present invention.

【0056】本発明の中空糸微多孔膜を適用した人工肺
の形状、形態には制限は無く、人工肺の形態として中空
糸の内側に血液を流すいわゆる内部灌流型人工肺でも良
く、また中空糸の外側に血液を流しガス交換を行ういわ
ゆる外部灌流型人工肺でも良い。外部灌流型人工肺は血
流圧力損失を低く抑えることができかつ、単位膜面積当
たりのガス交換効率に優れており最も好ましい形態であ
る。
The shape and form of the artificial lung to which the hollow fiber microporous membrane of the present invention is applied are not limited, and the form of the artificial lung may be a so-called internal perfusion type artificial lung in which blood flows inside the hollow fiber. A so-called external perfusion type artificial lung for performing gas exchange by flowing blood outside the thread may be used. The externally perfused oxygenator is the most preferable form because it can suppress the blood flow pressure loss to a low level and has excellent gas exchange efficiency per unit membrane area.

【0057】人工肺の基本性能であるガス交換効率、低
血液損傷性(低血流圧損)等は人工肺の構造にも大きく
依存する。本発明の中空糸膜を組み込んだ人工肺の好ま
しい形態/形状例として例えば特許平10−25642
5公報に詳しく記載れている。
Gas exchange efficiency, low blood damage (low blood pressure loss), and the like, which are the basic performances of an artificial lung, greatly depend on the structure of the artificial lung. As a preferred form / shape example of an artificial lung into which the hollow fiber membrane of the present invention is incorporated, for example, Japanese Patent Application Laid-Open No. H10-25642.
5 publication.

【0058】本発明の中空糸微多孔膜は、血液のガス交
換、即ち血液への酸素供給と血液からの二酸化炭素の除
去に優れており、該膜を用いた人工肺は、一般の開心術
のみならず、長期間の使用が必要となる急性肺不全及び
心不全患者に対する呼吸補助及び経皮的心肺補助用人工
肺として好適に使用できる。
The microporous hollow fiber membrane of the present invention is excellent in gas exchange of blood, ie, supply of oxygen to blood and removal of carbon dioxide from blood, and an artificial lung using the membrane is suitable for general open heart surgery. In addition, it can be suitably used as an artificial lung for respiratory support and percutaneous cardiopulmonary support for patients with acute lung failure and heart failure that require long-term use.

【0059】[0059]

【実施例】(実施例1)4−メチル−1−ペンテン系ポ
リマ−(商品名:TPX、三井化学製)を中空糸内部に
ガス強制供給可能な構造を持つ2重円管ノズルを用い、
溶融樹脂温度280℃で、中空状に溶融ストランドを押
し出し、紡糸筒周囲より微風を吹きつけ冷却固化させつ
つ紡糸ドラフト約750でスプールに巻き取った。
EXAMPLES Example 1 A double-circle tube nozzle having a structure capable of forcibly supplying gas inside a hollow fiber with a 4-methyl-1-pentene polymer (trade name: TPX, manufactured by Mitsui Chemicals) was used.
The molten strand was extruded in a hollow shape at a molten resin temperature of 280 ° C., and was wound around a spool by a spinning draft of about 750 while blowing and blowing a breeze from around the spinning cylinder to solidify.

