JP2004216328A - Permselective hollow fiber membrane and blood treatment instrument using the same - Google Patents

Permselective hollow fiber membrane and blood treatment instrument using the same Download PDF

Info

Publication number
JP2004216328A
JP2004216328A JP2003009310A JP2003009310A JP2004216328A JP 2004216328 A JP2004216328 A JP 2004216328A JP 2003009310 A JP2003009310 A JP 2003009310A JP 2003009310 A JP2003009310 A JP 2003009310A JP 2004216328 A JP2004216328 A JP 2004216328A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
acrylic resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003009310A
Other languages
Japanese (ja)
Inventor
Tsutomu Kamisaka
努 上阪
Ryozo Terada
良蔵 寺田
Hiroyuki Sugaya
博之 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003009310A priority Critical patent/JP2004216328A/en
Publication of JP2004216328A publication Critical patent/JP2004216328A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permselective hollow fiber membrane having high permeability and adsorption performance. <P>SOLUTION: The permselective hollow fiber membrane has an asymmetric structure provided with a dense layer on the inside layer and a porous structure on the outside layer and consists essentially of an acrylic resin. The blood treatment instrument is constituted so as to use the same. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アクリル樹脂を主成分としてなる選択透過性中空糸膜およびそれを用いた血液処理器に関するものである。更に詳しくは、血液透析、血液濾過、血液濾過透析などの血液処理に適し、特に中高分子量領域の有害物質を除去するのに適した選択透過性中空糸膜およびそれを用いた血液処理器に関するものである。
【0002】
【従来の技術】
これまでに選択透過性中空糸膜は、逆浸透や血液透析等において実用化されてきている。特に、慢性腎不全患者の血液処理膜を人腎レベルに近づけるために、様々な透析方法および膜の性能向上技術が開発されてきた。中でも最近透析患者の長期合併症との関連で透析アミロイドーシスの原因物質とされているβ−ミクログロブリン(以下、β−MGという、分子量11,800)の除去に代表される中高分子量物質の除去の必要性が叫ばれている。一方で、人体に必須のアルブミン(分子量66,000)の損失は極力避けなければならないため、分画特性のシャープな選択透過性膜が望まれている。
【0003】
これまでにポリスルホンなどの合成高分子では、例えば特公平2―18695号や特公平5−54373号各公報に見られるように、比較的上記要求を満たしたものが得られている。しかし、ポリメチルメタクリレートに代表されるアクリル樹脂の選択透過性中空糸膜に関しては、例えば特公昭53−6249号公報に見られるように、中空糸を紡糸するときの芯剤として、空気あるいは不活性気体を注入させており、紡糸原液に対して凝固性のないものを使用しているため、紡糸時の曵糸性を高くするためには紡糸原液の粘度を高めざるを得なくなり、得られる中空糸膜の緻密層と多孔層との密度差が小さい膜が形成されていた。そのため、アクリル樹脂の選択透過性中空糸膜は他の合成高分子の膜と比較して、緻密層と多孔層との密度差が小さく、全体として均一層に近い膜構造となり物質の透過性能は十分とは言えなかった。
【0004】
一方、ポリメチルメタクリレートを代表とするアクリル樹脂の選択透過性中空糸膜には膜素材として高い生体適合性を有すると共に、β−MGを吸着により除去することが可能な膜として注目されている(例えば、遠藤信之他、「血液濾過用フィルターでの血中溶質の吸着」人工臓器12:49−52,1983)。
【0005】
アルブミンの損失を抑えるためには、中空糸膜の孔径を3nm以下にすることが好ましいが、透過によってβ−MGを効率よく除去するためには、3nmより大きい孔を持つ膜が好ましく、そうするとアルブミンが透過するという問題があり、両者を満たす中空糸膜の設計は困難とされていた。
【0006】
【特許文献1】特公平2―18695号
【0007】
【特許文献2】特公平5―54373号
【0008】
【特許文献3】特公平53−6249
【0009】
【非特許文献1】「血液濾過用フィルターでの血中溶質の吸着」人工臓器12:49−52,1983
