JPH09234245A - Outside perfusion type artificial lung - Google Patents

Outside perfusion type artificial lung

Info

Publication number
JPH09234245A
JPH09234245A JP4250096A JP4250096A JPH09234245A JP H09234245 A JPH09234245 A JP H09234245A JP 4250096 A JP4250096 A JP 4250096A JP 4250096 A JP4250096 A JP 4250096A JP H09234245 A JPH09234245 A JP H09234245A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber bundle
artificial lung
hollow
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4250096A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4250096A priority Critical patent/JPH09234245A/en
Publication of JPH09234245A publication Critical patent/JPH09234245A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the gas exchange efficiency of an artificial lung device and to reduce hemolysis as much as possible by setting the ratio of the longer diameter to the orthogonally crossing shorter diameter of the cross section of a hollow part of a cylindrical hollow fiber bundle at a prescribed value. SOLUTION: This artificial lung is constituted so that the blood introduced from a pipe connection opening 8 formed at one end of a hollow part 14 of the cylindrical hollow fiber bundle into the hollow part 14 can flow through gaps between hollow fibers 1, go out of the hollow fiber bundle, flow between the hollow fiber bundle and the housing 6 and flow out of a pipe connection opening 13 of the housing 6, and reversely, the blood introduced from the pipe connection hole 13 of the housing 6 can enter the hollow fiber bundle from the outer surface of the hollow fiber bundle, flow through gaps of the hollow fiber 1, enter the hollow part 14, and flow out of the pipe connection opening 8 connected to the hollow part. In this case, the ratio of the longer diameter to the orthogonally crossing shorter diameter of the cross section of the hollow part 14 of the cylindrical hollow fiber bundle is set at 1.5-50, and a core pipe 4 with many holes 3 formed on the wall is attached in the hollow part 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は体外循環させた血液
に気体透過性の膜を介して酸素含有流体を接触させ、膜
を通して血液に酸素を供給し、血液から炭酸ガスを除去
する人工肺に関し、血液を中空糸膜の外部に流し、酸素
含有流体を中空糸膜の内部に流す、外部潅流型人工肺に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial lung that removes carbon dioxide from blood by bringing oxygen-containing fluid into contact with blood that has been circulated extracorporeally through a gas-permeable membrane and supplying oxygen to the blood through the membrane. The present invention relates to an external perfusion type artificial lung that causes blood to flow outside a hollow fiber membrane and oxygen-containing fluid to flow inside a hollow fiber membrane.

【0002】[0002]

【従来の技術】中空糸膜(以下、単に中空糸と称する場
合もある)を使用した人工肺は、血液を中空糸内側に流
す内部灌流型と血液を中空糸外側に流す外部灌流型に分
けられる。ここで、いずれの場合も中空糸膜の血液と反
対の側には酸素含有気体または酸素溶解液体を流す。外
部灌流型は、ガス交換効率が高いため、人工肺のコンパ
クト化によりプライミングボリュームを小さくでき、ま
た、血液と膜との間の剪断速度を低くできるため溶血
(赤血球の破壊)を抑制できる、などの特徴がある。外
部灌流型人工肺には、向流、並流、十字流などの方式が
あるが、化学工学的に最もガス交換効率が高いとされる
十字流式としては、管壁に多数の孔の開いた円筒形の芯
管の回りに、同心円状の筒状に中空糸束を配し、芯管の
口から人工肺に導入された血液は芯管壁の孔から流出
し、中空糸の間隙を放射状に外向きに流れて中空糸束の
外部へ出、ハウジングの接続口より人工肺外へ流出する
(またはその逆に、ハウジングに導入された血液は中空
糸束の外部から中空糸束に入り、中空糸の隙間を流れ
て、芯管壁の孔から芯管に入り、芯管の口から人工肺外
へ流出する)タイプ(以下、同心円タイプと称する)
(例えば、特開昭58−155862)と、板状やブロ
ック状の中空糸束の中空糸の間隙を血液が一方向へ平行
に流れるタイプ(以下、平行流タイプと称する)が知ら
れていた(例えば特開平1−104271)。
2. Description of the Related Art Artificial lungs using a hollow fiber membrane (hereinafter sometimes simply referred to as "hollow fiber") are divided into an internal perfusion type in which blood flows inside the hollow fiber and an external perfusion type in which blood flows outside the hollow fiber. To be Here, in any case, an oxygen-containing gas or an oxygen-dissolved liquid is caused to flow on the side of the hollow fiber membrane opposite to the blood. The external perfusion type has a high gas exchange efficiency, so the priming volume can be reduced by making the artificial lung compact, and the shear rate between the blood and the membrane can be reduced, so that hemolysis (destruction of red blood cells) can be suppressed. There is a feature of. There are methods such as countercurrent, cocurrent, and cross flow in the externally perfused oxygenator, but the cross flow method, which has the highest gas exchange efficiency in terms of chemical engineering, has many holes in the tube wall. A hollow fiber bundle is arranged around the cylindrical core tube in a concentric cylindrical shape, and the blood introduced into the artificial lung from the mouth of the core tube flows out from the hole in the core tube wall, and the hollow fiber gap is removed. It flows radially outward and out of the hollow fiber bundle and out of the oxygenator through the housing connection (or vice versa, blood introduced into the housing enters the hollow fiber bundle from outside the hollow fiber bundle). , Flows through the hollow fiber gap, enters the core tube through the hole in the core tube wall, and flows out of the artificial lung from the mouth of the core tube) (hereinafter referred to as concentric circle type)
(For example, Japanese Unexamined Patent Publication (Kokai) No. 58-155862) and a type in which blood flows in one direction in parallel through a gap between hollow fibers of a plate-shaped or block-shaped hollow fiber bundle (hereinafter referred to as a parallel flow type) have been known. (For example, JP-A-1-104271).

