JPH04109956A - Hollow yarn type mechanical lung - Google Patents

Hollow yarn type mechanical lung

Info

Publication number
JPH04109956A
JPH04109956A JP22838990A JP22838990A JPH04109956A JP H04109956 A JPH04109956 A JP H04109956A JP 22838990 A JP22838990 A JP 22838990A JP 22838990 A JP22838990 A JP 22838990A JP H04109956 A JPH04109956 A JP H04109956A
Authority
JP
Japan
Prior art keywords
hollow fiber
blood
casing
hollow yarn
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22838990A
Other languages
Japanese (ja)
Inventor
Yasushi Shimomura
下村 泰志
Masahiko Yamaguchi
正彦 山口
Akio Funakubo
昭夫 舟久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22838990A priority Critical patent/JPH04109956A/en
Priority to US07/668,562 priority patent/US5263982A/en
Priority to EP19910103946 priority patent/EP0446922A3/en
Publication of JPH04109956A publication Critical patent/JPH04109956A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a mechanical lung whose pressure loss is small even with a high average rate of filling and which would not cause channelling and whose gas exchange performance is high by filling substantially the whole inner space of a casing with a bundle of hollow yarn. CONSTITUTION:A bundle 1 of hollow yarn having one or plural films of hollow yarn gathered into a traverse roll and arranged as needed is enclosed in a casing 2 and fixed to near both ends of the casing by partition heads 3,4 each made of potting material while both ends of the film of hollow yarn are opened. Head caps 7,8 each communicated with the inner space of the film of hollow yarn and having an inlet 5 and an outlet 6 respectively for oxygen-contained gases are mounted to the respective partition walls 3,4 An inlet 9 and an outlet 10 for blood flow are attached to the center portion of one end of the casing and to near the partition wall at the other end, respectively. Blood is introduced from the blood inlet 9 through a blood port and allowed to flow through a space formed by the external wall of the film of hollow yarn and the inner wall of the casing and is discharged from the blood outlet 10. Since there is no possibility of the passage of the blood being blocked nor narrowed at near the blood inlet, loss of pressure can be minimized and channelling would not occur.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧力損失が低く、且つ、ガス交換効率が高く
、しかも非常に小型で血液充填量の小さい中空糸膜型人
工肺に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fiber membrane oxygenator that has low pressure loss, high gas exchange efficiency, is extremely compact, and has a small blood filling volume.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

本発明は、血液を中空糸膜の外部に、酸素含有気体を中
空糸膜の内部に流通させる、所謂、外部潅流型中空系膜
型人工肺に関する。この型の人工肺では、血液を中空糸
膜の内部に流通させる、所謂、内部潅流方式に比べ、一
般に、圧力損失の低下、チャネリング(血液が局部的に
偏って不均一に流れる現象)の防止、又、ガス交換効率
の向上をバランス良く達成することができる。
TECHNICAL FIELD The present invention relates to a so-called external perfusion type hollow membrane oxygenator in which blood is circulated outside the hollow fiber membrane and oxygen-containing gas is circulated inside the hollow fiber membrane. Compared to the so-called internal perfusion system, which circulates blood inside a hollow fiber membrane, this type of oxygenator generally reduces pressure loss and prevents channeling (a phenomenon in which blood flows locally and unevenly). Furthermore, it is possible to achieve a well-balanced improvement in gas exchange efficiency.

人工肺には大別して気泡型と膜量とがあるが、ガス交換
膜を用いる脱型人工肺は、気泡型と比ベガス交換方式が
より生理的であり、血液への好ましくない影響が少ない
という利点がある。
Artificial lungs can be roughly divided into bubble type and membrane type oxygenators, but the bubble type and gas exchange type oxygenator, which uses a gas exchange membrane, are more physiological and have less undesirable effects on the blood. There are advantages.

