JPH02156957A - Hollow fiber film type oxygen enriching device - Google Patents

Hollow fiber film type oxygen enriching device

Info

Publication number
JPH02156957A
JPH02156957A JP31198788A JP31198788A JPH02156957A JP H02156957 A JPH02156957 A JP H02156957A JP 31198788 A JP31198788 A JP 31198788A JP 31198788 A JP31198788 A JP 31198788A JP H02156957 A JPH02156957 A JP H02156957A
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
fluid
chamber
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31198788A
Other languages
Japanese (ja)
Inventor
Masaki Suzuki
正毅 鈴木
Yukio Shinkai
新海 幸雄
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP31198788A priority Critical patent/JPH02156957A/en
Publication of JPH02156957A publication Critical patent/JPH02156957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the gas exchangeability and prevent the coagulation of blood and apply pulsation onto blood by installing a hard container, cyclic fluid inflow/outflow mechanism and a blood counterflow preventing mechanism. CONSTITUTION:The inside of a hard container 1 is divided into plural chambers of oxygen enriching chamber and fluid chamber by flexible partitionings 2 and 2'. Further, a gas inlet 4, gas outlet 5, blood inlet 6, blood outlet 7, and an opened port part 8 for the inflow/outflow of fluid are opened. The opened port part 8 for inflow/outflow of fluid is connected to a cyclic fluid inflow/ outflow mechanism 9, and counterflow preventing valves 10 and 11 are installed as counterflow preventing mechanism in a blood flow passage. In the oxygen enriching chamber, hollow fiber bundles 3 are accommodated, and blood contacts the hollow fiber during passing through the oxygen enriching chamber, and gas exchange is performed between the oxygen enriching gas which flows in the hollow fiber hollow part. Further, fluid is allowed to flow in and flow out form these opened port parts 8 and 8' by the action of the cyclic fluid inflow/ outflow mechanism 9, and the flexible partitionings 2 and 2' are deformed, and the capacity of the oxygen enriching chamber is varied. Blood is applied with pulsation by the variation of the capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、血液の拍動発生機能と血液への酸素富化機能
とを兼ね備えた中空糸膜型酸素富化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fiber membrane type oxygen enrichment device that has both a blood pulsation generation function and a blood oxygen enrichment function.

(従来の技術〕 従来の一般的な人工6帥装置は、人工肺、熱交換器、送
血用血液ポンプ、脱血回路の各々が血液チューブで接続
されることによって一つのシステムとして構成されてい
た。人工肺としては、ポリプロピレン多孔質中空糸膜や
シリコン均質膜を用いた膜型人玉肺が知られている。中
空糸を用いた人工肺には、中空糸の中空部分に血液を流
す内部潅流型と中空糸の外壁に接する空間に血液を流す
外部層流型とがある。また、これら人工肺の送血用血液
ポンプとしては、ローラ型の定常流ポンプが用いられて
いた。
(Prior Art) A conventional general six-pronged artificial device is configured as one system by connecting an oxygenator, a heat exchanger, a blood pump, and a blood removal circuit with blood tubes. Membrane-type artificial lungs that use polypropylene porous hollow fiber membranes or silicone homogeneous membranes are known as artificial lungs.In artificial lungs that use hollow fibers, blood flows through the hollow part of the hollow fibers. There are two types: an internal perfusion type and an external laminar flow type, in which blood flows into a space in contact with the outer wall of the hollow fiber.Also, roller-type constant flow pumps have been used as blood pumps for blood feeding in these artificial lungs.

しかし、人工肺、熱交換器、送血用血液ポンプおよび脱
血回路の各々が血液チューブで接続されてなる装置は、
システム全体が大きくなり、脱血量が大きくなって患者
に大きな負担をかけるという問題があった。
However, a device in which an oxygenator, a heat exchanger, a blood pump, and a blood removal circuit are each connected by a blood tube,
There was a problem in that the entire system became large and the amount of blood removed increased, placing a heavy burden on the patient.