【0003】[0003]

【発明が解決しようとする課題】同心円タイプの人工肺
は製造が容易でガス交換の効率も高いが、溶血が生じ易
く、溶血を生じないための運転条件の許容範囲が狭く、
このため人工肺の膜面積当りのガス交換量が低いという
問題があった。また血液側の圧力損失も大きいという欠
点があった。本発明者等は、これらの原因について検討
した結果、同心円タイプの十字流外部還流型人工肺にお
いては、芯管付近における血液の流速(従って、中空糸
膜との間の剪断速度)が外周部付近に比べて速く、これ
が上記の問題の原因であることを見いだした。例えば、
一般に膜を介してのガス交換効率は、血液の中空糸膜と
の間の剪断速度が高くなるほど高くなる。一方、剪断速
度が過剰に高くなると溶血が生じる。同心円タイプの人
工肺においては、ガス交換効率の向上を目指して人工肺
の血液剪断速度を高くすると、芯管付近の剪断速度が過
剰に高くなり溶血を招いていた。一方、平行流タイプは
このような欠点が無い代わりに、中空糸束とハウジング
との接触部において血液のショートパスが生じ易いた
め、該接触部への樹脂充填などの製造工程が必要な上、
中空糸束が中空糸シートの積層による場合には、高密度
に充填することが難しいなど、製造上の困難を有してい
た。
The concentric type oxygenator is easy to manufacture and has a high gas exchange efficiency, but hemolysis is liable to occur, and the allowable operating condition range for not causing hemolysis is narrow.
Therefore, there is a problem that the amount of gas exchange per membrane area of the artificial lung is low. Further, there is a drawback that the pressure loss on the blood side is also large. As a result of studying these causes, the present inventors have found that in a concentric type cross-flow external perfusion type artificial lung, the flow velocity of blood in the vicinity of the core tube (hence, the shear rate with the hollow fiber membrane) is the outer peripheral portion. I found this to be the cause of the above problems, faster than near. For example,
Generally, the gas exchange efficiency through the membrane becomes higher as the shearing rate between blood and the hollow fiber membrane becomes higher. On the other hand, if the shear rate becomes too high, hemolysis will occur. In the concentric type oxygenator, when the blood shear rate of the oxygenator was increased in order to improve the gas exchange efficiency, the shear rate in the vicinity of the core tube was excessively increased, resulting in hemolysis. On the other hand, the parallel flow type does not have such a defect, but since a short path of blood is likely to occur at the contact portion between the hollow fiber bundle and the housing, a manufacturing process such as resin filling of the contact portion is required.
When the hollow fiber bundle is formed by stacking the hollow fiber sheets, it is difficult to pack it at a high density, which is a manufacturing problem.

【0004】[0004]

【課題を解決するための手段】本発明者は上記考察に鑑
み鋭意検討した結果、同心円タイプの欠点を除去し、し
かも同心円タイプの製造の容易さを維持した人工肺構造
を見いだし、本発明に到達した。即ち本発明は、 1. 筒状に束ねられた中空糸膜束がハウジング中に設
けられてなる外部灌流型人工肺であって、該筒状中空糸
束の空洞部の横断面における長径に対する該長径と直交
する短径の比が1.5〜50であることを特徴とする外
部灌流型人工肺、 2. 筒状中空糸束の空洞部に、管壁に多数の孔が開い
た芯管を有する上記1記載の人工肺、 3. 短径が、0.3〜2cmである上記1又は2記載
の人工肺、 4. 長径に対する該長径と直交する短径の比が、2〜
20である上記1、2又は3記載の人工肺、 5. 筒状中空糸束が、中空糸膜の編組体である上記1
〜4のいずれか1つに記載の人工肺、 6. 中空糸膜の編組体が、中空糸膜同士または中空糸
膜と他の糸条とで構成されたシート状物を筒状に巻いた
物である上記5記載の人工肺、および、 7. 中空糸膜の編組体が、中空糸膜と他の糸条とで構
成された簾状シートを筒状に巻いた物である上記5記載
の人工肺にある。
Means for Solving the Problems As a result of intensive studies in view of the above consideration, the present inventor has found an artificial lung structure in which the defects of the concentric circle type are eliminated and the concentric circle type is easily manufactured. Arrived That is, the present invention provides: An external perfusion type artificial lung in which a hollow fiber membrane bundle bundled in a tubular shape is provided in a housing, the hollow fiber bundle having a minor axis perpendicular to the major axis in a cross section of a hollow portion of the tubular hollow fiber bundle. 1. Externally perfused oxygenator, characterized in that the ratio is 1.5 to 50. 2. The artificial lung according to 1 above, which has a core tube having a large number of holes in the tube wall in the hollow portion of the tubular hollow fiber bundle. 3. The artificial lung according to 1 or 2 above, which has a short diameter of 0.3 to 2 cm. The ratio of the minor axis orthogonal to the major axis to the major axis is 2 to
4. The artificial lung according to the above 1, 2, or 3, which is 20. The above-mentioned 1 in which the tubular hollow fiber bundle is a braided body of hollow fiber membranes.
5. The artificial lung according to any one of 4 to 6; 6. The artificial lung according to 5 above, wherein the braided body of hollow fiber membranes is a sheet-shaped material composed of hollow fiber membranes or hollow fiber membranes and other yarns wound in a tubular shape. The artificial lung according to the above 5, wherein the braided body of the hollow fiber membrane is a cylindrically wound cord-shaped sheet composed of the hollow fiber membrane and other yarns.