脱型人工肺は主に中空糸膜を用い、その中空糸膜を介し
て血液のガス交換を行うものである。又、人工肺への血
液の流入方式として、中空糸膜の内側に血液、外側に気
体を流通させる内部潅流方式と、中空系膜の外側に血液
、内側に気体を流通させる外部潅流方式とがある。前者
は数十〜数百μmという極細の中空糸膜内側を血液が流
れるため、血液を循環させる際の圧力損失が大きく、血
球の損傷を生ずることもある。又、近年、遠心式のポン
プ或いは拍動流ポンプも普及しつつあり、これらのポン
プを使用して体外循環を行う場合も、人工肺の圧力損失
は可能な限り小さい方が望ましく、その意味からも外部
潅流方式が好ましい。外部潅流方式は、内部潅流方式に
比べて圧力損失、血球損傷等の面で有利な方式であるが
、血液が流れる流路の自由度が大きいため、血液の偏流
が生じ易い。又、中空糸膜の充填率を高くしてガス交換
効率或いは偏流の改善を図ろうとすると、圧力損失が増
大する。この場合、膜面積を増大させ、上記の問題を解
決しようとすると、人工肺の血液充填量が増大し、輸血
をせずに体外循環させることは困難となる。
Demolding oxygenators mainly use hollow fiber membranes to perform blood gas exchange through the hollow fiber membranes. In addition, as methods for blood to flow into the artificial lung, there are two methods: an internal perfusion method that allows blood to flow inside the hollow fiber membrane and gas to the outside, and an external perfusion method that allows blood to flow outside the hollow fiber membrane and gas to the inside. be. In the former case, since blood flows inside the extremely thin hollow fiber membrane of several tens to hundreds of micrometers, the pressure loss during blood circulation is large, which may cause damage to blood cells. In addition, in recent years, centrifugal pumps or pulsatile flow pumps have become popular, and when using these pumps for extracorporeal circulation, it is desirable that the pressure loss in the oxygenator lung be as small as possible. External perfusion is also preferred. The external perfusion method is more advantageous than the internal perfusion method in terms of pressure loss, blood cell damage, etc., but because the degree of freedom of the blood flow path is large, it is likely that blood will drift unbalanced. Furthermore, if an attempt is made to improve gas exchange efficiency or uneven flow by increasing the filling rate of the hollow fiber membrane, pressure loss will increase. In this case, if an attempt is made to solve the above problem by increasing the membrane area, the amount of blood filled in the oxygenator will increase, making it difficult to perform extracorporeal circulation without blood transfusion.

以上述べたような問題は、中空系膜の配糸の状態、充填
率、血液の流出入口の位置及び血液流路などに大きく影
響を受ける。その対策として、従来より、膜面積を増大
させたり、流路面積を大きくすることによりガス交換率
及び圧力損失の改善を図る方法、血液を中空糸束の側面
より流し、圧力損失の低減を図る方法等が知られている
。しかし、前者の方法は圧力損失は低いものの、血液充
填量が大きいという欠点があり、後者の方法は内部潅流
方式に比較して圧力損失は低いものの、拍動流ポンプ等
への対応は困難である。
The above-mentioned problems are greatly affected by the state of the thread arrangement of the hollow membrane, the filling rate, the position of the blood inlet and outlet, the blood flow path, and the like. As a countermeasure, conventional methods include increasing the membrane area or increasing the flow path area to improve the gas exchange rate and pressure loss, and flowing blood from the side of the hollow fiber bundle to reduce pressure loss. Methods are known. However, although the former method has a low pressure drop, it has the disadvantage of a large blood filling volume, while the latter method has a low pressure drop compared to the internal perfusion method, but is difficult to adapt to pulsatile flow pumps, etc. be.

一方、血液の偏流を防止し、高いガス交換能を得るため
に、円筒状物に中空糸膜を巻回したものも提案されてい
るが、この場合、血液が中空糸束に急激に流入し、又、
流路も急激に狭くなるため大きな圧力損失を生ずる。こ
れを防止するため血液流路を広くすれば人工肺が大型化
する。
On the other hand, in order to prevent uneven flow of blood and obtain high gas exchange performance, a method in which a hollow fiber membrane is wound around a cylindrical object has been proposed, but in this case, blood suddenly flows into the hollow fiber bundle. ,or,
The flow path also becomes narrow rapidly, resulting in a large pressure loss. To prevent this, if the blood flow path is widened, the size of the artificial lung increases.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の膜型人工肺の一例を第1図に示す。 An example of the membrane oxygenator of the present invention is shown in FIG.

