JPH0299067A - Hollow fiber type fluid treatment apparatus - Google Patents

Hollow fiber type fluid treatment apparatus

Info

Publication number
JPH0299067A
JPH0299067A JP63254651A JP25465188A JPH0299067A JP H0299067 A JPH0299067 A JP H0299067A JP 63254651 A JP63254651 A JP 63254651A JP 25465188 A JP25465188 A JP 25465188A JP H0299067 A JPH0299067 A JP H0299067A
Authority
JP
Japan
Prior art keywords
hollow fiber
blood
hollow
inner cylinder
porous inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63254651A
Other languages
Japanese (ja)
Other versions
JP2827228B2 (en
Inventor
Rishichi Mimura
三村 理七
Hiroyuki Akasu
弘幸 赤須
Takao Migaki
三垣 孝夫
Takashi Yamauchi
尚 山内
Michio Kusachi
草地 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63254651A priority Critical patent/JP2827228B2/en
Publication of JPH0299067A publication Critical patent/JPH0299067A/en
Application granted granted Critical
Publication of JP2827228B2 publication Critical patent/JP2827228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To prevent channeling and to reduce pressure loss by winding a hollow fiber sheet formed into a reed screen shape around porous inner cylinder and receiving the same in a porous outer cylinder. CONSTITUTION:The blood introduced into a porous inner cylinder 3 from a blood inlet 11 flows in a gas exchange chamber from the openings bored in the porous inner cylinder 3 to flow in the outer peripheral direction thereof and flows out from the blood outlet 12 provided to the upper side wall of a cylindrical housing 1. The gas introduced into hollow fibers from a gas inlet 10 flows toward the lower part of the cylindrical housing 1. In this external perfusion type artificial lung, a reed screen like hollow fiber sheet is wound around the porous inner cylinder 3 and received in an outer cylinder 4. In this case, one hollow fiber sheet formed into a reed screen shape from hollow yarns arranged in parallel or bundles 41 each composed of a plurality of hollow fibers by longitudinal yarns 40 may be continuously wound around the porous inner cylinder 3 or two reed screen like hollow fiber sheets may be wound around the porous inner cylinder 3 in such a state that the hollow fibers of the upper and lower sheets are superposed so as to have an angle alternately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は膜を利用した流体処理装置、特にm液を処理す
るために好適な装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fluid treatment device using a membrane, particularly to a device suitable for treating m-liquid.

この種の装置は、一般に血液透叶器、人工肺、血漿分離
器、加湿器などに用いられる。
This type of device is generally used in blood permeators, oxygenators, plasma separators, humidifiers, and the like.

こ=て“は説明の便宜上、人工肺に適用した場合につい
て説明する。
For convenience of explanation, a case where this is applied to an oxygenator will be explained.

(従来の技術) 人工肺は関心術の補助手段として研究され、種々のタイ
プのものが開発されている。これら人工肺は生体肺の持
つ機能のなかで血液に酸素を添加し、二酸化炭素を除去
するガス交換機能を代行するものであって、現在気泡型
人工肺と模型人工肺が実用化されている。
(Prior Art) Artificial lungs have been studied as an auxiliary means for surgical procedures, and various types have been developed. Among the functions of biological lungs, these artificial lungs perform the gas exchange function of adding oxygen to blood and removing carbon dioxide, and bubble oxygenators and model oxygenators are currently in practical use. .

気泡型人工肺は臨床に広く用いられているが、酸素を血
液中に直接吹き込むために、溶血、蛋白変性、血液凝固
、微小血栓の発生、白血球や補体の活性化が生じ易く、
また長時間使用すると消泡効果が弱くなり、微小気泡が
血液中へ混入する恐れがあるなどの欠点を有する。
Bubble oxygenators are widely used clinically, but because oxygen is injected directly into the blood, they tend to cause hemolysis, protein denaturation, blood coagulation, microthrombi formation, and activation of white blood cells and complement.
Moreover, when used for a long time, the antifoaming effect becomes weaker, and there is a possibility that microbubbles may be mixed into the blood.