【0005】[0005]

【発明の実施の形態】本発明の人工肺は筒状に束ねられ
た中空糸膜束(以下筒状中空糸束と称する)がハウジン
グ中に設けられたものであり、筒状中空糸束の中央には
中空糸膜が充填されていない部分、即ち空洞部を有す
る。本発明の人工肺の特徴は、筒状中空糸束の中央にあ
る空洞部の横断面(以下横断面を単に断面と記述する)
形状が偏平であることにあり、該空洞部の断面における
長径に対する該長径と直交する短径の比が1.5〜50
である(以下この比を長径に対する短径の比と称す
る。)。ここでいう長径とは、空洞部の断面における最
も長い径を表わし、短径とは、該長径と直交する径のな
かで最も長い径を表す。本発明の人工肺において、長径
に対する短径の比は2〜20が好ましく、3〜10がさ
らに好ましい。空洞部の長径に対する短径の比が過小で
あると、同心円タイプと同じ欠点が発生するし、長径に
対する短径の比が過大であると、中空糸束空洞部や芯管
の加工精度の要求水準の増加や中空糸束を均一に充填す
る上での困難などの製造上の困難が生じる。
BEST MODE FOR CARRYING OUT THE INVENTION The artificial lung of the present invention comprises a hollow fiber membrane bundle (hereinafter referred to as a tubular hollow fiber bundle) bundled in a tubular shape provided in a housing. In the center, there is a portion not filled with the hollow fiber membrane, that is, a hollow portion. The feature of the artificial lung of the present invention is that the hollow section at the center of the tubular hollow fiber bundle has a cross section (hereinafter, the cross section is simply referred to as a cross section).
The shape is flat, and the ratio of the minor axis orthogonal to the major axis to the major axis in the cross section of the cavity is 1.5 to 50.
(Hereinafter, this ratio is referred to as the ratio of the short diameter to the long diameter). Here, the major axis represents the longest diameter in the cross section of the hollow portion, and the minor axis represents the longest diameter of the diameters orthogonal to the major axis. In the artificial lung of the present invention, the ratio of the short diameter to the long diameter is preferably 2 to 20, more preferably 3 to 10. If the ratio of the minor axis to the major axis of the cavity is too small, the same drawbacks as the concentric type occur, and if the ratio of the minor axis to the major axis is too large, the processing accuracy of the hollow fiber bundle cavity or core tube is required. Manufacturing difficulties such as an increase in the level and difficulty in uniformly filling the hollow fiber bundle occur.

【0006】筒状中空糸束の空洞部の断面形状は、長径
に対する短径の比が上記範囲内であれば任意であり、例
えば楕円、矩形、角を丸めた矩形、瓢箪型、菱形、三角
形その他の複雑な形状などであり得るが、楕円、矩形、
または角を丸めた矩形が、性能、コンパクトさ、製造の
容易さなどの面で好ましい。角を丸めた矩形は、短辺が
実質的に半円となるよう丸めた物であることが、本発明
の効果を発揮し、かつ血液の滞留に起因する凝血も生じ
にくいため好ましい。また、空洞部の寸法は設計すべき
人工肺の大きさ(即ち処理容量)により任意の値を選定
できるが、筒状中空糸束の空洞部断面の短径が0.3〜
2cmであることが好ましく、0.5〜1cmがより好
ましい。これより大きいとプライミングボリュームの増
加を招くし、小さいと製造が困難となる。筒状の中空糸
束の厚みについても任意であり、設計すべき人工肺の要
求特性によって任意の値を選定できるが、1〜10cm
が好ましく、2〜5cmがより好ましい。また、該厚み
の均一性についても任意であるが、筒状中空糸束のいず
れの部分においても厚みがほぼ等しいことが性能上好ま
しい。
The cross-sectional shape of the hollow portion of the tubular hollow fiber bundle is arbitrary as long as the ratio of the minor axis to the major axis is within the above range, for example, an ellipse, a rectangle, a rectangle with rounded corners, a gourd shape, a rhombus, a triangle. Other shapes such as ellipses, rectangles,
Alternatively, a rectangle with rounded corners is preferable in terms of performance, compactness, ease of manufacture, and the like. The rectangle with rounded corners is preferably rounded so that the short side is substantially a semicircle, because the effect of the present invention is exhibited, and coagulation due to blood retention is less likely to occur. Further, the size of the hollow portion can be selected as an arbitrary value depending on the size of the artificial lung to be designed (that is, processing capacity), but the short diameter of the hollow hollow fiber bundle cross section is 0.3 to
It is preferably 2 cm, more preferably 0.5 to 1 cm. If it is larger than this, the priming volume increases, and if it is smaller, the manufacturing becomes difficult. The thickness of the tubular hollow fiber bundle is also arbitrary, and an arbitrary value can be selected depending on the required characteristics of the artificial lung to be designed, but it is 1 to 10 cm.
Is preferable, and 2-5 cm is more preferable. Further, the uniformity of the thickness is also arbitrary, but it is preferable in terms of performance that the thickness is almost the same in any part of the tubular hollow fiber bundle.