1本又は複数本の中空系膜を綾巻状に集束配糸した中空
糸束1をケーシング2に収納し、中空糸束を、中空糸膜
の両端が開口した状態で、ケーシングの両端近傍にポッ
ティング材からなる隔壁3.4により固定する。隔壁3
.4には、中空糸膜の内部空間と連通ずる、酸素含有気
体の入口5及び出口6を有するヘッドキャップ7.8を
取り付ける。一方、ケーシングの一端の中心部及び他端
の隔壁近傍には、血液の入口9及び出口10を取り付け
る。
A hollow fiber bundle 1 in which one or more hollow fiber membranes are bundled and arranged in a cross-wound pattern is housed in a casing 2, and the hollow fiber bundle is placed near both ends of the casing with both ends of the hollow fiber membranes open. It is fixed by a partition wall 3.4 made of potting material. Bulkhead 3
.. 4 is fitted with a head cap 7.8 having an inlet 5 and an outlet 6 for oxygen-containing gas, communicating with the interior space of the hollow fiber membrane. On the other hand, a blood inlet 9 and an outlet 10 are installed at the center of one end of the casing and near the partition wall at the other end.

第1図に於いて、血液は血液ポートを通り血液人口9よ
り導入され、中空糸膜の外壁とケーシングの内壁とで構
成される空間を流れて血液出口10から排出される。血
液の入口近傍には中空糸膜が存在しない空間が設けられ
ているため、圧力損失の低下及び偏流の防止という観点
から非常に好ましい。即ち、血液は、血液入口近傍に於
いて、その流路が急激に曲げられたり、狭められたりす
ることがないため圧力損失を最少銀とすることができ、
又、チャネリングを生ずることもない。
In FIG. 1, blood is introduced from a blood port 9 through a blood port, flows through a space formed by the outer wall of the hollow fiber membrane and the inner wall of the casing, and is discharged from a blood outlet 10. Since there is a space in the vicinity of the blood inlet where no hollow fiber membrane exists, this is very preferable from the viewpoint of reducing pressure loss and preventing uneven flow. That is, the flow path of blood is not sharply bent or narrowed near the blood inlet, so pressure loss can be minimized.
Moreover, channeling does not occur.

中空糸膜はケーシングに対して略平行に集束配糸されて
いてもよいし、綾巻状に集束配糸されていてもよいが、
血液の偏流(チャネリング)を防止するためには、綾巻
状に集束配糸されている方が好ましい。
The hollow fiber membrane may be bundled and distributed substantially parallel to the casing, or may be bundled and distributed in a twill shape,
In order to prevent uneven flow (channeling) of blood, it is preferable that the threads are bundled and distributed in a cross-wound manner.

第1図の例では、血液の入口近傍には、中空糸膜が存在
しない空間が設けられているが、中空糸膜の充填率が、
中空糸束の中心部からケーシングの内壁へ向かって疎か
ら密の分布を持っている構成としてもよいし、又、中空
糸膜の充填率が、血液の入口側から他の側に向かって、
中空糸束の糸長方向に疎から密の分布を持っている構成
としてもよい。何れの構造であっても、圧力損失の低下
及びチャネリングの防止という効果は同様に得ることが
できる。
In the example shown in Fig. 1, there is a space near the blood inlet where no hollow fiber membrane exists, but the filling rate of the hollow fiber membrane is
The structure may have a sparse to dense distribution from the center of the hollow fiber bundle toward the inner wall of the casing, or the filling rate of the hollow fiber membrane may vary from the blood inlet side to the other side.
The hollow fiber bundle may have a sparse to dense distribution in the fiber length direction. Regardless of the structure, the same effects of reducing pressure loss and preventing channeling can be obtained.