模型人工肺は膜を隔てて静脈血とガスとを接触させて、
静脈血中へ酸素を吸収させると同時に、ガス中へ炭酸ガ
スを放出さ什るちので、気泡型人工肺にくらべて、より
生理的であり、血液損傷が少ない、プライミングボリュ
ームが小さいなどの利点を有し、近年、臨床的にも次第
に用いられるようになった。
The model oxygenator makes contact between venous blood and gas through a membrane.
Because it absorbs oxygen into the venous blood and releases carbon dioxide into the gas at the same time, it is more physiological than a bubble-type oxygenator, and has advantages such as less blood damage and a smaller priming volume. It has gradually come to be used clinically in recent years.

現在開発されている模型人工肺は、ポリオレフィン等の
疎水性高分子からなる多孔性中空糸や、ノリコン等の気
体透過性の均質中空糸を用いて、中空糸面を介して気体
と血液を接触させ、その間でガス交換を行なわせるもの
であり、中空糸゛の中空部に血液を流し、中空糸の外部
にガスを流す内部潅流型(特開昭62−106770号
、同59−57661号など)と、その逆に、中空糸の
中空部にガスを流し、外部に血液を流す外部潅流型(特
開昭5957963号、同60−28806号など)と
の二つの方式がある。
The model artificial lungs currently being developed use porous hollow fibers made of hydrophobic polymers such as polyolefins or gas-permeable homogeneous hollow fibers such as Noricon to bring gas and blood into contact through the hollow fiber surface. The internal perfusion type (JP-A-62-106770, JP-A-59-57661, etc.) allows blood to flow into the hollow part of the hollow fiber and gas to flow outside the hollow fiber. ) and, conversely, an external perfusion type (Japanese Patent Laid-Open Nos. 5,957,963, 60-28,806, etc.) in which gas is passed through the hollow part of the hollow fiber and blood is allowed to flow outside.

(発明が解決しようとする課題) 前者の方式では血液を多数の中空糸に均等に分配供給す
れば血液のチャンネリング(偏流)はないものの、中空
糸の内部を流れる血液は完全な層流であり、ガス交換能
(単位膜面積当りのガス移動速度)を上げるためには中
空糸の内径を小さくすることが必要である。このために
150〜300μm程度の内径を有する中空糸が人工肺
用として開発されている。
(Problem to be solved by the invention) In the former method, if blood is distributed and supplied evenly to a large number of hollow fibers, there is no channeling of blood (unbalanced flow), but the blood flowing inside the hollow fibers is a completely laminar flow. Therefore, in order to increase the gas exchange capacity (gas transfer rate per unit membrane area), it is necessary to reduce the inner diameter of the hollow fibers. For this purpose, hollow fibers having an inner diameter of about 150 to 300 μm have been developed for use in oxygenators.

しかしながら、内径を細くしても血液が層流状態で流動
する限りはガス交換能が飛躍的に向上するものではない
。現在のところ成人の関心術の際に要求される200〜
300cc/minのガス交換能を達成するために、内
部潅流型人工肺では約6m”の膜面積を必要としている
。そのため内部潅流型人工肺は大型で重くて取・り扱い
難く、血液充填量が大きく、患者の負担が大きいものに
なっている。人工肺を小型化して、取り扱い性を向上さ
せるために中空糸の内径をさらに細くするとクロッティ
ング(凝血による中空部の閉塞現象)イ(多発する。し
かもこの型の人工肺は血液流路側の抵抗が大きいため落
差潅流が適用できず、拍動流型の血液ポンプの適用が困
難であるという問題を有している。
However, even if the inner diameter is made smaller, as long as blood flows in a laminar flow state, gas exchange performance will not be dramatically improved. At present, the required amount for adult treatment is 200~
In order to achieve a gas exchange capacity of 300 cc/min, an internal perfusion oxygenator requires a membrane area of approximately 6 m''. Therefore, an internal perfusion oxygenator is large, heavy and difficult to handle, and the blood filling volume is limited. In order to make oxygenators smaller and make them easier to handle, the inner diameter of the hollow fibers is made even thinner, resulting in clotting (a phenomenon in which the hollow part is blocked by blood clots). Moreover, this type of oxygenator has the problem that head perfusion cannot be applied because the resistance on the blood flow path side is large, making it difficult to apply a pulsatile flow type blood pump.