【0007】筒状の中空糸束における中空糸の充填形態
は任意である。中空糸束は多数の中空糸をほぼ平行に筒
状に束ねただけのものでも良いが、中空糸間隔を均一に
保って血液流路のショートパスを防止するために、中空
糸同士または中空糸と他の糸条とで構成された編組体で
あることがより好ましい。中空糸編組体の形状、様式は
任意であり、例えば中空糸の綾巻きにより構成されたも
の、中空糸同士の平織りや朱珠織り等により構成された
シート状物の積層体、中空糸と他の糸条とで構成された
簾状シートの積層体等が好ましく挙げられる。これらの
中で、中空糸の充填密度を高くしてコンパクトにするこ
とができ、また製造も容易であるため、シート状物の積
層体であることが好ましく、簾状シートの積層体である
ことがより好ましい。特にシート状物を筒状に巻いた構
造が製造が容易であり好ましい。簾状シートは、例えば
中空糸を緯糸とし、他の糸条を経糸として、編み、織
り、接着などにより製造することができる。また、本発
明の人工肺は、筒状中空糸束の内面および/または外面
を網などで被ったり、糸状物で縛るなどにより筒状中空
糸束の形状を固定することも好ましい。また、接着や融
着により中空糸同士の相互位置を固定することも好まし
い。
The filling form of the hollow fibers in the tubular hollow fiber bundle is arbitrary. The hollow fiber bundle may be a bundle of a large number of hollow fibers that are substantially parallel to each other. However, in order to keep the hollow fiber intervals uniform and prevent short paths in the blood flow path, hollow fibers or hollow fibers may be bundled together. More preferably, it is a braided body composed of and other yarns. The shape and style of the hollow fiber braid are arbitrary, for example, those formed by twill winding of hollow fibers, laminates of sheet-like products formed by plain weaving of hollow fibers or pearl weave, hollow fibers and others. Preferable examples include a laminated body of a cord-shaped sheet composed of the above yarn. Among these, a stack of sheet-like materials is preferable because it can be made compact by increasing the packing density of the hollow fibers and is easy to manufacture. Is more preferable. In particular, a structure in which a sheet-like material is rolled into a cylinder is preferable because it is easy to manufacture. The blind-shaped sheet can be manufactured by, for example, knitting, weaving, adhering, or the like using a hollow fiber as a weft and another yarn as a warp. In the artificial lung of the present invention, it is also preferable to fix the shape of the tubular hollow fiber bundle by covering the inner surface and / or the outer surface of the tubular hollow fiber bundle with a net or tying it with a thread. It is also preferable to fix the mutual positions of the hollow fibers by adhesion or fusion.

【0008】人工肺の血液側剪断速度や圧力損失は、筒
状中空糸束の形状により変えることができる。例えば、
筒状中空糸束の周長を増すと剪断速度や圧力損失は低下
し、筒状中空糸束の厚みを増すと圧力損失は増加する。
また、中空糸の充填密度を増すとこれらの値は増加す
る。試行により、上記の寸法範囲内で、ガス交換能力と
剪断速度や圧力損失のバランスの最適値を求めることが
できる。
The blood-side shear rate and pressure loss of the artificial lung can be changed by the shape of the tubular hollow fiber bundle. For example,
When the circumferential length of the tubular hollow fiber bundle is increased, the shear rate and pressure loss decrease, and when the thickness of the tubular hollow fiber bundle is increased, the pressure loss increases.
Also, these values increase with increasing packing density of the hollow fibers. By trial, the optimum value of the balance between the gas exchange capacity and the shear rate or pressure loss can be obtained within the above size range.

【0009】本発明の人工肺は、筒状中空糸束の空洞部
に、管壁に多数の孔が開いた芯管を有する事が好まし
い。芯管の断面形状は任意であるが、単数または複数の
円、単数または複数の矩形、角を丸めた矩形であること
が好ましい。角を丸めた矩形は、短辺が実質的に半円と
なる様に丸めたものであることが好ましい。芯管は又、
複数の管の集合体であったり、芯管内側に部分的または
全面的に補強壁を有する物であることも、芯管断面形状
の安定性を増す上で好ましい。
The artificial lung of the present invention preferably has a core tube having a large number of holes in the tube wall in the hollow portion of the tubular hollow fiber bundle. Although the cross-sectional shape of the core tube is arbitrary, it is preferably a single or plural circle, a single or plural rectangle, or a rectangle with rounded corners. The rectangle with rounded corners is preferably rounded so that the short side is substantially a semicircle. The core tube is also
An aggregate of a plurality of tubes or an article having a reinforcing wall partially or entirely inside the core tube is also preferable in order to increase the stability of the cross section of the core tube.

【0010】芯管と筒状中空糸束との間には部分的また
は全面的に空隙が有ってもよいし、芯管と筒状中空糸束
の内側境界面は全面的にまたは部分的に接していてもよ
い。また、芯管と筒状中空糸束との間に不織布や網など
を設置することも可能である。芯管と筒状中空糸束は、
直接または不織布や網を隔てて全面的に接触しているこ
とが好ましい。芯管の壁に穿たれている孔の形状、径、
数は任意であるが、人工肺の血液設定流量における剪断
速度や圧力損失を勘案して決定できる。芯管は焼結体の
ような多孔質体や網状のものであってもよい。芯管の一
部には配管接続口が設けられる。人工肺が芯管を有さな
い場合には、筒状の中空糸束の空洞部に直接、配管接続
口を設ける事ができる。
There may be a partial or full gap between the core tube and the tubular hollow fiber bundle, and the inner boundary surface between the core tube and the tubular hollow fiber bundle may be wholly or partially. May be in contact with. It is also possible to install a non-woven fabric, a net or the like between the core tube and the tubular hollow fiber bundle. The core tube and the tubular hollow fiber bundle are
It is preferable that they are in direct contact with each other or directly across a non-woven fabric or a net. The shape and diameter of the hole made in the wall of the core tube,
Although the number is arbitrary, it can be determined in consideration of the shear rate and the pressure loss at the set blood flow rate of the artificial lung. The core tube may be a porous body such as a sintered body or a net-like one. A pipe connection port is provided in a part of the core tube. When the artificial lung does not have a core tube, the pipe connection port can be directly provided in the hollow portion of the tubular hollow fiber bundle.