また、従来の人工肺では、内部潅流型は人工肺における
圧力損失が大きいこと、中空糸内を流れる血液が層流に
なり酸素や炭素ガスが′血液から中空糸膜面に達するま
での拡散抵抗が大きいことが問題であった。一方、外部
潅流型では人工肺内に中空糸を均一に充填することが困
難で、中空糸の充填密度の高い部分と低い部分が存在す
るようになり、低充填密度部分は流動抵抗が少ないので
血液が主にこの部分を流れるため、血液と中空糸との接
触効率が低下すること、また、血液の流れる空間にデッ
ドスペースができやすく、これが凝血の原因になること
が問題であった。
In addition, in conventional oxygenators, the internal perfusion type has a large pressure loss in the oxygenator, and the blood flowing inside the hollow fibers becomes a laminar flow, which causes diffusion resistance for oxygen and carbon gases to reach the hollow fiber membrane surface from the blood. The problem was that it was large. On the other hand, in the external perfusion type, it is difficult to uniformly fill the hollow fibers inside the oxygenator, and there are parts with high and low filling density of the hollow fibers, and the parts with low filling density have less flow resistance. Since blood mainly flows through this portion, there have been problems in that the contact efficiency between the blood and the hollow fibers is reduced, and dead spaces are likely to be created in the space where the blood flows, which can cause blood clots.

更に、送血用血液ポンプに関しては、生体内では血液は
拍動的に流れているにもかがねらず、ローラ型の定常流
ポンプを用いた場合には、常に高い圧力で送液しないと
血液を体内の毛細血管中を流すことができず、又、その
他の生体への生理学的Jflが懸念されること等の問題
があった。
Furthermore, regarding blood pumps for blood delivery, it is true that blood flows in a pulsatile manner in a living body, so when using a roller-type steady flow pump, it is necessary to constantly pump blood at high pressure. There have been problems such as the inability of blood to flow through capillaries within the body and the possibility of physiological Jfl to other living organisms.

(発明が解決しようとする課題) 本発者等は、このような状況に鑑み、ガス交換性に優れ
、しかも血液凝固の恐れが少なく、しかも血液に拍動を
与え♂ことの可能な人工肺につき鋭意検討した結果、本
発明に到達した。
(Problems to be Solved by the Invention) In view of this situation, the present inventors have developed an artificial lung that has excellent gas exchange properties, has little risk of blood coagulation, and is capable of pulsating blood. As a result of intensive study, the present invention was arrived at.

〔課題を解決するための手段) すなわち、本発明は、硬質容器と周期的流体流出入機構
と血液逆流防止機構とを有してなり、硬質容器はその内
部が可撓性仕切により2以上の室に分割され、仕切られ
てなる室の1つの内部に中空糸束か収納され、該中空糸
の中空部は硬質容器の壁に設けられた気体入口および気
体出口に連通し、中空糸束が収納された室に面する硬質
容器の壁に血液入口と血液出口とが設けられ、少なくと
も1つの中空糸が収納されていない室に面する壁に流体
流出入用の開口部が設けられ、該開口部は直接または流
体流路を介して周期的流体出入機構に接続され、血液逆
流防止機構は血液入口、血液出口またはこれらにつなが
る血液流路上に設けられてなる中空糸膜型酸素富化装置
である。
[Means for Solving the Problems] That is, the present invention includes a rigid container, a periodic fluid inflow/outflow mechanism, and a blood backflow prevention mechanism, and the rigid container has two or more partitions inside thereof by a flexible partition. A hollow fiber bundle is stored inside one of the partitioned chambers, and the hollow portion of the hollow fiber communicates with a gas inlet and a gas outlet provided on the wall of the rigid container, so that the hollow fiber bundle is A blood inlet and a blood outlet are provided in the wall of the rigid container facing the chamber in which the at least one hollow fiber is accommodated, and an opening for fluid inflow and outflow is provided in the wall facing the chamber in which the at least one hollow fiber is not accommodated; A hollow fiber membrane type oxygen enrichment device in which the opening is connected directly or through a fluid flow path to a periodic fluid inlet/outlet mechanism, and the blood backflow prevention mechanism is provided on a blood inlet, a blood outlet, or a blood flow path connected to these. It is.

〔作用〕[Effect]

本発明の中空糸膜型酸素富化装置は、基本的には、硬質
容器と、周期的流体出入機構と、逆流防止機構とから構
成される。
The hollow fiber membrane type oxygen enrichment device of the present invention basically comprises a hard container, a periodic fluid inlet/outlet mechanism, and a backflow prevention mechanism.