【0060】次いで該未延伸紡出糸をスプールに巻いた
まま約190℃の雰囲気中で約2時間の熱処理を行った
後に延伸倍率2倍でローラー間延伸を行い、連続して1
95℃の雰囲気中で中空糸の収縮力に拮抗する張力を加
えつつわずかに弛緩しながら約1秒間熱固定を行うこと
により外径240μm、肉厚32μmの微多孔膜からな
る中空糸を調製した。 (実施例2)熱固定の雰囲気温度を215℃とし、熱固
定時の弛緩倍率をわずかに上げた以外実施例1と同等の
方法で外径236μm、肉厚33μmの微多孔膜からな
る中空糸を調製した。 (比較例1)2重円管紡糸ノズルを使用し、235℃で
溶融したメルトフローレート6g/分のポリプロピレン
樹脂を、該ノズルより内側に窒素を流しつつ中空ストラ
ンド状に押し出し、紡糸塔周囲より微風を吹かせ冷却固
化しつつ紡糸ドラフト770でスプールの巻き取った。
次いでスプールに巻き取った該中空ストランドを約13
0℃の雰囲気中で約2時間の熱処理を行った。次いで該
ストランドを延伸倍率2倍でローラ間延伸を行い、連続
して約130℃の雰囲気中でわずかに弛緩しながら約1
秒間熱固定を行い外径236μm、肉厚30μmの微多
孔膜からなる中空糸を調製した。 (比較例2)ポリ4−メチル−1−ペンテンポリマ−
を、2重円管紡糸ノズルを用い、紡糸温度285℃で中
空ストランド状に押し出し、ノズル直下に紡糸塔周辺よ
り均一に微風を流し、該溶融ストランドを固化させつつ
紡糸ドラフト780で引き取り、連続して約230℃の
空気雰囲気中で約3秒を熱処理を行った後連続して約
1.8のローラー間延伸を行い、連続して連続して19
5℃の雰囲気中で収縮力に拮抗する張力を負荷しながら
約1秒間熱固定を行い、外径230μm、肉厚32μm
の、外表面にやや緻密な薄膜層を有する微多孔膜からな
る中空糸を調製した。 (比較例3)ポリ4−メチル−1−ペンテンポリマ−を
約60℃に加温したシクロヘキサンに約16[wt%]で
溶解した。次いで該溶解液に対し約3[wt%]のエタノ
ールを添加し、孔径5μmのステンレスフィルターで濾
過、脱法を行い中空糸微多孔膜調製用ドープを得た。約
50℃に加温した該ドープ中空糸内管液としてエタノー
ルを用い、中空ノズルより約30cmの空気中を通過させ
エタノールで満たした凝固浴に導き固化させスプールに
巻き取った。約24時間メタノール中に浸漬した後、8
0℃に調整した熱風乾燥炉中で約24時間乾燥及び熱処
理を行った。得られた中空糸膜は外表面にやや緻密な層
を有しており、外径320μm、肉厚55μmの微多孔
膜からなる中空糸を調製した。
Next, the undrawn spun yarn is wound on a spool, heat-treated for about 2 hours in an atmosphere of about 190 ° C., and then drawn between rollers at a draw ratio of 2 times.
A hollow fiber consisting of a microporous membrane having an outer diameter of 240 μm and a wall thickness of 32 μm was prepared by performing heat fixing for about 1 second while slightly relaxing while applying a tension opposing the contraction force of the hollow fiber in an atmosphere at 95 ° C. . (Example 2) A hollow fiber made of a microporous membrane having an outer diameter of 236 µm and a wall thickness of 33 µm in the same manner as in Example 1, except that the atmosphere temperature for heat setting was 215 ° C and the relaxation ratio during heat setting was slightly increased. Was prepared. (Comparative Example 1) A double circular tube spinning nozzle was used to extrude a polypropylene resin melted at 235 ° C into a hollow strand shape while flowing nitrogen at a melt flow rate of 6 g / min. The spool was wound up by a spinning draft 770 while blowing a breeze to cool and solidify.
Then, the hollow strand wound on a spool is
The heat treatment was performed in an atmosphere at 0 ° C. for about 2 hours. Next, the strand is stretched between rollers at a stretching ratio of 2 times, and continuously relaxed slightly in an atmosphere of about 130 ° C. for about 1 hour.
Heat fixing was performed for 2 seconds to prepare a hollow fiber made of a microporous membrane having an outer diameter of 236 μm and a wall thickness of 30 μm. (Comparative Example 2) Poly 4-methyl-1-pentene polymer
Is extruded into a hollow strand shape at a spinning temperature of 285 ° C. using a double circular tube spinning nozzle, and a gentle breeze is flowed from the periphery of the spinning tower immediately below the nozzle to solidify the molten strand and take it off with a spinning draft 780, and continuously. After about 3 seconds of heat treatment in an air atmosphere of about 230 ° C., continuous stretching between rollers of about 1.8 is performed continuously, and continuous stretching of 19 times is performed.
In a 5 ° C. atmosphere, heat fix for about 1 second while applying a tension that opposes the shrinkage force, outer diameter 230 μm, wall thickness 32 μm
A hollow fiber comprising a microporous membrane having a slightly dense thin film layer on the outer surface was prepared. Comparative Example 3 Poly 4-methyl-1-pentene polymer was dissolved in cyclohexane heated to about 60 ° C. at about 16 wt%. Next, about 3 [wt%] of ethanol was added to the solution, and the solution was filtered through a stainless steel filter having a pore size of 5 μm and subjected to a demolding method to obtain a dope for preparing a hollow fiber microporous membrane. Ethanol was used as the inner tube liquid of the dope hollow fiber heated to about 50 ° C., passed through air about 30 cm from the hollow nozzle, led to a coagulation bath filled with ethanol, solidified, and wound on a spool. After immersion in methanol for about 24 hours, 8
Drying and heat treatment were performed in a hot air drying oven adjusted to 0 ° C. for about 24 hours. The obtained hollow fiber membrane had a slightly dense layer on the outer surface, and a hollow fiber consisting of a microporous membrane having an outer diameter of 320 μm and a wall thickness of 55 μm was prepared.