【0011】本発明の人工肺で用いられる中空糸膜は、
気体は透過するが血液成分は透過しない膜であれば、素
材、膜形態、膜形状等は任意であり、従来、中空糸膜型
人工肺で用いられている膜が使用できる。例えば膜素材
としては、ポリプロピレン、ポリ−4−メチルペンテン
−1等のポリオレフィン系樹脂、ポリジメチルシロキサ
ン、その共重合体等のシリコン系樹脂、PTFE、フッ
化ビニリデン等のフッ素系樹脂等が挙げられ、膜形態と
しては、多孔質膜、不均質膜、複合膜、均質膜等が挙げ
られる。膜形状としては、中空糸外径は0.05〜5m
mで有り得る。また、中空糸束における中空糸の充填率
(単位断面積に中空糸が占める面積比)は20〜75
%、中空糸間隙は0.05〜3mmであり得る。本人工
肺に係るその他の寸法、形状は任意である。
The hollow fiber membrane used in the artificial lung of the present invention is
As long as the membrane is permeable to gas but impermeable to blood components, the material, membrane morphology, membrane shape and the like are arbitrary, and membranes conventionally used in hollow fiber membrane oxygenators can be used. Examples of the film material include polyolefin resins such as polypropylene and poly-4-methylpentene-1, silicone resins such as polydimethylsiloxane and copolymers thereof, and fluorine resins such as PTFE and vinylidene fluoride. Examples of the membrane form include a porous membrane, a heterogeneous membrane, a composite membrane, a homogeneous membrane and the like. As the membrane shape, the outer diameter of the hollow fiber is 0.05-5 m
It can be m. The filling rate of the hollow fibers in the hollow fiber bundle (the area ratio of the hollow fibers to the unit cross-sectional area) is 20 to 75.
%, The hollow fiber gap may be 0.05-3 mm. Other dimensions and shapes relating to the present artificial lung are arbitrary.

【0012】本発明の人工肺は、上述のような中空糸膜
束を、ハウジング中に設けたものである。ハウジングと
しては、外部灌流型として一般的に用いられているもの
を用いることができる。ハウジングの断面形状は筒状中
空糸束の外側形状と必ずしも相似形である必要はない
が、デッドボリュームの少ない構造が好ましい。人工肺
の外寸は、短辺2〜15cm、長辺5〜30cm、長さ
10〜50cmであり得る。
The artificial lung of the present invention comprises a hollow fiber membrane bundle as described above provided in a housing. As the housing, one generally used as an external perfusion type can be used. The cross-sectional shape of the housing does not necessarily have to be similar to the outer shape of the tubular hollow fiber bundle, but a structure with less dead volume is preferable. The external dimensions of the oxygenator may be 2-15 cm short side, 5-30 cm long side, 10-50 cm long.

【0013】以下に、本発明の人工肺について実施例で
用いる図2〜4の構造の例でより具体的に説明する。ハ
ウジング(6)内に中空糸(1)が筒状の束にして設置
されており、ハウジング(6)にはハウジングの内外を
連絡する配管接続口(13)が設けられている。また、
既知の外部灌流型人工肺と同様に、中空糸の内側に通じ
る空間と外側に通じる空間とを隔てるべく、筒状中空糸
束はその端部において、中空糸間に樹脂が気密に充填さ
れている(7、7’)。さらに、芯管と筒状中空糸束、
および該中空糸束とハウジング(6)間も中空糸束端部
において任意の方法により気密に封止されている(7、
7’)。封止方法は、例えば樹脂充填、接着、オーリン
グやパッキン、嵌合により実施できる。即ち、本人工肺
は、筒状中空糸束の空洞部の一端に設けられた配管接続
口(8)から筒状中空糸束の空洞部(14)に導入され
た血液が、中空糸(1)の隙を流れて中空糸束の外部へ
出、中空糸束とハウジング(6)との間を流れてハウジ
ング(6)の管接続口(13)から流出すべく、または
その逆に、ハウジング(6)の配管接続口(13)から
導入された血液が中空糸束の外表面から中空糸束に入
り、中空糸(1)の間隙を流れて、中空糸束の空洞部
(14)に入り、空洞部に接続された配管接続口(8)
から流出すべく構成されている。人工肺が芯管(4)を
有する場合には、芯管(4)に設けられた配管接続口
(8)から導入された血液が芯管(4)に設けられた多
数の穴(3)から筒状中空糸束の空洞部(14)に入る
べく、またはその逆に、筒状中空糸束の空洞部(14)
から、芯管(4)の管壁に設けられた多数の穴(3)か
ら芯管(4)に入り、芯管(4)に接続された配管接続
口(8)から外部に流出すべく構成されている。空洞部
(14)は扁平であり、空洞部(14)の断面における
長径(15)に対する、該長径と直交する短径(16)
の比は1.5〜50である。
The artificial lung of the present invention will be described more specifically below with reference to the examples of the structures shown in FIGS. The hollow fibers (1) are installed in a cylindrical bundle in the housing (6), and the housing (6) is provided with a pipe connection port (13) for connecting the inside and outside of the housing. Also,
Similar to the known external perfusion type artificial lung, in order to separate the space communicating with the inside of the hollow fiber from the space communicating with the outside, the tubular hollow fiber bundle is hermetically filled with resin between the hollow fibers at the end thereof. Yes (7, 7 '). Furthermore, the core tube and the tubular hollow fiber bundle,
Also, the hollow fiber bundle and the housing (6) are hermetically sealed at the end of the hollow fiber bundle by an arbitrary method (7,
7 '). The sealing method can be implemented by, for example, resin filling, adhesion, O-ring or packing, and fitting. That is, in the present artificial lung, blood introduced into the hollow portion (14) of the tubular hollow fiber bundle from the pipe connection port (8) provided at one end of the hollow portion of the hollow fiber bundle has a hollow fiber (1). ) To the outside of the hollow fiber bundle, flows between the hollow fiber bundle and the housing (6) to flow out of the pipe connection port (13) of the housing (6), or vice versa. Blood introduced from the pipe connection port (13) of (6) enters the hollow fiber bundle from the outer surface of the hollow fiber bundle, flows through the gap of the hollow fiber (1), and enters the hollow portion (14) of the hollow fiber bundle. Pipe connection port (8) that enters and is connected to the cavity
It is configured to flow out from. When the artificial lung has a core tube (4), a large number of holes (3) provided in the core tube (4) for blood introduced from a pipe connection port (8) provided in the core tube (4) To enter the hollow part (14) of the tubular hollow fiber bundle from vice versa or vice versa.
To enter the core tube (4) through a large number of holes (3) provided in the tube wall of the core tube (4) and flow out to the outside from a pipe connection port (8) connected to the core tube (4). It is configured. The cavity (14) is flat, and the minor axis (16) orthogonal to the major axis (15) in the cross section of the cavity (14) is orthogonal to the major axis (15).
The ratio is 1.5 to 50.