硬質容器としては、1kg/cm”程度の加圧減圧で実
質的に変形しない材質のものであればどのようなもので
も用いることができ、ポリカーボネート、ポリスチレン
、ポリプロピレン等の硬質プラスチック、金属等の材質
のものが例示できる。したがって、通常の外部潅流型の
中空糸膜型人工肺で用いられていたハウジングや、球型
、直方体等種々の形状の容器を用いることができる。硬
質容器内は、=r撓性仕切で複数の室に仕切られ、仕切
られた複数の室の中、中空糸束が収納された室(以下、
酸素富化室と略称する)が血液の酸素富化のために用い
られ、その他の中空糸束が収納されていない室(以下、
流体室と略称する)が血液に拍動を与えるための流体の
流入流出用に用いられる。
As the hard container, any material can be used as long as it is not substantially deformed by pressurization and depressurization of about 1 kg/cm'', and materials such as hard plastics such as polycarbonate, polystyrene, and polypropylene, metals, Therefore, it is possible to use housings used in ordinary external perfusion type hollow fiber membrane oxygenators, and containers of various shapes such as spherical and rectangular parallelepipeds.Inside the rigid container, = r It is divided into multiple chambers by flexible partitions, and among the multiple divided chambers, there is a chamber in which the hollow fiber bundle is stored (hereinafter referred to as
The oxygen enrichment chamber (hereinafter referred to as "oxygen enrichment chamber") is used for oxygen enrichment of blood, and the other chamber (hereinafter referred to as "oxygen enrichment chamber") in which no hollow fiber bundle is housed is
A fluid chamber (abbreviated as fluid chamber) is used for inflow and outflow of fluid to give pulsation to the blood.

可撓性仕切としては、硬質容器内を液密に仕切ることが
でき、繰り返しの変形に耐えることのできるものであれ
ばどのようなものでも用いることができる。好ましい材
質の具体例としては、種々のゴムまたは軟質プラスチッ
ク類のシート、フィルムが挙げられる。
Any flexible partition can be used as long as it can partition the inside of the rigid container in a liquid-tight manner and can withstand repeated deformation. Specific examples of preferred materials include various rubber or soft plastic sheets and films.

本発明で用いる中空糸としては、酸素および炭酸ガス透
過性を有する非多孔質中空糸膜が適当である。本発明の
装置においては、酸素富化室内の血液流の圧力が変動し
て、減圧になる場合もあるので、このような時に血液中
に気泡の混入する危険性が考えられる多孔質中空糸は好
ましくない。
As the hollow fibers used in the present invention, non-porous hollow fiber membranes having oxygen and carbon dioxide gas permeability are suitable. In the device of the present invention, the pressure of the blood flow in the oxygen enrichment chamber fluctuates and may become depressurized, so porous hollow fibers are not used because there is a risk of air bubbles being mixed into the blood at such times. Undesirable.

また、酸素富化室内で中空糸が大きく揺動しても破損す
ることがないように、柔軟性を有し適切な強伸度を有す
るものが好ましく、更に中空糸同士のこすれがあっても
膜破損の生じないような中空系が好ましい。このような
中空系としては、気体透過性非多孔質膜を多孔質膜で挟
んでなる多層中空系膜が例示できる。気体透過性非多孔
質膜としては、シロキサン系、ポリウレタン系のあるい
はセルロースエステル系、フルオロカーボン系の薄膜が
例示でき、これを挟む多孔質膜成分としては、柔軟性を
有することからポリオレフィンからなるものが例示でき
る。特開昭62−1404号公報に開示された多層中空
糸膜を用いることが特に好ましい。
In addition, it is preferable to have flexibility and appropriate strength and elongation so that the hollow fibers will not be damaged even if they are shaken a lot in the oxygen enrichment chamber, and even if the hollow fibers rub against each other. A hollow system that does not cause membrane damage is preferred. An example of such a hollow system is a multilayer hollow membrane formed by sandwiching a gas permeable non-porous membrane between porous membranes. Examples of gas-permeable non-porous membranes include siloxane-based, polyurethane-based, cellulose ester-based, and fluorocarbon-based thin films.As for the porous membrane component sandwiching the thin films, polyolefins are preferred due to their flexibility. I can give an example. It is particularly preferable to use the multilayer hollow fiber membrane disclosed in JP-A-62-1404.

以下、図面を用いて本発明を更に説明する。The present invention will be further explained below using the drawings.

第1図は、本発明の中空糸膜型酸素富化装置の一実施態
様の概念を示すブロック図である。
FIG. 1 is a block diagram showing the concept of one embodiment of the hollow fiber membrane type oxygen enrichment device of the present invention.