【0010】
【発明が解決しようとする課題】
本発明は、この様な従来技術の問題点の解決を目的としたものであって、特に血液透析や血液濾過透析において、β ―MG等の中分子量領域の有害物質の除去性能に優れ、アルブミンの損失が小さく、更には尿素等の低分子量領域の有害物質の除去性能にも優れたアクリル樹脂を膜素材とする選択透過性中空糸膜およびそれを用いた用いた血液処理器を提供することを目的としている。
【0011】
【課題を解決するための手段】
すなわち本発明は、上記課題を達成するため、以下の構成を有する。
【0012】
(1)アクリル樹脂を主成分としてなり、内表面に緻密層、その外側に多孔支持層を備えた非対称構造を有することを特徴とする選択透過性中空糸膜。
【0013】
(2)該選択透過性中空糸膜のβ−MGの吸着量/除去量の比が0.3以上であることを特徴とする(1)記載のアクリル樹脂選択透過性中空糸膜。
【0014】
(3)アクリル樹脂がポリメタクリル酸エステルであることを特徴とする(1)または(2)記載の選択透過性中空糸膜。
【0015】
(4)アクリル樹脂がポリメタクリル酸メチルであることを特徴とする(1)〜(3)のいずれかに記載の選択透過性中空糸膜。
【0016】
(5)上記の膜を用いた血液処理器。
【0017】
【発明の実施の形態】
本発明における中空糸膜を形成する素材は主としてアクリル樹脂であり、特にポリメタクリル酸エステルであることが好ましい。その中でも、メタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピルが好ましく、特にコスト面、プロセス面を考えると、ポリメタクリル酸メチルが好ましい。本発明の中空糸膜は、主としてアクリル樹脂からなるものであり、アクリル樹脂の特性を損わない範囲で、他の高分子量物質や添加物を含有していてもよい。
【0018】
本発明の中空糸膜の断面構造は、内面に物質の分離透過特性を決定する極薄の緻密層を有し、その外側に膜の機械的強度を保つための多孔支持層を有する。該多孔支持層は、除去対象物質の透過抵抗が殆んどない層であり、二層又は多層構造が好ましい。
【0019】
本発明の中空糸膜は、アクリル樹脂を主成分とするため、β−MGの吸着除去量/透過除去量の比率を高くすることができ、特に0.3以上の性能を有するものとすることが好ましい。従来のポリスルホンを用いた膜(以下PSf膜という)の場合、非対称構造を有する中空糸膜ではあるが、吸着除去量/透過除去量の比率としては、このような高い値は得られない。
【0020】
本発明において、緻密層とは、ポリマー粒子が凝集し、網目構造の判断がつかない層を意味する。中空糸膜内面の緻密層の厚さが除去対称物質の透過抵抗に支配的であり、緻密層の厚さが薄い方が透過性能の面で優れており、一般的に2μm以下であることが好ましい。さらに好ましくは0.2〜1μmである。0.2μm未満ではアルブミンの分画性が不十分となる。緻密層の厚さは中空糸膜断面のSEM像(倍率1万倍)とした状態で判断する。
【0021】
中空糸膜の膜厚は、機械的強度を保つ必要があるため、25μm以上であることが好ましい。膜厚を厚くすると中空糸外面まで多孔構造を成長させることが難しくなり、多孔支持層の空孔率を低下させることが危惧されるため、膜厚は25〜55μmが好ましい。
【0022】
本発明においては、アクリル樹脂とともに、膜の孔の大きさをコントロールするためと、親水性を付与するために、親水性ポリマーが用いられることが好ましい。親水性ポリマとしては、コスト面及び取り扱い易さの点からポリビニルピロリドン、ポリエチレングリコールが好ましく用いられる。
【0023】
親水性ポリマを用いる場合、アクリル樹脂と、親水性ポリマとは、共に溶媒中に溶解することにより、製膜原液とされる。ここで用いられる溶媒としては、アクリル樹脂および親水性ポリマーの良溶媒が用いられる。具体的には、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、N−メチルピロリドンなどであるが、危険性、安全性、毒性の面からジメチルスルホキシド、ジメチルアセトアミド、N−メチルピロリドンが好ましく用いられる。
【0024】
製膜原液におけるアクリル樹脂の濃度に関しは、濃度を上げるにつれて製膜性は向上するが、逆に膜の空孔率は減少し、透水性が低下する傾向がある。そのため、アクリル樹脂の濃度は、製膜原液中、10〜30重量%であることが好ましく、さらには15〜24重量%であることがより好ましい。
【0025】
親水性ポリマーを用いる場合、その役割は、前述のとおり、主に外側の多孔支持層部分の多孔構造を促進して形成させるところにあり、製膜原液の増粘効果を奏するものである。製膜原液中に添加する親水性ポリマーの量は安定した製膜を行うために親水性ポリマーの分子量と添加量を適宜調整することもできる。ポリビニルピロリドンを例に説明すると、重量平均分子量が3万〜6万程度のものであれば、2〜10重量%、さらには3〜8重量%添加すると製膜に適した溶液粘度とすることができ、好ましい。溶液粘度は10〜80ポイズ、好ましくは20〜70ポイズとなるように調整すると安定した製膜を行うことができる。製膜原液の粘度が低い場合、製膜時に糸切れ、糸揺れなどを起こし、製糸性が不安定になる場合がある。逆に製膜原液の粘度が高すぎる場合、多孔支持層を充分に成長させることができず、外層の多孔構造の空孔率が不十分となり、目的の高い透過性を持つ膜が得られにくくなる。更には、製膜原液の粘度が上がることで、口金から吐出された原液がメルトフラクチャーを起こすことも危惧される。
【0026】
製膜原液には、さらに、アクリル樹脂の貧溶媒で、かつ、ポリビニルピロリドンと相溶性を持つ添加剤が添加されることが好ましい。具体的には、アルコール、グリセリン、水、エステル類などが用いられるが、プロセス適性の面から特に水が好ましく使用される。
【0027】
本発明の選択透過性中空糸膜の製膜方法は、一例を挙げると以下のとおりである。