【0061】(試験例1)膜の酸素フラックス、平均連
通孔半径、エタノールフラックス、開孔率を調べた。そ
の結果を表1に示す。
Test Example 1 The membrane was examined for oxygen flux, average communicating hole radius, ethanol flux, and porosity. Table 1 shows the results.

【0062】[0062]

【表1】 [Table 1]

【0063】(試験例2)実施例1、2、比較例1〜3
で調製した微多孔膜からなる中空糸を使用し、ポリエス
テルを縦糸とした鎖編みにより中空糸打ち込み本数が2
4本/cmの中空糸シートを形成した。これを図1にモ
デル図として示したように本中空糸シートの積層体を形
成させ、次いでこの積層体を図2にモデル図として示し
たような角形モジュールに組み込み、中空糸の外径基準
の有効膜面積が約0.4m2の外部灌流型用人工肺を試
作した。
(Test Example 2) Examples 1 and 2, Comparative Examples 1 to 3
Using hollow fibers consisting of a microporous membrane prepared in step 2, and knitting the number of hollow fibers by chain knitting using polyester as warp yarns.
Four / cm hollow fiber sheets were formed. This was formed into a laminate of the present hollow fiber sheet as shown in FIG. 1 as a model diagram, and then this laminate was assembled into a square module as shown in FIG. An external perfusion oxygenator having an effective membrane area of about 0.4 m 2 was experimentally manufactured.

【0064】性能評価はAAMI(ASSOCIATION FOR TH
E ADVANCEMENT OF MEDICAL INSTRUMENTATION)の方法に
準じ牛血により行った。ACDにより抗凝固処理を行っ
た新鮮牛血を酸素飽和度65%、ヘモグロビン(Hb)
12g/dl、過剰塩基(BE)0mEq/l、溶存二
酸化炭素分圧45mmHg、温度37℃に調整し、図2
中1より牛血を流し入れると同時に図2の3より酸素ガ
スをV/Q=1(酸素流量/血液流量)としガス交換性
能を測定した。結果を表2に示した。
The performance evaluation was performed by AAMI (ASSOCIATION FOR TH
E ADVANCEMENT OF MEDICAL INSTRUMENTATION) using bovine blood. Fresh cochlear blood which has been subjected to anticoagulation treatment by ACD is subjected to hemoglobin (Hb) with an oxygen saturation of 65%.
Adjusted to 12 g / dl, excess base (BE) 0 mEq / l, dissolved carbon dioxide partial pressure 45 mmHg, temperature 37 ° C.
At the same time as bovine blood was poured from the middle 1, the oxygen exchange gas was set to V / Q = 1 (oxygen flow rate / blood flow rate) and the gas exchange performance was measured from 3 in FIG. The results are shown in Table 2.

【0065】但し、表2に示す最大血液流量とは、12
g/dlのHbを含有し、血液温度37℃で酸素飽和度
65%で、BEが0である牛血の酸素含有量を45ml
/l(血液流量)だけ増加させることであり、標準二酸
化炭素血流量とは酸素の場合と同条件の牛血を使用し、
その二酸化炭素含有量を38ml/l(血液流量)だけ
減少させることの出来る最大血液流量を示す。尚本実施
例で示す最大血流量は血液を約6時間灌流した後の値で
ある。
However, the maximum blood flow rate shown in Table 2 is 12
g / dl of Hb, a blood temperature of 37 ° C., an oxygen saturation of 65%, a BE of 0, and an oxygen content of 45 ml of bovine blood.
/ L (blood flow), and the standard carbon dioxide blood flow uses bovine blood under the same conditions as oxygen,
Shows the maximum blood flow that can reduce its carbon dioxide content by 38 ml / l (blood flow). Note that the maximum blood flow shown in this embodiment is a value after blood is perfused for about 6 hours.