第1図において、硬質容器1は、その内部が可撓性仕切
で酸素富化室と流体室との複数の室に仕切られている。
In FIG. 1, the inside of a rigid container 1 is partitioned into a plurality of chambers, an oxygen enrichment chamber and a fluid chamber, by flexible partitions.

また、硬質容器1には、気体入口4、気体出口5、血液
入口6および血液出口および流体流出入用開口部8が配
設されている。流体流出入用開口部8は、周期的流体流
出入機構9に接続されており、また逆流防止機構として
は、逆流防止弁10.11が血液流路上に設けられた例
が示されている。
Further, the rigid container 1 is provided with a gas inlet 4, a gas outlet 5, a blood inlet 6, and an opening 8 for blood outlet and fluid inflow and outflow. The fluid inlet/outlet opening 8 is connected to a periodic fluid inlet/outlet mechanism 9, and as the backflow prevention mechanism, an example in which a backflow prevention valve 10.11 is provided on the blood flow path is shown.

第2図は、本発明の中空糸膜型酸素富化装置の主要部分
である硬質容器の一例を示す図であり、第2図(イ)は
縦断面図、(ロ)は横断面図である。
FIG. 2 is a diagram showing an example of a hard container which is the main part of the hollow fiber membrane type oxygen enrichment device of the present invention, FIG. be.

この例は、硬質容器1として球形のものを用いたもので
、球形の硬質容器1の内部は、可撓性仕切2.2′によ
って上中下の3つの室に仕切られている。真ん中に位置
する酸素富化室には、中空糸束3が収納されている。中
空糸束3の両端は、ボッティング剤で固定され、中空糸
の開口両端は硬質容器の壁に設けられた気体入口4およ
び気体出口5に連通しており、酸素富化用の気体が各中
空糸の中空部を流れる。中空糸束は両端を除けば、酸素
富化室内では固定されておらず、酸素富化室の容積の変
動に応じてその位置が幾分変動するように配設されてい
る。
In this example, a spherical hard container 1 is used, and the inside of the spherical hard container 1 is partitioned into three chambers, upper, middle, and lower, by flexible partitions 2.2'. The hollow fiber bundle 3 is housed in the oxygen enrichment chamber located in the middle. Both ends of the hollow fiber bundle 3 are fixed with a botting agent, and both open ends of the hollow fibers communicate with a gas inlet 4 and a gas outlet 5 provided on the wall of the rigid container, so that oxygen enrichment gas is Flows through the hollow part of the hollow fiber. Except for both ends, the hollow fiber bundle is not fixed in the oxygen enrichment chamber, and is arranged so that its position changes somewhat in response to changes in the volume of the oxygen enrichment chamber.

また、この酸素富化室に面する硬質容器壁には、血液入
口6と血液用ロアが設けられている。
Further, a blood inlet 6 and a blood lower are provided on the hard container wall facing the oxygen enrichment chamber.

血液は、この酸素富化室を通過する際に中空糸と接触し
、中空糸中空部を流れる酸素富化用気体との間でガス交
換が実施される。また、この例では、血液用ロアの近傍
に位置する中空糸が血液流により押し流されて血液出口
を塞ぐのを防止するための網12(網目12メツシュ程
度)が配設されている。
When the blood passes through this oxygen enrichment chamber, it comes into contact with the hollow fiber, and gas exchange is performed with the oxygen enrichment gas flowing through the hollow part of the hollow fiber. Further, in this example, a mesh 12 (about 12 meshes) is provided to prevent the hollow fibers located near the blood lower from being swept away by the blood flow and blocking the blood outlet.

一方、残りの上下に位置する流体室に面した硬質容器壁
には、各々流体流出入用の開口部8.8′が設けられて
いる。周期的流体流出入機構9の作用によって、流体が
これら開口部から流入し、また排出されることによって
、可撓性仕切2.2′が変形して酸素富化室の容積を変
動させる。この容積の変動により血液に拍動が付与され
る。
On the other hand, openings 8.8' for fluid inflow and outflow are provided in the walls of the rigid container facing the remaining upper and lower fluid chambers, respectively. Due to the action of the periodic fluid inflow/outflow mechanism 9, fluid flows in and out of these openings, thereby deforming the flexible partition 2.2' and varying the volume of the oxygen enrichment chamber. This variation in volume gives the blood pulsation.