【0028】
まず、製膜原液と芯剤とを二重スリット管構造の口金から同時に吐出させ、凝固浴中へ浸漬する。この時、非対称構造を形成するように製膜条件を整えることが重要であり、芯剤は製膜原液と接触させて相分離を開始させるものであるので、上記アクリル樹脂の良溶媒の水溶液が用いられ、その組成については良溶媒/水の比で10/90〜70/30のものが好ましく使用され、15/85〜65/35のものが更に好ましく使用される。口金温度、凝固浴温度、乾式長については適宜最良の組み合わせを決めればよいが、口金温度については通常30℃〜60℃、凝固浴温度については20℃〜60℃、乾式長については100mm〜600mmが好ましく使用される。
【0029】
凝固浴には水を用いるが、中空糸多孔支持層の構造を制御する目的で上記のアクリル樹脂の良溶媒の水溶液を用いることもある。乾式長が短い条件では、芯剤により開始される相分離が外層部に到達する前に凝固浴に浸漬するため、凝固浴により、中空糸外表面からも相分離が起こり、外表面にも緻密層が形成され高い透過性を得ることができなくなり好ましくない。その場合、凝固浴中の溶媒濃度を高めることで、中空糸内層からの相分離の進行を妨げないようにすることが可能となる。
【0030】
得られた選択透過性中空糸膜を人工腎臓用透析膜として用いるためにはアルブミンの漏出は少ないことが好ましく、過大な孔の存在しないシャープな孔径分布を持つ膜が好ましい。例えば、バイエルメディカル社製“アルブスティックス”によるリーク判定において、++判定以上のものはアルブミンの漏出が大きく人工腎臓用透析膜としては不適とされる。
【0031】
本発明のアクリル樹脂を用いた選択透過性中空糸膜は、例えば、透析器、血漿分離器等の血液浄化膜、限外濾過膜等として好適に用いられ、特に人工腎臓用の透析膜として好適に使用される。さらには、この中空糸膜を内臓することにより、これらの膜性能を有する血液処理器とすることができる。血液処理器としては、例えば、人工腎臓が挙げられる。人工腎臓とする場合、中空糸膜として本発明の膜を用いる以外、そのケース、ポートなどの形態は一般に知られる形態とすることができる。
【0032】
【実施例】
次に実施例に基づき本発明を説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、実施例において、「部」は「重量部」を意味する。なお、ここで用いた測定方法は以下の通りである。
【0033】
(1)透水性の測定
長さが12cmの中空糸20本の中空糸両端を封止したガラス管ミニモジュールを作製し、中空糸膜間に水圧13.3kPaをかけ、外側に流出してくる単位時間当たりの濾過量を測定した。透水性は下記の式で算出した。
透水性(ml・hr−1・kPa−1・m−2)= QW/(T・A・P)
ここで、QWは濾過量(ml・min−1)、Tは流出時間(min)、Pは圧力(kPa)、Aは膜面積(m)(中空糸内表面積換算)を意味する。
【0034】
(2)アルブミンリークレベルの測定
(1)で使用したガラス管ミニモジュールの中空糸膜の内側に牛血清を0.6ml・min−1の速度で灌流し、中空糸膜間に水圧13.3kPaをかけ、外側に流出してくる濾液のアルブミンリークレベルをバイエル・メディカル社製“アルブスティック”により、アルブミンリークレベルを判定した。+判定以下のリークレベルが合格である。
【0035】
(3)β−MGの除去性能の測定
(1)と同様にガラス管ミニモジュールを作製し、(2)で用いたものと同様の牛血清にヒトβ−MGを5mg・ml−1の濃度で溶解し、中空糸内側に1ml・min−1の流量で灌流し、中空糸外側には37℃に保ったリン酸緩衝溶液140mlを20ml・min−1の速度で密閉形で灌流した。4時間灌流後中空糸内側及び外側灌流液を採取し、クリアランスを算出し、膜面積1.8m 換算値を求めた。外側灌流液濃度を透過除去相当分とし、それより換算される内側灌流液濃度と実際の濃度との差を吸着除去相当分とし、吸着除去量/透過除去量の比を算出した。
【0036】
実施例1
三菱レイヨン社製アクリル樹脂(”ダイヤナール”BR−80)18部、ポリビニルピロリドン(ISP社製K30 重量平均分子量4万)6部をジメチルスルホキシド75部、水1部に加え、加熱溶解した。この原液を温度50℃の紡糸口金部へ送り、二重スリット管口金から、芯液であるジメチルスルホキシド65部を含む水溶液と同時に吐出させた。乾式長350mmとして、40℃の凝固浴中に浸漬した後、水洗することにより内径181μm、膜厚45μmの中空糸膜を得た。
【0037】
得られた中空糸膜の断面のSEM写真を図1に示す。中空糸内表面1の近傍に緻密層2を有し、その外側に向かって孔がより多孔となり、多孔支持層2を備えた非対称構造を有していた。緻密層の厚みは、0.8μmであった。
【0038】
この中空糸膜を用いてガラス管ミニモジュールを作製して、透水性を測定したところ1973ml・hr−1・kPa−1・m−2であった。また、アルブミンリークレベルは±で透析膜に適したものであった。更にβ−MGクリアランスの吸着除去量/透過除去量の比は0.45であり、吸着性能を備えた選択透過性中空糸膜であった。
【0039】
比較例1
非対称構造を有する東レ社製“トレスルホン”BS−1.8ULの中空糸を取り出し、実施例1と同様にミニモジュールを作製して、性能評価を行ったところ、透水性は5438ml・hr−1・kPa−1・m−2であった。また、アルブミンリークレベルは+でわずかにアルブミンが漏出する透析膜であった。更に、β2−MGの吸着除去量/透過除去量の比は0.06であり、吸着性能をほとんど持たない選択透過性中空糸膜であった。
【0040】
【発明の効果】
本発明の選択透過性中空糸膜は高い透過性及び吸着除去性能を併せ持つ優れた膜であり、血液浄化膜、血漿分離膜、透析膜、濾過膜、濾過透析膜等の血液処理用膜等に好適に使用できる。さらに、この中空糸膜を用いることにより、血液処理器を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の中空糸膜の断面のSEM写真である。