【0066】[0066]

【表2】 [Table 2]

【0067】耐血漿リーク特性の評価は、アジ化ナトリ
ウム及び必要に応じてペントシリン等の抗生物質で防腐
処理したACD牛血を使用し実施した。実験に使用した
人工肺のモデル図2の3より純酸素を2l/minで流
しつつ約37℃に調製した牛血を流量2l/minでル
ープ状に灌流し、図2中の4の部分にトラップされた凝
集水中の蛋白量を定期的に測定した。蛋白成分の検出は
テトラブロムフェノールによる色変化を利用した市販の
蛋白質検査用紙を用いた。尚、牛血は約24時間ごとに
新鮮なものに交換した。この結果を表3に示した。
The evaluation of the plasma leak resistance was performed using ACD bovine blood preserved with an antibiotic such as sodium azide and, if necessary, pentocillin. Model of the artificial lung used in the experiment Bovine blood prepared at about 37 ° C. was perfused in a loop at a flow rate of 2 l / min while flowing pure oxygen at 2 l / min from 3 in FIG. The amount of protein in the trapped flocculated water was measured periodically. For the detection of the protein component, a commercially available protein test paper utilizing color change by tetrabromophenol was used. The bovine blood was replaced with fresh one about every 24 hours. The results are shown in Table 3.

【0068】[0068]

【表3】 [Table 3]

【0069】※1;ガス出口で発砲* 1; Fire at gas outlet

【0070】[0070]

【発明の効果】本発明により、優れた酸素及び炭酸ガス
交換性能を有し、長期の使用においても血漿成分の漏れ
の無い、中空糸微多孔膜、及びそれを組み込んだ人工肺
を提供することができる。
According to the present invention, there is provided a hollow fiber microporous membrane having excellent oxygen and carbon dioxide gas exchange performance and free from leakage of plasma components even during long-term use, and an artificial lung incorporating the same. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の人工肺の構成例を示すモデル図であ
る。
FIG. 1 is a model diagram showing a configuration example of an artificial lung according to the present invention.

【図2】本発明の構成例を示す簾状中空糸シートの積層
状態を示すモデル図である。
FIG. 2 is a model diagram showing a laminated state of a cord-like hollow fiber sheet showing a configuration example of the present invention.

【符号の説明】[Explanation of symbols]

1:血液流入/流出口 2:血液流入/流出口 3:ガス流入/流出口 4:ガス流入/流出口 5:中空糸膜シート積層体 6:中空糸膜シート 7:中空糸膜シート縦糸 1: blood inflow / outflow 2: blood inflow / outflow 3: gas inflow / outflow 4: gas inflow / outflow 5: hollow fiber membrane sheet laminate 6: hollow fiber membrane sheet 7: hollow fiber membrane sheet warp

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // D01F 6/04 D01F 6/04 C Fターム(参考) 4C077 AA03 BB06 KK11 LL05 LL17 LL22 LL23 NN10 PP08 4D006 MA01 MA22 MB03 MB06 MB10 MC22X NA21 NA62 NA66 PB62 PB64 PB67 PC48 4L035 AA09 BB31 BB40 BB55 BB89 BB91 CC02 CC07 CC13 DD03 DD07 DD14 FF01 FF10 MA06──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // D01F 6/04 D01F 6/04 C F term (Reference) 4C077 AA03 BB06 KK11 LL05 LL17 LL22 LL23 NN10 PP08 4D006 MA01 MA22 MB03 MB06 MB10 MC22X NA21 NA62 NA66 PB62 PB64 PB67 PC48 4L035 AA09 BB31 BB40 BB55 BB89 BB91 CC02 CC07 CC13 DD03 DD07 DD14 FF01 FF10 MA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸素ガスフラックスが10×10-5〜5
00×10-5[cm 3(STP)/cm2/sec/cm
Hg]であり、エタノールフラックスが2〜80[ml
/min/m2]であり、平均孔半径0.008〜0.
07μmの連通孔を有する疎水性の素材からなる中空糸
微多孔膜。
1. An oxygen gas flux of 10 × 10-Five~ 5
00 × 10-Five[Cm Three(STP) / cmTwo/ Sec / cm
Hg] and the ethanol flux is 2 to 80 [ml
/ Min / mTwo] And an average pore radius of 0.008 to 0.
Hollow fiber made of a hydrophobic material having a communication hole of 07 μm
Microporous membrane.
【請求項2】 疎水性の素材がポリ(4−メチルペンテ
ン−1)系ポリマーであることを特徴とする請求項1に
記載の中空糸微多孔膜。
2. The hollow fiber microporous membrane according to claim 1, wherein the hydrophobic material is a poly (4-methylpentene-1) -based polymer.
【請求項3】 中空糸微多孔膜が溶融紡糸法により製造
された膜であることを特徴とする請求項1又は2に記載
の中空糸微多孔膜。
3. The hollow fiber microporous membrane according to claim 1, wherein the hollow fiber microporous membrane is a membrane produced by a melt spinning method.
【請求項4】 請求項1〜3のいずれか一項に記載の中
空糸微多孔膜を組み込んでなる膜型人工肺。
4. A membrane oxygenator incorporating the hollow fiber microporous membrane according to claim 1.
JP2000228784A 2000-07-28 2000-07-28 Hollow fiber microporous membrane and membrane oxygenator incorporating the same Expired - Lifetime JP5138840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228784A JP5138840B2 (en) 2000-07-28 2000-07-28 Hollow fiber microporous membrane and membrane oxygenator incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228784A JP5138840B2 (en) 2000-07-28 2000-07-28 Hollow fiber microporous membrane and membrane oxygenator incorporating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010148165A Division JP5413317B2 (en) 2010-06-29 2010-06-29 Hollow fiber microporous membrane and membrane oxygenator incorporating the same