酸素富化室内の中空糸の配設量としては、中空糸のガス
交換能にも依存するが、中空糸の総膜表面積をI+11
2程度とするのが適当である。酸素富化室内の中空糸の
充填率としては、酸素富化室の最小容積を基準として、
lO〜55容稙%程度が適当である、充填率が10容積
%未満の場合には、酸素富化室内で血液のチャンネリン
グが生じやすく、また、55容積%を超える場合には、
血液の流動抵抗が過大となり、溶血を生じやすい。また
、酸素富化室の容積の変動率は、酸素富化室の容量にも
依存するが、酸素富化室の最小容積を基準として50〜
300%程度が適当である。容積変動が50%未満の場
合には、血液の拍動の圧力変動が不十分となりやすく、
逆に300%を超える場合には、拍動の圧力変動は充分
であるが、酸素富化室内での血液のチャネリングが生じ
やすく、充分なガス交換を達成しにくい。
The amount of hollow fibers installed in the oxygen enrichment chamber depends on the gas exchange capacity of the hollow fibers, but the total membrane surface area of the hollow fibers is I + 11
It is appropriate to set it to about 2. The filling rate of the hollow fibers in the oxygen enrichment chamber is based on the minimum volume of the oxygen enrichment chamber.
A filling rate of about 10 to 55% by volume is appropriate; if the filling rate is less than 10% by volume, blood channeling tends to occur within the oxygen enrichment chamber, and if it exceeds 55% by volume,
Blood flow resistance becomes excessive and hemolysis is likely to occur. In addition, the rate of change in the volume of the oxygen enrichment chamber depends on the capacity of the oxygen enrichment chamber, but the rate of change in the volume of the oxygen enrichment chamber is 50 to 50% based on the minimum volume of the oxygen enrichment chamber.
Approximately 300% is appropriate. If the volume variation is less than 50%, the pressure variation due to blood pulsation is likely to be insufficient,
On the other hand, if it exceeds 300%, the pulsating pressure fluctuation is sufficient, but blood channeling within the oxygen enrichment chamber is likely to occur, making it difficult to achieve sufficient gas exchange.

流体流出入用の開口部8.8′は、配管(流体流路)を
介して周期的流体流出入機構につながっている。周期的
流体流出入機構は、流体を周期的に加圧・減圧するもの
でもよいが、可撓性仕切として圧力を開放した時にその
弾性によって一定の位置へ回復可能なものを用いた場合
には、周期的に減圧または加圧を行なう手段が使用でき
る。例えば圧力がかからない時に可撓性仕切が硬質容器
の内壁に付着するようにした場合には、周期的に流体を
加圧する手段が使用できるし、また、圧力がかからない
時に可撓性仕切がぴんと張った状態になり酸素富化室の
容積が最小となるようにしておき、周期的に減圧する手
段を設けて減圧時に可撓性仕切を硬質容器の内壁に引き
寄せるようにしてもよい。このような機構によって流体
が流体室に流入・流出することにより、酸素富化室を流
れる血液に拍動を与えることができる。
The openings 8.8' for fluid inflow and outflow are connected via piping (fluid channels) to a periodic fluid inflow and outflow mechanism. The periodic fluid inflow/outflow mechanism may be one that periodically pressurizes and depressurizes the fluid, but if a flexible partition is used that can recover to a certain position due to its elasticity when the pressure is released, , means for periodically reducing or increasing the pressure can be used. For example, if the flexible partition is made to adhere to the inner wall of a rigid container when no pressure is applied, means can be used to periodically pressurize the fluid, and the flexible partition can remain taut when no pressure is applied. The volume of the oxygen enrichment chamber may be minimized, and means for periodically reducing the pressure may be provided to draw the flexible partition toward the inner wall of the rigid container when the pressure is reduced. By causing fluid to flow into and out of the fluid chamber through such a mechanism, it is possible to give pulsation to the blood flowing through the oxygen enrichment chamber.