【符号の説明】
1.中空糸内表面
2.緻密層
3.多孔支持層
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a permselective hollow fiber membrane containing an acrylic resin as a main component and a blood processor using the same. More specifically, the present invention relates to a selectively permeable hollow fiber membrane suitable for blood treatment such as hemodialysis, hemofiltration, hemofiltration dialysis, and particularly suitable for removing harmful substances in a medium-high molecular weight region, and a blood processor using the same. It is.
[0002]
[Prior art]
Until now, permselective hollow fiber membranes have been put to practical use in reverse osmosis, hemodialysis, and the like. In particular, various dialysis methods and techniques for improving the performance of membranes have been developed in order to bring blood treatment membranes of patients with chronic renal failure closer to human kidney levels. Among them recently been the long-term complications of dialysis patients associated with the causative agent of dialysis amyloidosis beta 2 - microglobulin (hereinafter, referred to as beta 2 -MG, molecular weight 11,800) of the high molecular weight material in typified by removal of The need for elimination is being called out. On the other hand, since loss of albumin (molecular weight: 66,000), which is essential for the human body, must be avoided as much as possible, a permselective membrane having a sharp fractionation characteristic is desired.
[0003]
Until now, synthetic polymers such as polysulfone have been obtained which relatively satisfy the above requirements as seen in, for example, Japanese Patent Publication Nos. 2-18695 and 5-54373. However, as for a selectively permeable hollow fiber membrane of an acrylic resin represented by polymethyl methacrylate, for example, as shown in JP-B-53-6249, air or inert material is used as a core agent when spinning a hollow fiber. Since a gas is injected and a material that does not coagulate with the spinning dope is used, the viscosity of the spinning dope must be increased in order to increase the spinning property during spinning, and the resulting hollow A film having a small density difference between the dense layer and the porous layer of the yarn membrane was formed. Therefore, the permselective hollow fiber membrane of acrylic resin has a smaller density difference between the dense layer and the porous layer than other synthetic polymer membranes, and has a membrane structure that is close to a uniform layer as a whole. Not enough.