中空糸束全体の平均的な充填率について考えてみると、
低い充填率では、高血流量(3〜5!/分)であっても
圧力損失は低いが、血液の流路面積が大となるため、血
液が中空糸束全体に行き渡らず、又、チャネリングを生
じ易く、ガス交換能は不良となる。一方、充填率を高く
(例えば、0゜55〜0.6以上)した場合は、ガス交
換能は向上するが、血液の流路面積は小となるため圧力
損失が大となる。本発明の人工肺は、前記の構造とする
ことにより、上記の問題を解決したものであり、平均的
な充填率が高いのにもかかわらず、圧力損失は小さく、
チャネリングを生ずることがなく、且つ、ガス交換能が
高い。
Considering the average filling rate of the entire hollow fiber bundle,
At a low filling rate, the pressure loss is low even at a high blood flow rate (3 to 5!/min), but because the blood flow path area becomes large, the blood does not spread throughout the hollow fiber bundle, and channeling This tends to result in poor gas exchange performance. On the other hand, when the filling factor is increased (for example, 0.55 to 0.6 or more), the gas exchange ability is improved, but the blood flow path area becomes small, resulting in a large pressure loss. The artificial lung of the present invention solves the above problems by having the above-described structure, and has a small pressure loss despite having a high average filling rate.
Does not cause channeling and has high gas exchange ability.

次に、中空糸の集束、配糸の方法について説明する。Next, a method for bundling and distributing the hollow fibers will be explained.

中空糸膜を集束棒表面に成る角度を以て供給し、集束棒
上に綾巻状の中空糸束を形成する。供給する中空糸膜は
1本であってもよいが、帯状の複数本の中空糸膜を供給
してもよい。複数本の場合、2〜10本、好ましくは4
〜6本を帯状に供給する。10本を超えると帯状配列が
乱れるため好ましくない。又、綾巻の角度としては10
0〜170°、好ましくは120〜150°の範囲が好
適である。集束、配糸に際し、通常、中空系には10〜
200g、好ましくは50〜150gの張力をかける。
The hollow fiber membranes are fed at an angle that forms the surface of the focusing rod to form a cheese-like hollow fiber bundle on the focusing rod. Although one hollow fiber membrane may be supplied, a plurality of belt-shaped hollow fiber membranes may be supplied. In the case of multiple pieces, 2 to 10 pieces, preferably 4 pieces
~6 pieces are supplied in a strip. If the number exceeds 10, the band-like arrangement becomes disordered, which is not preferable. Also, the angle of twill is 10
A range of 0 to 170°, preferably 120 to 150° is suitable. When bundling and arranging yarn, usually 10~
Apply a tension of 200 g, preferably 50-150 g.

張力が過大であると、中空糸束が集束棒上を移動できず
、移動できたとしても中空糸膜を傷付ける恐れがあるた
め好ましくない。中空糸膜にかける張力は調節可能であ
り、中空糸束の特定部位の充填率を高く或いは低くする
ことができる。又、集束棒上に中空糸膜を供給する際の
角度によっても、充填率を部分的に変化させることがで
きる。即ち、角度を小さくすればその部分では充填率が
大となり、角度を大きくすれば充填率は小となる。これ
ら張力と角度及び集束棒の形状を適宜組み合わせること
により、中空糸束の充填率を制御することができ、最適
な構成の中空糸束を得ることができる。集束、配糸した
後、中空糸束から集束棒を抜き取る。中空糸束の中心に
は円筒状の空間を生ずるが、中空糸束の径に対して相対
的にかなり小さな径の集束棒を使用すれば、外部からの
僅かな力によって、容易にその空間は中空糸膜によって
充填される。
If the tension is too high, the hollow fiber bundle cannot move on the focusing rod, and even if it can move, there is a risk of damaging the hollow fiber membrane, which is not preferable. The tension applied to the hollow fiber membrane can be adjusted, and the filling rate of a specific portion of the hollow fiber bundle can be increased or decreased. The filling rate can also be partially changed by changing the angle at which the hollow fiber membranes are fed onto the focusing rod. That is, if the angle is made smaller, the filling rate becomes larger in that part, and if the angle is made larger, the filling factor becomes smaller. By appropriately combining these tensions, angles, and the shape of the focusing rod, the filling rate of the hollow fiber bundle can be controlled, and a hollow fiber bundle with an optimal configuration can be obtained. After bundling and arranging, the bundling rod is removed from the hollow fiber bundle. A cylindrical space is created at the center of the hollow fiber bundle, but if a focusing rod with a diameter that is relatively small compared to the diameter of the hollow fiber bundle is used, that space can be easily closed by a slight external force. Filled with hollow fiber membranes.