【0014】一方、中空糸(1)の内側には酸素を含有
する流体、好ましくは酸素を含有する気体が中空糸の一
方の端から他の端へ流せるように構成されている。即
ち、中空糸束の両端部に於て、それぞれキャップ(9、
10)が装着されており、中空糸の内側に通じる空間に
配管接続口(11、12)が設けられている。
On the other hand, inside the hollow fiber (1), a fluid containing oxygen, preferably a gas containing oxygen, is configured to flow from one end of the hollow fiber to the other end. That is, at both ends of the hollow fiber bundle, caps (9,
10) is attached, and the pipe connection ports (11, 12) are provided in the space communicating with the inside of the hollow fiber.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 [実施例1] (人工肺の製作)外径0.23mm、酸素透過速度1×
10-4[cm3/cm2・s・cmHg]の外表面に非多
孔層を有するポリ(4−メチル−1−ペンテン)製の不
均質中空糸膜(1)を緯糸とし、ポリエステル糸(2)
を経糸として編むことにより、図1に示されたような、
編み密度26本/cmの簾状シートを作製した。次い
で、図2〜図4に示した人工肺を作製した。即ち、断面
の外径が、短辺8mm、長辺40mmの、短辺が半円に
なるように角を丸めた矩形で、管壁に直径3mmの多数
の孔(3)が穿たれたポリカーボネート製の芯管(4)
の周りに、中空糸膜(1)の簾状シートを厚さ約25m
mだけ巻きつけ、その周囲に約12メッシュのポリエチ
レン製の網(5)を巻いた。使用された中空糸は240
00本であった。これを断面が、短辺が実質的に半円で
あるように角を丸めた矩形であり、内径が62×94m
m、長さが100mmのポリカーボネート製のハウジン
グ(6)に装填し、ハウジングの両端部各16mmの厚
みにウレタン樹脂を充填することにより、この部分に於
て、中空糸間、中空糸束と芯管(4)の間、および中空
糸束とハウジング(6)の間を気密に封止(7)した。
芯管(4)の一方の口には配管接続口(8)を設けた。
芯管(4)の他方の口は樹脂にて密閉した。中空糸束の
両端部にはそれぞれキャップ(9、10)を装着した。
キャップにはそれぞれ配管接続口(11、12)が設け
られており、ハウジングにも配管接続口(13)が設け
られている。この人工肺の実効膜面積(中空糸外表面基
準)は1.2m2であった。また、中空糸束の空洞部の
長径と短径の比は、5.1である。
EXAMPLES The present invention will be described in more detail below with reference to examples. [Example 1] (Production of artificial lung) Outer diameter 0.23 mm, oxygen permeation rate 1 x
A heterogeneous hollow fiber membrane (1) made of poly (4-methyl-1-pentene) having a non-porous layer on the outer surface of 10 −4 [cm 3 / cm 2 · s · cmHg] was used as a weft, and a polyester yarn ( 2)
By knitting as a warp yarn, as shown in FIG.
A blind sheet having a knitting density of 26 filaments / cm was produced. Next, the artificial lung shown in FIGS. 2 to 4 was produced. That is, the outer diameter of the cross section is a rectangle having a short side of 8 mm, a long side of 40 mm, and rounded corners so that the short side becomes a semicircle, and a polycarbonate wall having a large number of holes (3) having a diameter of 3 mm. Made of core tube (4)
About 25 m in thickness of the cord-shaped sheet of hollow fiber membrane (1) around
A polyethylene mesh (5) of about 12 mesh was wound around it for about m. The hollow fiber used is 240
It was 00. The cross section of this is a rectangle with rounded corners so that the short side is substantially a semicircle, and the inner diameter is 62 x 94 m.
It is loaded into a polycarbonate housing (6) having a length of m and a length of 100 mm, and urethane resin is filled to a thickness of 16 mm at each end of the housing. Airtight seals (7) were made between the tubes (4) and between the hollow fiber bundle and the housing (6).
A pipe connection port (8) was provided at one port of the core tube (4).
The other port of the core tube (4) was sealed with resin. Caps (9, 10) were attached to both ends of the hollow fiber bundle.
Each cap has a pipe connection port (11, 12), and the housing also has a pipe connection port (13). The effective membrane area (based on the outer surface of the hollow fiber) of this artificial lung was 1.2 m 2 . The ratio of the major axis to the minor axis of the hollow portion of the hollow fiber bundle is 5.1.