[0004]
On the other hand, a permselective hollow fiber membrane of an acrylic resin represented by polymethyl methacrylate has attracted attention as a membrane having high biocompatibility as a membrane material and capable of removing β 2 -MG by adsorption. (For example, Nobuyuki Endo et al., "Adsorption of solute in blood by filter for blood filtration," artificial organ 12: 49-52, 1983).
[0005]
In order to suppress the loss of albumin, it is preferable that the pore diameter of the hollow fiber membrane is 3 nm or less, but in order to efficiently remove β 2 -MG by permeation, a membrane having pores larger than 3 nm is preferable. There is a problem that albumin permeates, and it has been difficult to design a hollow fiber membrane that satisfies both.
[0006]
[Patent Document 1] Japanese Patent Publication No. 2-18695
[Patent Document 2] Japanese Patent Publication No. 5-54373
[Patent Document 3] Japanese Patent Publication No. 53-6249
[0009]
[Non-patent document 1] "Adsorption of blood solute by blood filtration filter" artificial organ 12: 49-52, 1983
[0010]
[Problems to be solved by the invention]
The present invention is intended to solve such problems of the prior art, and particularly in hemodialysis and hemofiltration dialysis, is excellent in removing harmful substances in the medium molecular weight region such as β 2 -MG, Provided is a selectively permeable hollow fiber membrane using an acrylic resin as a membrane material, which has a small loss of albumin and is excellent in removing harmful substances in a low molecular weight region such as urea, and a blood processor using the same. It is aimed at.
[0011]
[Means for Solving the Problems]
That is, the present invention has the following configurations to achieve the above object.
[0012]
(1) A permselective hollow fiber membrane mainly composed of an acrylic resin, having an asymmetric structure having a dense layer on the inner surface and a porous support layer on the outer side.
[0013]
(2) The acrylic resin selectively permeable hollow fiber membrane according to (1), wherein the ratio of the amount of β 2 -MG adsorbed / removed by the selectively permeable hollow fiber membrane is 0.3 or more.
[0014]
(3) The permselective hollow fiber membrane according to (1) or (2), wherein the acrylic resin is a polymethacrylate.
[0015]
(4) The permselective hollow fiber membrane according to any one of (1) to (3), wherein the acrylic resin is polymethyl methacrylate.
[0016]
(5) A blood processor using the above membrane.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The material forming the hollow fiber membrane in the present invention is mainly an acrylic resin, and particularly preferably a polymethacrylate. Among them, methyl methacrylate, polyethyl methacrylate, and polypropyl methacrylate are preferable, and polymethyl methacrylate is particularly preferable in view of cost and process. The hollow fiber membrane of the present invention is mainly composed of an acrylic resin, and may contain other high molecular weight substances and additives as long as the properties of the acrylic resin are not impaired.
[0018]
The cross-sectional structure of the hollow fiber membrane of the present invention has an extremely thin dense layer for determining the separation and permeation characteristics of a substance on the inner surface, and a porous support layer on the outer side for maintaining the mechanical strength of the membrane. The porous support layer is a layer having almost no permeation resistance of the substance to be removed, and preferably has a two-layer or multilayer structure.
[0019]
Since the hollow fiber membrane of the present invention contains an acrylic resin as a main component, it is possible to increase the ratio of the amount of β 2 -MG adsorbed and removed / the amount of β 2 -MG permeated, and particularly to have a performance of 0.3 or more. Is preferred. In the case of a conventional membrane using polysulfone (hereinafter referred to as PSf membrane), although it is a hollow fiber membrane having an asymmetric structure, such a high value cannot be obtained as the ratio of the amount of adsorbed removal / the amount of permeated removal.
[0020]
In the present invention, the dense layer means a layer in which polymer particles are aggregated and a network structure cannot be determined. The thickness of the dense layer on the inner surface of the hollow fiber membrane is dominant to the permeation resistance of the material to be removed, and the thinner the dense layer is, the better the permeation performance is. In general, it is 2 μm or less. preferable. More preferably, it is 0.2 to 1 μm. If it is less than 0.2 μm, the fractionability of albumin becomes insufficient. The thickness of the dense layer is determined based on the SEM image (magnification: 10,000 times) of the cross section of the hollow fiber membrane.