集束棒の径は、集束操作に耐える強度があればよく、特
に制限はされない。中空糸束の部位により充填率を変化
させるため、テーパーの付いた集束棒或いは部分的に径
の異なる集束棒を用いてもよい。又、集束、配糸後、集
束棒からハウジング内へ中空糸束を移し替える必要があ
るため、移し替えの際、中空糸束が損傷を受けず、スム
ーズな移動が可能であるように、集束棒の表面はフッ素
樹脂等がコーティングされたものが好ましい。
The diameter of the focusing rod is not particularly limited as long as it has enough strength to withstand the focusing operation. In order to change the filling rate depending on the portion of the hollow fiber bundle, a tapered focusing rod or a focusing rod with partially different diameters may be used. In addition, after focusing and distributing, it is necessary to transfer the hollow fiber bundle from the focusing rod into the housing. The surface of the rod is preferably coated with fluororesin or the like.

本発明の人工肺に用いる中空糸膜の材質としては、ポリ
プロピレンが好ましいが、その他、ポリエチレン、ポリ
テトラフルオロエチレン、ポリサルホン、ポリアクリロ
ニトリル、ポリウレタン、シリコーン等の合成樹脂を使
用することができる。
The material for the hollow fiber membrane used in the oxygenator of the present invention is preferably polypropylene, but other synthetic resins such as polyethylene, polytetrafluoroethylene, polysulfone, polyacrylonitrile, polyurethane, and silicone can also be used.

中空糸膜は多孔質であってもよいし、無孔質であっもよ
い。多孔質中空糸膜の場合、周壁の微細孔の平均細孔径
は0.01〜1μm程度が好ましい。
The hollow fiber membrane may be porous or nonporous. In the case of a porous hollow fiber membrane, the average pore diameter of the micropores in the peripheral wall is preferably about 0.01 to 1 μm.

更に、空隙率は一般に20〜80%程度であればよい。Furthermore, the porosity should generally be about 20 to 80%.

又、ハウジング内に充填される中空糸膜の膜面積は3が
以下程度で充分である。
Further, it is sufficient that the membrane area of the hollow fiber membrane filled in the housing is about 3 or less.

以下に実施例によって本発明を更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

実施例1 外径4mmの集束棒の表面にフッ素樹脂をコーティング
し、この上に中空糸膜を集束した。集束後、中空糸束を
集束棒上を移動させて抜き取ると同時に、ハウジング内
に中空糸束を収容し、下記の寸法及び第1図に示す構成
の人工肺を作製した。尚、中空糸膜の集束時の張力は前
半100g、後半150gとした。
Example 1 A fluororesin was coated on the surface of a focusing rod having an outer diameter of 4 mm, and a hollow fiber membrane was focused thereon. After convergence, the hollow fiber bundle was moved on a converging rod and extracted, and at the same time, the hollow fiber bundle was housed in a housing to produce an oxygenator having the following dimensions and the configuration shown in FIG. 1. In addition, the tension at the time of convergence of the hollow fiber membrane was 100 g in the first half and 150 g in the second half.

集束棒:長さ          350mm外径  
          4闘 表面   フッ素樹脂コーティング ハウジング:外径         640長さ   
      200mm 多孔質中空糸膜:内径     約300μm外径  
   約400μm 平均微細孔径  0.22肛 空隙率   65〜70% 材質   ポリプロピレン 中空糸束:長さ         280mm綾巻、角
度      130゜ 充填率        0.59 血液充填量           170ccポツティ
ング材       ポリウレタン以上の構成、仕様を
持つ人工肺を用い、新鮮生血にて性能試験を行った。生
血としてAAM I(Association for
 Advance of Medical Instr
umentation)の定める標準静脈血を作製した
後、前記人工肺に導いた。
Focusing rod: length 350mm outer diameter
4-surface fluororesin coating housing: outer diameter 640 length
200mm porous hollow fiber membrane: inner diameter approximately 300μm outer diameter
Approximately 400μm Average micropore diameter 0.22 Anal porosity 65-70% Material Polypropylene hollow fiber bundle: Length 280mm twill, angle 130° Filling rate 0.59 Blood filling volume 170cc Potting material Artificial with composition and specifications greater than polyurethane Performance tests were conducted using lungs and fresh blood. AAM I (Association for
Advance of Medical Instr.
Standard venous blood was prepared according to the guidelines for the blood test, and then introduced into the oxygenator.