逆流防止機構(図示せず)は、血液人[1、血液出口ま
たはこれにつながる血液流路上に設けられている。この
逆流防止機構としては、逆流防止弁や血液を強制的に一
方向に送る血液ポンプが使用できる。また、逆流防止弁
と血液ポンプの両方が配設されてもよい。逆流防止弁の
場合には、血液入口や血液出口にこの弁が直接取り付け
られていてもよいし、血液入口や血液出口につながる血
液流路上に設けられてもよい。逆流防止弁のみが設けら
けている場合には、本発明の装置が血液ポンプの役割を
も果すことになる。
A backflow prevention mechanism (not shown) is provided on the blood outlet or the blood flow path connected thereto. As this backflow prevention mechanism, a backflow prevention valve or a blood pump that forcibly sends blood in one direction can be used. Also, both an anti-reflux valve and a blood pump may be provided. In the case of a non-return valve, the valve may be directly attached to the blood inlet or blood outlet, or may be provided on a blood flow path connected to the blood inlet or blood outlet. If only an anti-reflux valve is provided, the device according to the invention will also act as a blood pump.

第2図のように、流体室が2つ以上ある場合には、各々
の流体室に対応して周期的流体流出入機構が設けられて
もよい。しかし、各々の流体室の流体流出入用開口部を
配管でつないで、これを1つの周期的流体流出入機構に
つなぐのか経済的であり、各室の流体の拍動が自動的に
同期することから好ましい。
As shown in FIG. 2, when there are two or more fluid chambers, a periodic fluid inflow/outflow mechanism may be provided corresponding to each fluid chamber. However, it is economical to connect the fluid inflow and outflow openings of each fluid chamber with piping and connect this to one periodic fluid inflow and outflow mechanism, and the pulsation of the fluid in each chamber is automatically synchronized. Therefore, it is preferable.

周期的流体流出入機構としては、ピストン、あるいは加
圧または減圧ポンプと周期的に開閉し大気圧への復帰を
生じさせるための三方コックとの組合せ等が例示できる
。ここで用いる流体としては、空気等の気体でもよいし
、水等の液体でもよい。しかし、万一流体が酸素富化室
内の血液を汚染した際の安全性を考慮すると、無菌の純
水を使用するのが好ましい。
Examples of the periodic fluid inflow/outflow mechanism include a piston, or a combination of a pressurizing or depressurizing pump and a three-way cock that periodically opens and closes to return to atmospheric pressure. The fluid used here may be a gas such as air or a liquid such as water. However, in consideration of safety in the event that the fluid contaminates the blood in the oxygen enrichment chamber, it is preferable to use sterile pure water.

第3図は、本発明の中空糸膜型酸素富化装置に用いる硬
質容器の他の実施態様例を示す縦断面図である。ここで
は円筒型の硬質容器内に中空糸が方向に延ばされた状態
で両端が固定され、また中空糸束の周囲をつつむように
可撓性仕切が設けられている。すなわち、この例では硬
質容器内は可撓性仕切によって一つの酸素富化室と一つ
の流体室とに仕切られている。酸素富化室内の中空糸は
、一方向に延ばされた状態で配設されているものの、可
撓・性仕切の揺動により中空糸も幾分揺動するようにピ
ンと張った状態では固定されていない。また、血液入口
と血液出口とは、血液流のチャネリングを防ぐ意味から
、F下のできるだけ離れた位置に配設されている。また
、可撓性仕切も酸素富化室の容積が最小になった際に中
空糸束の中央部分が絞られるような状態で配置され、血
液のチャネリングを防いでいる。
FIG. 3 is a longitudinal sectional view showing another embodiment of the hard container used in the hollow fiber membrane type oxygen enrichment device of the present invention. Here, the hollow fibers are fixed at both ends in a cylindrical hard container in a state in which they are stretched in a direction, and a flexible partition is provided so as to surround the hollow fiber bundle. That is, in this example, the interior of the rigid container is partitioned into one oxygen enrichment chamber and one fluid chamber by a flexible partition. Although the hollow fibers in the oxygen enrichment chamber are arranged in a state where they are stretched in one direction, they are fixed in a taut state so that the hollow fibers may sway somewhat due to the swinging of the flexible partition. It has not been. Further, the blood inlet and blood outlet are arranged at positions as far apart as possible under F in order to prevent channeling of blood flow. The flexible partition is also arranged in such a way that the central portion of the hollow fiber bundle is constricted when the volume of the oxygen enrichment chamber is minimized, thereby preventing blood channeling.

(発明の効果) 本発明により、血液の拍動発生機能と血液への酸素富化
機能とを兼ね備えたコンパクトな中空糸膜型酸素富化装
置が提供された。
(Effects of the Invention) The present invention provides a compact hollow fiber membrane type oxygen enrichment device that has both a blood pulsation generation function and a blood oxygen enrichment function.