[0021]
The thickness of the hollow fiber membrane is preferably 25 μm or more because it is necessary to maintain mechanical strength. When the film thickness is increased, it is difficult to grow the porous structure up to the outer surface of the hollow fiber, and there is a fear that the porosity of the porous support layer is reduced. Therefore, the film thickness is preferably 25 to 55 μm.
[0022]
In the present invention, it is preferable to use a hydrophilic polymer together with the acrylic resin in order to control the pore size of the membrane and to impart hydrophilicity. As the hydrophilic polymer, polyvinyl pyrrolidone and polyethylene glycol are preferably used from the viewpoint of cost and ease of handling.
[0023]
When a hydrophilic polymer is used, the acrylic resin and the hydrophilic polymer are both dissolved in a solvent to form a stock solution. As a solvent used here, a good solvent of an acrylic resin and a hydrophilic polymer is used. Specifically, dimethylacetamide, dimethylformamide, dimethylsulfoxide, acetone, N-methylpyrrolidone and the like are used, but dimethylsulfoxide, dimethylacetamide and N-methylpyrrolidone are preferably used from the viewpoint of danger, safety and toxicity.
[0024]
Regarding the concentration of the acrylic resin in the film forming solution, as the concentration is increased, the film forming property is improved, but conversely, the porosity of the film tends to decrease, and the water permeability tends to decrease. Therefore, the concentration of the acrylic resin is preferably from 10 to 30% by weight, and more preferably from 15 to 24% by weight, in the film forming stock solution.
[0025]
When a hydrophilic polymer is used, its role is mainly to promote and form the porous structure of the outer porous support layer portion as described above, and has a thickening effect of the membrane-forming stock solution. The amount of the hydrophilic polymer to be added to the stock solution for film formation can be appropriately adjusted in terms of the molecular weight and the amount of the hydrophilic polymer to perform stable film formation. Taking polyvinylpyrrolidone as an example, if the weight average molecular weight is about 30,000 to 60,000, 2 to 10% by weight, and if 3 to 8% by weight is added, a solution viscosity suitable for film formation can be obtained. Yes, it is preferable. If the solution viscosity is adjusted to be 10 to 80 poise, preferably 20 to 70 poise, stable film formation can be performed. When the viscosity of the film forming stock solution is low, yarn breakage or yarn sway may occur at the time of film forming, and the yarn forming property may be unstable. Conversely, if the viscosity of the film forming stock solution is too high, the porous support layer cannot be grown sufficiently, the porosity of the porous structure of the outer layer becomes insufficient, and it is difficult to obtain a membrane having the desired high permeability. Become. Furthermore, there is a concern that the stock solution discharged from the die may cause melt fracture due to an increase in the viscosity of the film forming stock solution.
[0026]
It is preferable that an additive which is a poor solvent for the acrylic resin and is compatible with polyvinylpyrrolidone is further added to the film-forming stock solution. Specifically, alcohol, glycerin, water, esters and the like are used, but water is particularly preferably used from the viewpoint of process suitability.
[0027]
The membrane forming method of the selectively permeable hollow fiber membrane of the present invention is as follows, for example.
[0028]
First, a film forming stock solution and a core agent are simultaneously discharged from a die having a double slit tube structure, and immersed in a coagulation bath. At this time, it is important to adjust the film forming conditions so as to form an asymmetric structure. Since the core agent is to be brought into contact with the film forming stock solution to start phase separation, the aqueous solution of the good solvent of the acrylic resin is used. As for the composition, those having a good solvent / water ratio of 10/90 to 70/30 are preferably used, and those having a ratio of 15/85 to 65/35 are more preferably used. The best combination may be determined as appropriate for the die temperature, the coagulation bath temperature, and the dry length. Usually, the die temperature is 30 ° C. to 60 ° C., the coagulation bath temperature is 20 ° C. to 60 ° C., and the dry length is 100 mm to 600 mm. Is preferably used.
[0029]
Water is used for the coagulation bath, but an aqueous solution of the above-mentioned acrylic resin good solvent may be used for the purpose of controlling the structure of the hollow fiber porous support layer. Under short dry conditions, phase separation initiated by the core agent is immersed in the coagulation bath before it reaches the outer layer, so the coagulation bath also causes phase separation from the outer surface of the hollow fiber and the outer surface is dense. This is not preferable because a layer is formed and high transmittance cannot be obtained. In that case, by increasing the concentration of the solvent in the coagulation bath, it becomes possible not to hinder the progress of the phase separation from the inner layer of the hollow fiber.
[0030]
In order to use the obtained permselective hollow fiber membrane as a dialysis membrane for an artificial kidney, it is preferable that the leakage of albumin is small, and a membrane having a sharp pore size distribution without excessive pores is preferred. For example, in the leak determination using “Albusticks” manufactured by Bayer Medical, those with a determination of ++ or more have a large leakage of albumin and are unsuitable as a dialysis membrane for an artificial kidney.