ガス交換能試験は血液流量if/分、31/分及び5N
/分について行った。又、圧力損失に関しても同様に血
液流量1.3.5!/分について実施した。採血及び圧
力の測定は人工肺の血液入口、血液出口の近傍にて行っ
た。採血した血液は、ガス分析装置にて酸素分圧、飽和
度、二酸化炭素分圧、二酸化炭素量、PH等を得た後、
計算によって酸素移動量、二酸化炭素移動量を求めた。
Gas exchange capacity test blood flow rate if/min, 31/min and 5N
I followed / minute. Also, regarding pressure loss, the blood flow rate is 1.3.5! /min. Blood sampling and pressure measurements were performed near the blood inlet and blood outlet of the artificial lung. The collected blood is measured with a gas analyzer to obtain oxygen partial pressure, saturation, carbon dioxide partial pressure, carbon dioxide amount, PH, etc.
The amount of oxygen transfer and carbon dioxide transfer was determined by calculation.

人工肺へは血液流量対流量の比が1:1となるように調
節して酸素ガスを供給した。
Oxygen gas was supplied to the artificial lung with the ratio of blood flow rate to flow rate adjusted to 1:1.

圧力損失、酸素移動量及び二酸化炭素移動量は、血液流
11.3.5で7分に対してそれぞれ30.90.14
0閣Hg、60.190.310mj!/分及び60.
150.200++f!/分であった。
The pressure drop, oxygen transfer and carbon dioxide transfer are respectively 30.90.14 for 7 minutes with blood flow 11.3.5
0 KakuHg, 60.190.310mj! /min and 60.
150.200++f! /minute.

これらの数値から理解されるように、本発明の人工肺は
、圧力損失が低いのにもかかわらず、優れたガス交換能
を有するものである。
As can be understood from these values, the oxygenator of the present invention has excellent gas exchange ability despite its low pressure loss.

〔発明の効果〕〔Effect of the invention〕

本発明の脱型人工肺は、ケーシング内の内部空間全体が
ほぼ中空糸膜のみによって充填されており、又、血液流
入部付近の特定の構造、構成により、小型であって血液
充填量が小さいのにもかかわらず、圧力損失が低く、且
つ、優れたガス交換能を有するものである。
The demolding oxygenator of the present invention has the entire internal space within the casing filled almost only with hollow fiber membranes, and due to the specific structure and configuration near the blood inflow part, it is small and the amount of blood filled is small. Despite this, it has low pressure loss and excellent gas exchange ability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中空糸膜型人工肺の断面の一例を示し
たものである。 1:中空糸束 2:ケーシング 3.4:ポツティング材からなる隔壁 5:酸素含有気体の入口 6:酸素含有気体の出口 ア、8:へラドキャップ 9:血液の入口 10:血液の出口
FIG. 1 shows an example of the cross section of the hollow fiber membrane type oxygenator of the present invention. 1: Hollow fiber bundle 2: Casing 3.4: Partition wall made of potting material 5: Oxygen-containing gas inlet 6: Oxygen-containing gas outlet A, 8: Herad cap 9: Blood inlet 10: Blood outlet

Claims (3)