【0016】(測定)新鮮ヘパリン添加牛血を用い、温
度36℃、ヘモグロビン含量120g/l、酸素飽和度
65%、炭酸ガス分圧6.0kPa(45mmHg)の
標準静脈血を調製し、これを、本人工肺の芯管に通じる
配管接続口(8)に導入し、ハウジングに設けられた配
管接続口(13)より流出させ、一方、キャップに設け
られた配管接続口11から12へ、99.99%の酸素
ガスを血液流量と同じ量(V/Q比1.0)だけ流し
た。血流量および酸素流量を変化させたところ、配管接
続口(13)より流出する血液の酸素飽和度が95%に
なる血流量(最大血流量)は、6200ml/分であっ
た。また血液流量6000ml/分の時の、配管接続口
(8)と配管接続口(13)との間の圧力差(即ち、人
工肺の圧力損失)は8.8kPa(66mmHg)であ
った。
(Measurement) Using fresh heparin-added bovine blood, a standard venous blood having a temperature of 36 ° C., a hemoglobin content of 120 g / l, an oxygen saturation of 65% and a carbon dioxide partial pressure of 6.0 kPa (45 mmHg) was prepared. , Is introduced into the pipe connection port (8) leading to the core tube of the present artificial lung, and is made to flow out from the pipe connection port (13) provided in the housing, while the pipe connection ports 11 to 12 provided in the cap are changed to 99 Oxygen gas of .99% was allowed to flow in the same amount as the blood flow rate (V / Q ratio of 1.0). When the blood flow rate and the oxygen flow rate were changed, the blood flow rate (maximum blood flow rate) at which the oxygen saturation of the blood flowing out from the pipe connection port (13) was 95% was 6200 ml / min. The pressure difference between the pipe connection port (8) and the pipe connection port (13) (that is, the pressure loss of the artificial lung) at a blood flow rate of 6000 ml / min was 8.8 kPa (66 mmHg).

【0017】[実施例2]芯管の断面寸法(外寸)が短
径8mm、長径20mmであること、ハウジング寸法
(内寸)が62×74mmであること、中空糸本数が2
1100本であること、およびハウジング長さが110
mmであること以外は実施例1と同様の、実効膜面積が
1.2m2の人工肺を作成した。この人工肺を用いて、
実施例1と同様の試験を行ったところ、最大血流量は6
100ml/分であり、また血液流量6000ml/分
の時の圧力損失は16.9kPa(127mmHg)で
あった。
[Embodiment 2] The core tube has a cross-sectional dimension (outer dimension) of a minor axis of 8 mm and a major axis of 20 mm, a housing dimension (inner dimension) of 62 × 74 mm, and two hollow fibers.
1100 and housing length 110
An artificial lung having an effective membrane area of 1.2 m 2 was prepared in the same manner as in Example 1 except that the size was mm. With this artificial lung,
When the same test as in Example 1 was conducted, the maximum blood flow was 6
The pressure loss was 100 ml / min, and the pressure loss at a blood flow rate of 6000 ml / min was 16.9 kPa (127 mmHg).

【0018】[比較例1]芯管として外径8mmのポリ
カーボネート製の円管を使用したこと、ハウジングが内
径62mmの円筒であること、中空糸充填本数が148
00本であること、およびハウジング長さが143mm
であるこ以外は、実施例1と同様の、実効膜面積が1.
2m2の同心円型人工肺を作製した。この人工肺を用い
て、実施例1と同様の試験を行ったところ、最大血流量
は6000ml/分、また血液流量6000ml/分の
時の圧力損失は29.1kPa(218mmHg)であ
った。
[Comparative Example 1] A polycarbonate circular tube having an outer diameter of 8 mm was used as the core tube, the housing was a cylinder having an inner diameter of 62 mm, and the number of hollow fiber fillings was 148.
00 and the housing length is 143 mm
Similar to Example 1 except that the effective film area was 1.
A 2 m 2 concentric oxygenator was prepared. When the same test as in Example 1 was performed using this artificial lung, the maximum blood flow was 6000 ml / min, and the pressure loss at a blood flow rate of 6000 ml / min was 29.1 kPa (218 mmHg).

【0019】[0019]

【発明の効果】筒状中空糸束の空洞部断面が円である人
工肺に比べると、大部分の中空糸膜の稼働条件がほぼ同
等であり、血液側の剪断速度や圧力損失が小さいため、
溶血が少なく、ガス交換効率を高くできるなど、人工肺
の設計の自由度が広い。また平行流型人工肺に比べて製
造が容易であり、高精度の人工肺を高い生産性で製造で
きる。
EFFECTS OF THE INVENTION Most of the hollow fiber membranes have substantially the same operating conditions as compared to an artificial lung in which the hollow section of the tubular hollow fiber bundle is circular, and the shear rate and pressure loss on the blood side are small. ,
There is a high degree of freedom in designing artificial lungs, such as less hemolysis and higher gas exchange efficiency. Further, it is easier to manufacture than a parallel-flow type oxygenator, and a highly accurate oxygenator can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で使用する中空糸の簾状シートの見取
り図である。
FIG. 1 is a sketch of a hollow-fiber cord-shaped sheet used in Example 1.

【図2】実施例1で作製する人工肺の正面図(右下
図)、平面図(右上図)及び側面図(左下図)である。
FIG. 2 is a front view (lower right view), a plan view (upper right view) and a side view (lower left view) of an artificial lung produced in Example 1.

【図3】図2におけるA部断面図である。FIG. 3 is a sectional view of part A in FIG.

【図4】図2におけるB部断面図である。FIG. 4 is a sectional view of a B part in FIG.