[0031]
The permselective hollow fiber membrane using the acrylic resin of the present invention is suitably used, for example, as a dialysis device, a blood purification membrane for a plasma separator, an ultrafiltration membrane, and the like, and is particularly suitable as a dialysis membrane for an artificial kidney. Used for Furthermore, by incorporating this hollow fiber membrane, a blood processor having these membrane properties can be obtained. An example of the blood processor is an artificial kidney. When an artificial kidney is used, other than using the membrane of the present invention as the hollow fiber membrane, the form of the case, port, and the like can be a generally known form.
[0032]
【Example】
Next, the present invention will be described based on examples, but the present invention is not limited to these examples. In the examples, “parts” means “parts by weight”. The measuring method used here is as follows.
[0033]
(1) Measurement of Water Permeability A glass tube mini-module in which both ends of 20 hollow fibers having a length of 12 cm are sealed is produced, and a water pressure of 13.3 kPa is applied between the hollow fiber membranes to flow out. The amount of filtration per unit time was measured. The water permeability was calculated by the following equation.
Water permeability (ml · hr −1 · kPa −1 · m −2 ) = QW / (T · A · P)
Here, QW is the filtration amount (ml · min −1 ), T is the outflow time (min), P is the pressure (kPa), and A is the membrane area (m 2 ) (converted to the surface area of the hollow fiber).
[0034]
(2) Measurement of albumin leak level Bovine serum was perfused at a rate of 0.6 ml · min −1 inside the hollow fiber membrane of the glass tube mini-module used in (1), and a water pressure of 13.3 kPa was applied between the hollow fiber membranes. , And the albumin leak level of the filtrate flowing out was determined by an albumin leak level manufactured by Bayer Medical. A leak level equal to or lower than the + judgment is acceptable.
[0035]
(3) Measurement of β 2 -MG removal performance A glass tube mini-module was prepared in the same manner as in (1), and 5 mg · ml −1 of human β 2 -MG was added to the same bovine serum as used in (2). , And perfused inside the hollow fiber at a flow rate of 1 ml · min −1 , and 140 ml of a phosphate buffer solution kept at 37 ° C. outside the hollow fiber at a rate of 20 ml · min −1 in a closed form. . After perfusion for 4 hours, the inner and outer perfusates of the hollow fiber were collected, the clearance was calculated, and the equivalent value of the membrane area of 1.8 m 2 was obtained. The ratio of the amount of adsorbed removal to the amount of permeated removal was calculated by using the concentration of the outer perfusate as the amount corresponding to permeation removal and the difference between the concentration of the inner perfusate calculated from the concentration and the actual concentration as the amount corresponding to adsorption removal.
[0036]
Example 1
18 parts of an acrylic resin ("Dianal" BR-80) manufactured by Mitsubishi Rayon Co., Ltd. and 6 parts of polyvinylpyrrolidone (K30 weight average molecular weight 40,000 manufactured by ISP) were added to 75 parts of dimethyl sulfoxide and 1 part of water, and heated and dissolved. This stock solution was sent to a spinneret at a temperature of 50 ° C., and was discharged from a double slit tube at the same time as an aqueous solution containing 65 parts of dimethyl sulfoxide as a core solution. After immersing in a coagulation bath at 40 ° C. with a dry length of 350 mm, it was washed with water to obtain a hollow fiber membrane having an inner diameter of 181 μm and a thickness of 45 μm.
[0037]
FIG. 1 shows an SEM photograph of a cross section of the obtained hollow fiber membrane. It had a dense layer 2 in the vicinity of the hollow fiber inner surface 1, the pores became more porous toward the outside, and had an asymmetric structure with the porous support layer 2. The thickness of the dense layer was 0.8 μm.
[0038]
A glass tube mini-module was prepared using this hollow fiber membrane, and the water permeability was measured to be 1973 ml · hr −1 · kPa −1 · m −2 . The albumin leak level was ±, which was suitable for the dialysis membrane. Further, the ratio of the amount of adsorbed / removed β 2 -MG clearance was 0.45, indicating that the membrane was a selectively permeable hollow fiber membrane having adsorption performance.