この装置は、人工肺機能と人工心臓機能とか体止されて
いるので、人工心肺装置としては簡便に使用することが
でき、また脱血量の点でも患者の負担量を軽減すること
ができた。
This device has an artificial lung function and an artificial heart function, so it can be easily used as an artificial heart-lung machine, and it also reduces the burden on the patient in terms of the amount of blood removed. .

また、従来の人工肺と比較すると、この装置は血液の拍
動発生機能が備わっているので、生体へ使用するにあた
ってはそのままで血液を毛細血管中を通すことが可能で
ある。更に、可撓性仕切の拍動により装置内の中空糸の
配設位置が変動するので、血液と中空糸との接触効率が
より高まり、高いガス交換能を発揮することができる。
Furthermore, compared to conventional artificial lungs, this device has a blood pulsation generating function, so when used in a living body, it is possible to pass blood through capillaries as is. Furthermore, since the position of the hollow fibers within the device changes due to the pulsation of the flexible partition, the efficiency of contact between the blood and the hollow fibers is further increased, and high gas exchange performance can be achieved.

更に、酸素富化室の容積が変動するので、酸素富化室内
で血液の滞留が生じる可能性が極めて低減され、凝血が
生じることは殆どなくなった。
Furthermore, since the volume of the oxygen enrichment chamber is varied, the possibility of blood stagnation occurring within the oxygen enrichment chamber is greatly reduced, and blood clotting is almost eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の中空糸膜型酸素富化装置の一実施態
様の概念を示すブロック図である。 第2図は、本発明の中空糸膜型酸素富化装置の主要部分
である硬質容器の一例を示す図であり、第2図(イ)は
縦断面図、(ロ)は横断面図である。 第3図は、本発明の中空糸膜型酸素富化装置に用いる硬
質容器の他の実施態様例を示す縦断面図である。 1:硬質容器      2:可撓性仕切3:中空糸 
      4:気体入口5;気体出口      6
:血液入ロア:血液出口 二流体流出入用開ロ部 :周期的流体流出入機構 l01 11:逆流防市井 +2:yI 13:ボッディング剤
FIG. 1 is a block diagram showing the concept of one embodiment of the hollow fiber membrane type oxygen enrichment device of the present invention. FIG. 2 is a diagram showing an example of a hard container which is the main part of the hollow fiber membrane type oxygen enrichment device of the present invention, FIG. be. FIG. 3 is a longitudinal sectional view showing another embodiment of the hard container used in the hollow fiber membrane type oxygen enrichment device of the present invention. 1: Rigid container 2: Flexible partition 3: Hollow fiber
4: Gas inlet 5; Gas outlet 6
:Blood inlet lower:Blood outlet Two fluid inflow/outflow opening part:Periodic fluid inflow/outflow mechanism l01 11:Backflow prevention city +2:yI 13:Bodding agent

Claims (1)

【特許請求の範囲】 1)硬質容器と周期的流体流出入機構と血液逆流防止機
構とを有してなり、硬質容器はその内部が可撓性仕切に
より2以上の室に分割され、仕切られてなる室の1つの
内部に中空糸束が収納され、該中空糸の中空部は硬質容
器の壁に設けられた気体入口および気体出口に連通し、
中空糸束が収納された室に面する硬質容器の壁に血液入
口と血液出口とが設けられ、少なくとも1つの中空糸が
収納されていない室に面する壁に流体流出入用の開口部
が設けられ、該開口部は直接または流体流路を介して周
期的流体出入機構に接続され、血液逆流防止機構は血液
入口、血液出口またはこれらにつながる血液流路上に設
けられてなる中空糸膜型酸素富化装置。 2)中空糸が、非多孔質膜を多孔質膜で挟んでなる多層
中空糸膜であることを特徴とする請求項1記載の中空糸
膜型酸素富化装置。
[Claims] 1) A rigid container, a periodic fluid inflow/outflow mechanism, and a blood backflow prevention mechanism, the inside of which is divided into two or more chambers by a flexible partition. A bundle of hollow fibers is housed inside one of the chambers, the hollow portion of the hollow fibers communicating with a gas inlet and a gas outlet provided in the wall of the rigid container,
A blood inlet and a blood outlet are provided in the wall of the rigid container facing the chamber in which the hollow fiber bundle is stored, and an opening for fluid inflow and outflow is provided in the wall facing the chamber in which at least one hollow fiber is not stored. The opening is connected directly or through a fluid flow path to a periodic fluid inlet/outlet mechanism, and the blood backflow prevention mechanism is a hollow fiber membrane type provided on a blood inlet, a blood outlet, or a blood flow path connected thereto. Oxygen enrichment device. 2) The hollow fiber membrane type oxygen enrichment device according to claim 1, wherein the hollow fiber is a multilayer hollow fiber membrane formed by sandwiching a non-porous membrane between porous membranes.
JP31198788A 1988-12-12 1988-12-12 Hollow fiber film type oxygen enriching device Pending JPH02156957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31198788A JPH02156957A (en) 1988-12-12 1988-12-12 Hollow fiber film type oxygen enriching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31198788A JPH02156957A (en) 1988-12-12 1988-12-12 Hollow fiber film type oxygen enriching device