Publications (2)

Publication Number Publication Date
JP2002035557A true JP2002035557A (en) 2002-02-05
JP5138840B2 JP5138840B2 (en) 2013-02-06

Family

ID=18722016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228784A Expired - Lifetime JP5138840B2 (en) 2000-07-28 2000-07-28 Hollow fiber microporous membrane and membrane oxygenator incorporating the same

Country Status (1)

Country Link
JP (1) JP5138840B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501393A (en) * 2004-06-03 2008-01-24 ハエマー リミテッド Blood / air mass exchange equipment
JP2010213851A (en) * 2009-03-16 2010-09-30 Jms Co Ltd Blood treatment device
CN114749032A (en) * 2022-04-13 2022-07-15 河北科技大学 PMP hollow fiber membrane and preparation method and application thereof
WO2023027052A1 (en) * 2021-08-23 2023-03-02 東レ株式会社 Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104271A (en) * 1987-07-11 1989-04-21 Dainippon Ink & Chem Inc Membrane type oxygenator
JPH06210146A (en) * 1993-01-19 1994-08-02 Dainippon Ink & Chem Inc Hollow fiber inhomogeneous membrane and its production
JP2000084369A (en) * 1998-09-10 2000-03-28 Dainippon Ink & Chem Inc Hallow fiber membrane type gas-liquid gas exchanging device and gas exchange

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104271A (en) * 1987-07-11 1989-04-21 Dainippon Ink & Chem Inc Membrane type oxygenator
JPH06210146A (en) * 1993-01-19 1994-08-02 Dainippon Ink & Chem Inc Hollow fiber inhomogeneous membrane and its production
JP2000084369A (en) * 1998-09-10 2000-03-28 Dainippon Ink & Chem Inc Hallow fiber membrane type gas-liquid gas exchanging device and gas exchange

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501393A (en) * 2004-06-03 2008-01-24 ハエマー リミテッド Blood / air mass exchange equipment
JP4825796B2 (en) * 2004-06-03 2011-11-30 ハエマー リミテッド Blood / air mass exchange equipment
JP2010213851A (en) * 2009-03-16 2010-09-30 Jms Co Ltd Blood treatment device
WO2023027052A1 (en) * 2021-08-23 2023-03-02 東レ株式会社 Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto
CN114749032A (en) * 2022-04-13 2022-07-15 河北科技大学 PMP hollow fiber membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP5138840B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5290168B2 (en) Plasma separation membrane
JP2700170B2 (en) Membrane oxygenator
JP5413317B2 (en) Hollow fiber microporous membrane and membrane oxygenator incorporating the same
JP4265701B2 (en) Polysulfone porous membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPH09154936A (en) Blood purifying module, blood purifying membrane and production thereof
JP4873665B2 (en) Hollow fiber membrane for blood purification
JP5138840B2 (en) Hollow fiber microporous membrane and membrane oxygenator incorporating the same
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JPS61232860A (en) Polysulfone hollow yarn for separating serum
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3594946B2 (en) High performance microfiltration membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP3431622B1 (en) High-performance plasma purification membrane
JPH022849A (en) Porous hollow yarn membrane
JP2572895B2 (en) Manufacturing method of porous hollow fiber membrane
JP4093134B2 (en) Hollow fiber blood purification membrane
JP2954327B2 (en) Porous hollow fiber membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP2553248B2 (en) Method for producing porous hollow fiber membrane
JP2004216328A (en) Permselective hollow fiber membrane and blood treatment instrument using the same
Teber et al. Characterization and comparative evaluation of polysulfone and polypropylene hollow fiber membranes for blood oxygenators
JPH07258915A (en) Porous polysulfone hollow yarn

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100817

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5138840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term