[0039]
Comparative Example 1
A hollow fiber of Toray “Toresulfone” BS-1.8UL having an asymmetric structure was taken out, a mini-module was produced in the same manner as in Example 1, and the performance was evaluated. The water permeability was 5438 ml · hr −1 ·. kPa −1 · m −2 . The albumin leak level was +, indicating that the dialysis membrane was slightly leaking albumin. Furthermore, the ratio of the amount of β2-MG adsorbed / removed was 0.06, indicating that the membrane was a permselective hollow fiber membrane having almost no adsorption performance.
[0040]
【The invention's effect】
The selectively permeable hollow fiber membrane of the present invention is an excellent membrane having both high permeability and adsorption removal performance, and is used as a blood purification membrane, a plasma separation membrane, a dialysis membrane, a filtration membrane, a filtration membrane, a blood treatment membrane and the like. It can be suitably used. Furthermore, a blood processing device can be obtained by using this hollow fiber membrane.
[Brief description of the drawings]
FIG. 1 is an SEM photograph of a cross section of a hollow fiber membrane of Example 1 of the present invention.
[Explanation of symbols]
1. 1. hollow fiber inner surface 2. dense layer Porous support layer

Claims (5)

アクリル樹脂を主成分としてなり、内表面に緻密層、その外側に多孔支持層を備えた非対称構造を有することを特徴とする選択透過性中空糸膜。A permselective hollow fiber membrane comprising an acrylic resin as a main component and having an asymmetric structure having a dense layer on the inner surface and a porous support layer on the outer side. 該選択透過性中空糸膜のβ−ミクログロブリンの吸着除去量/透過除去量の比が0.3以上であることを特徴とする請求項1記載の選択透過性中空糸膜。The selectively permeable hollow fiber membrane beta 2 - microglobulin adsorption removal amount / ratio of the transmitted removal amount is equal to or less than 0.3 according to claim 1, wherein the selectively permeable hollow fiber membranes. 該アクリル樹脂がポリメタクリル酸エステルであることを特徴とする請求項1または2記載の選択透過性中空糸膜。3. The permselective hollow fiber membrane according to claim 1, wherein the acrylic resin is a polymethacrylic acid ester. 該アクリル樹脂がポリメタクリル酸メチルであることを特徴とする請求項1〜3のいずれかに記載の選択透過性中空糸膜。The selectively permeable hollow fiber membrane according to any one of claims 1 to 3, wherein the acrylic resin is polymethyl methacrylate. 請求項1〜4のいずれかに記載の選択透過性中空糸膜を内蔵した血液処理器。A blood processor incorporating the selectively permeable hollow fiber membrane according to claim 1.
JP2003009310A 2003-01-17 2003-01-17 Permselective hollow fiber membrane and blood treatment instrument using the same Pending JP2004216328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009310A JP2004216328A (en) 2003-01-17 2003-01-17 Permselective hollow fiber membrane and blood treatment instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009310A JP2004216328A (en) 2003-01-17 2003-01-17 Permselective hollow fiber membrane and blood treatment instrument using the same

Publications (1)

Publication Number Publication Date
JP2004216328A true JP2004216328A (en) 2004-08-05

Family

ID=32898848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009310A Pending JP2004216328A (en) 2003-01-17 2003-01-17 Permselective hollow fiber membrane and blood treatment instrument using the same

Country Status (1)

Country Link
JP (1) JP2004216328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304827A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Blood purifier
JP2006304825A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Blood purifier
JP2008259802A (en) * 2007-03-16 2008-10-30 Toray Ind Inc Hollow fiber membrane and blood purifier incorporating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304827A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Blood purifier
JP2006304825A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Blood purifier
JP2008259802A (en) * 2007-03-16 2008-10-30 Toray Ind Inc Hollow fiber membrane and blood purifier incorporating the same

Similar Documents

Publication Publication Date Title
JP3117575B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP4940576B2 (en) Hollow fiber membrane and blood purifier
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
JP4725524B2 (en) Cellulose acetate asymmetric hollow fiber membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP5217238B2 (en) Porous hollow fiber membrane and blood purifier excellent in permeation performance stability
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP3253861B2 (en) Permselective hollow fiber membrane
JP2004216328A (en) Permselective hollow fiber membrane and blood treatment instrument using the same
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JP4029312B2 (en) Permselective hollow fiber membrane
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH10263375A (en) Selective permeable hollow fiber membrane
JP4093134B2 (en) Hollow fiber blood purification membrane
JP3995228B2 (en) Hollow fiber membrane for blood purification
JP2007054470A (en) Hollow fiber membrane for blood purification and its manufacturing method
JPH07289866A (en) Polysulfone-based selective permeable membrane
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP2004097703A (en) Plasma purifying membrane with high performance
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JP2004098027A (en) High-performance precision filtration film