Publications (1)

Publication Number Publication Date
JPH02156957A true JPH02156957A (en) 1990-06-15

Family

ID=18023838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31198788A Pending JPH02156957A (en) 1988-12-12 1988-12-12 Hollow fiber film type oxygen enriching device

Country Status (1)

Country Link
JP (1) JPH02156957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319080A (en) * 1998-05-12 1999-11-24 Nikkiso Co Ltd Hollow fiber type hemodialyzer
JPH11319079A (en) * 1998-05-12 1999-11-24 Nikkiso Co Ltd Hollow fiber type hemodialyzer
WO2009110652A1 (en) * 2008-03-07 2009-09-11 Industrial Cooperation Foundation Chonbuk National University A pulsatile cardiopulmonary auxiliary device
WO2012150233A1 (en) * 2011-05-04 2012-11-08 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Exchanger device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319080A (en) * 1998-05-12 1999-11-24 Nikkiso Co Ltd Hollow fiber type hemodialyzer
JPH11319079A (en) * 1998-05-12 1999-11-24 Nikkiso Co Ltd Hollow fiber type hemodialyzer
WO2009110652A1 (en) * 2008-03-07 2009-09-11 Industrial Cooperation Foundation Chonbuk National University A pulsatile cardiopulmonary auxiliary device
KR100985985B1 (en) * 2008-03-07 2010-10-06 전북대학교산학협력단 a pulsatile cardiopulmonary auxiliary device
WO2012150233A1 (en) * 2011-05-04 2012-11-08 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Exchanger device

Similar Documents

Publication Publication Date Title
US3489647A (en) Artificial organ for membrane dialysis of biological fluids
CN111032106B (en) Dual chamber gas exchanger for respiratory support
US3505686A (en) Device for effecting blood interchange functions
US4111659A (en) Mass and heat transfer exchange apparatus
US6117390A (en) Compact blood oxygenator utilizing longitudinally interspersed transversely extending heat exchanger conduits and oxygenator fibers
JPH0286817A (en) Hollow yarn-type fluid treating device
CN107635597B (en) Blood gas exchanger with a restriction element or a plurality of restriction elements for reducing gas exchange
JP6825178B2 (en) A device with an inlet for processing biological liquids
EP0283850B1 (en) Device for the extra-corporeal oxygenation of blood and for cardiovascular assistance
JPS62181061A (en) Single assembly of heat exchanger and defoaming chamber
BRPI0808040B1 (en) PUMPING CASSETTE
EP0600035A1 (en) Apparatus and method for extracorporeal blood oxygenation
CN113509605B (en) Membrane oxygenator
JPH02156957A (en) Hollow fiber film type oxygen enriching device
JPH1147269A (en) Medical heat-exchanger
JP5347601B2 (en) Blood processing equipment
RU2638204C1 (en) Device for processing biological liquid and method of its application
JP2792048B2 (en) Hollow fiber type fluid treatment device
JPH0798061B2 (en) Blood processing equipment
JP2003111837A (en) Hollow fiber membrane type artificial lung
JPH02156958A (en) Hollow fiber film type oxygen enriching device
JPS6335259B2 (en)
US11878097B2 (en) Vacuum assisted self-priming heart lung machine in a box
CN215308924U (en) Blood purification device
JP3354766B2 (en) Blood reservoir with pressure control valve, pressure control valve for blood reservoir, and artificial lung device with blood reservoir with pressure control valve