【特許請求の範囲】[Claims] (1)中空糸束がケーシング内に収納されており、中空
糸束は、中空糸膜の両端が開口した状態でケーシングの
両端近傍にポッティング材によって支持固定されており
、中空糸膜の内部空間を酸素含有気体が流通し、中空糸
膜の外壁とケーシングの内壁とによって形成される空間
を血液が流通する人工肺に於いて、実質的にケーシング
の内部空間全体に中空糸束が充填されていることを特徴
とする中空糸膜型人工肺。
(1) A hollow fiber bundle is housed in a casing, and the hollow fiber bundle is supported and fixed near both ends of the casing by potting material with both ends of the hollow fiber membrane open, and the hollow fiber bundle is supported and fixed in the interior space of the hollow fiber membrane. In an oxygenator in which oxygen-containing gas flows and blood flows through the space formed by the outer wall of the hollow fiber membrane and the inner wall of the casing, substantially the entire inner space of the casing is filled with hollow fiber bundles. A hollow fiber membrane oxygenator characterized by:
(2)中空糸膜の充填率が、中空糸束の中心部からケー
シングの内壁へ向かって疎から密の分布を持っている請
求項(1)記載の中空糸膜型人工肺。
(2) The hollow fiber membrane oxygenator according to claim 1, wherein the filling rate of the hollow fiber membranes has a sparse to dense distribution from the center of the hollow fiber bundle toward the inner wall of the casing.
(3)中空糸膜の充填率が、中空糸束の糸長方向に疎か
ら密の分布を持っている請求項(1)記載の中空糸膜型
人工肺。
(3) The hollow fiber membrane type oxygenator according to claim (1), wherein the filling rate of the hollow fiber membranes has a distribution from sparse to dense in the fiber length direction of the hollow fiber bundle.
JP22838990A 1990-03-14 1990-08-31 Hollow yarn type mechanical lung Pending JPH04109956A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22838990A JPH04109956A (en) 1990-08-31 1990-08-31 Hollow yarn type mechanical lung
US07/668,562 US5263982A (en) 1990-03-14 1991-03-13 Hollow fiber membrane type artificial lung
EP19910103946 EP0446922A3 (en) 1990-03-14 1991-03-14 Hollow fiber membrane type artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22838990A JPH04109956A (en) 1990-08-31 1990-08-31 Hollow yarn type mechanical lung

Publications (1)

Publication Number Publication Date
JPH04109956A true JPH04109956A (en) 1992-04-10

Family

ID=16875706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22838990A Pending JPH04109956A (en) 1990-03-14 1990-08-31 Hollow yarn type mechanical lung

Country Status (1)

Country Link
JP (1) JPH04109956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028065A1 (en) * 1996-12-24 1998-07-02 Kitz Corporation Hollow-fiber membrane module and process for the production thereof
KR20020022966A (en) * 2000-09-21 2002-03-28 이계안 Setting jig car-door for check wind noise
JP2014518686A (en) * 2011-04-29 2014-08-07 メドトロニック,インコーポレイテッド Combined oxygenator and arterial filter device with continuous wound hollow fiber fiber bundles for processing blood in an extracorporeal blood circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028065A1 (en) * 1996-12-24 1998-07-02 Kitz Corporation Hollow-fiber membrane module and process for the production thereof
US6623637B1 (en) * 1996-12-24 2003-09-23 Kitz Corporation Hollow-fiber membrane module
KR20020022966A (en) * 2000-09-21 2002-03-28 이계안 Setting jig car-door for check wind noise
JP2014518686A (en) * 2011-04-29 2014-08-07 メドトロニック,インコーポレイテッド Combined oxygenator and arterial filter device with continuous wound hollow fiber fiber bundles for processing blood in an extracorporeal blood circuit

Similar Documents

Publication Publication Date Title
US4293418A (en) Fluid separation apparatus
JP2014518685A (en) Combined oxygenator and arterial filter device for processing blood in an extracorporeal blood circuit
US5263982A (en) Hollow fiber membrane type artificial lung
JPH09290020A (en) Gas exchange device
JPH04109956A (en) Hollow yarn type mechanical lung
JPS5918084B2 (en) fluid separation device
JP2001507245A (en) Hollow fiber oxygenator
JPH0439862B2 (en)
JPS6131164A (en) Composite hollow yarn membrane type artificial lung
JPH03264074A (en) Hollow yarn film type artificial lung and thread distribution
JPS6311972Y2 (en)
JPS6242705A (en) Permselective hollow yarn and fluid separator
JPS61268304A (en) Fluid separator
JPH0275330A (en) Hollow fiber membrane type mass transfer apparatus
EP0157941B1 (en) Blood oxygenator using a hollow fiber membrane
JPS609820B2 (en) Hollow fiber membrane mass transfer device
KR20230097104A (en) organic fluid oxygenator
JPH0321188B2 (en)
JPH09234245A (en) Outside perfusion type artificial lung
JPS60225572A (en) Hollow yarn membrane type artificial lung
JP2515828Y2 (en) Hollow fiber type oxygenator
JPS61119273A (en) Hollow yarn membrane type artificial lung
JPS5816922B2 (en) Fluid separation device and its manufacturing method
JPH04129565A (en) Hollow yarn model oxygenator
JPH0984873A (en) Hollow yarn membrane type dialysis filter