【符号の説明】[Explanation of symbols]

1 中空糸膜 2 ポリエステル糸 3 孔 4 芯管 5 網 6 ハウジング 7、7’ 封止部 8 芯管の配管接続口 9 キャップ 10 キャップ 11 キャップの配管接続口 12 キャップの配管接続口 13 ハウジングの配管接続口 14 空洞部 15 長径 16 短径 1 Hollow Fiber Membrane 2 Polyester Thread 3 Hole 4 Core Tube 5 Net 6 Housing 7, 7'Sealing Section 8 Core Tube Pipe Connection Port 9 Cap 10 Cap 11 Cap Pipe Connection Port 12 Cap Pipe Connection Port 13 Housing Pipe Connection port 14 Cavity 15 Long diameter 16 Short diameter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 筒状に束ねられた中空糸膜束がハウジン
グ中に設けられてなる外部灌流型人工肺であって、該筒
状中空糸束の空洞部の横断面における長径に対する該長
径と直交する短径の比が1.5〜50であることを特徴
とする外部灌流型人工肺。
1. An externally-perfused oxygenator having a tubular bundle of hollow fiber membranes provided in a housing, wherein the major axis relative to the major axis in the cross section of the hollow portion of the tubular hollow fiber bundle. The external perfusion type artificial lung, wherein the ratio of orthogonal minor axes is 1.5 to 50.
【請求項2】 筒状中空糸束の空洞部に、管壁に多数の
孔が開いた芯管を有する請求項1記載の人工肺。
2. The artificial lung according to claim 1, wherein the hollow portion of the tubular hollow fiber bundle has a core tube having a large number of holes in the tube wall.
【請求項3】 短径が、0.3〜2cmである請求項1
又は2記載の人工肺。
3. The minor axis is 0.3 to 2 cm.
Or the artificial lung according to 2.
【請求項4】 長径に対する該長径と直交する短径の比
が、3〜10である請求項1、2又は3記載の人工肺。
4. The artificial lung according to claim 1, 2 or 3, wherein the ratio of the short diameter orthogonal to the long diameter to the long diameter is 3 to 10.
【請求項5】 筒状中空糸束が、中空糸膜の編組体であ
る請求項1〜4のいずれか1つに記載の人工肺。
5. The artificial lung according to any one of claims 1 to 4, wherein the tubular hollow fiber bundle is a braided body of hollow fiber membranes.
【請求項6】 中空糸膜の編組体が、中空糸膜同士また
は中空糸膜と他の糸条とで構成されたシート状物を筒状
に巻いた物である請求項5記載の人工肺。
6. The artificial lung according to claim 5, wherein the braided body of hollow fiber membranes is a sheet-shaped material composed of hollow fiber membranes or hollow fiber membranes and other yarns wound in a tubular shape. .
【請求項7】 中空糸膜の編組体が、中空糸膜と他の糸
条とで構成された簾状シートを筒状に巻いた物である請
求項5記載の人工肺。
7. The artificial lung according to claim 5, wherein the braided body of the hollow fiber membrane is a cylindrically wound cord-shaped sheet composed of the hollow fiber membrane and other yarns.
JP4250096A 1996-02-29 1996-02-29 Outside perfusion type artificial lung Pending JPH09234245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4250096A JPH09234245A (en) 1996-02-29 1996-02-29 Outside perfusion type artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4250096A JPH09234245A (en) 1996-02-29 1996-02-29 Outside perfusion type artificial lung

Publications (1)

Publication Number Publication Date
JPH09234245A true JPH09234245A (en) 1997-09-09

Family

ID=12637793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4250096A Pending JPH09234245A (en) 1996-02-29 1996-02-29 Outside perfusion type artificial lung

Country Status (1)

Country Link
JP (1) JPH09234245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105457118A (en) * 2015-12-17 2016-04-06 珠海健帆生物科技股份有限公司 Blood purifying apparatus and blood purifying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105457118A (en) * 2015-12-17 2016-04-06 珠海健帆生物科技股份有限公司 Blood purifying apparatus and blood purifying system

Similar Documents

Publication Publication Date Title
US4911846A (en) Fluid treating apparatus and method of using it
EP0160268B1 (en) Blood oxygenator using a hollow-fiber membrane
EP0089122B1 (en) Hollow fibre oxygenator, assembly containing same and method for making same
US5137531A (en) Outside perfusion type blood oxygenator
US5162101A (en) Oxygenator wedge configuration
JP2700170B2 (en) Membrane oxygenator
JP4026037B2 (en) Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof
EP0041692B1 (en) Blood oxygenator
JPH05111620A (en) Liquid separating membrane module having minimum effective membrane thickness
JPH02109572A (en) Hollow yarn type fluid treating device
JPH09234245A (en) Outside perfusion type artificial lung
JPH09150041A (en) Externally perfusion-type gas/liquid contact module
JPH08942A (en) Dehumidifying hollow fiber membrane model
JPH11197469A (en) Spiral membrane module
JP2003111837A (en) Hollow fiber membrane type artificial lung
JPS63230173A (en) Hollow yarn membrane type artificial lung
JPH02102660A (en) Hollow yarn type fluid processor
JPH0788304A (en) Module for removing dissolved gas and supplying gas
CN117779283A (en) Hollow fiber membrane woven mat and oxygenator
JPH04109956A (en) Hollow yarn type mechanical lung
JPH1147564A (en) Gas dissolution and dissolved gas-removing module
JPH0299067A (en) Hollow fiber type fluid treatment apparatus
JPS6311972Y2 (en)
JPS6131164A (en) Composite hollow yarn membrane type artificial lung
JPH02156957A (en) Hollow fiber film type oxygen enriching device