また、−船釣に人工肺では、中空糸が数千〜数万本束ね
られて用いられており、これら多数の中空糸のそれぞれ
に充分にガスを分散供給することが困難であり、充分に
分散供給するためには特別の配慮が必要である。ガスの
分散供給が不充分である場合には、炭酸ガス除去能(単
位膜面積当りの炭酸ガス移動速度)が低下する。
In addition, - In artificial lungs for boat fishing, thousands to tens of thousands of hollow fibers are used in bundles, and it is difficult to sufficiently distribute and supply gas to each of these many hollow fibers. Special consideration is required for distributed supply. When the distributed supply of gas is insufficient, the carbon dioxide removal ability (carbon dioxide transfer rate per unit membrane area) decreases.

一方、後者の方式ではガスの分配は良好であり、かつ血
液の流れに乱れか発生することが期待できるものの、血
液のチャンネリングによる酸素化不足あるいは滞留部に
おける凝血が生じ易いという問題かあり、未だ充分な性
能を有する人工肺は実現されていない。
On the other hand, in the latter method, although gas distribution is good and turbulence can be expected to occur in the blood flow, there are problems such as insufficient oxygenation due to blood channeling or a tendency for blood clots to occur in the retention area. An artificial lung with sufficient performance has not yet been realized.

(課題を解決するための手段) 本発明者らは、圧力損失か小さく、かつ単位面積当りの
ガス交換能の向上が期待される外部潅流型人工肺に着目
し、外部潅流型人工肺の欠点である血液のチャンネリン
グと血液の滞留を、布状に形成された中空糸シートを用
い、しから該布状の中空糸シートを多孔性内筒に巻回し
て円筒状のハウジング内に収容することにより解消しよ
うと試みた。しかしながら円筒状ハウジング内に布状の
中空糸シートを巻回した積層体を収容しただけでは逆に
血液のチャンネリングが増大するとともに、単位膜面積
当りのガス交換能が低下するという問題が生じた。本発
明者らはかかる問題は、巻回された布状の中空糸シート
の積層体が血流で揺動することに起因することを突きと
め、さらに検討した結果本発明に到達したものである。
(Means for Solving the Problems) The present inventors focused on externally perfused oxygenators, which have low pressure loss and are expected to improve gas exchange capacity per unit area, and identified the drawbacks of externally perfused oxygenators. Blood channeling and blood retention are achieved by using a cloth-like hollow fiber sheet, and then winding the cloth-like hollow fiber sheet around a porous inner cylinder and storing it in a cylindrical housing. I tried to resolve it by doing this. However, simply accommodating a laminated body of wound cloth-like hollow fiber sheets in a cylindrical housing resulted in problems such as increased blood channeling and a decrease in gas exchange capacity per unit membrane area. . The present inventors found that this problem was caused by the swaying of the laminate of wound cloth-like hollow fiber sheets in the blood flow, and as a result of further study, the present invention was arrived at. .

すなわち本発明は、多孔性の内筒に布状の中空糸ノート
を巻回して、多孔性の外筒内に収容した中空糸シートの
積層体を、円筒状ハウジング内に収納し、該中空糸をそ
の両端が開口するようにハウジングの両端を閉塞する隔
壁で支持するとともに、該ハウジングの上端に中空糸の
内部空間と連通する第1の流体の入口または出口と、該
多孔性の内筒の内部と連通ずる第2の流体の入口または
出口を有する上部ボートを設け、かつ該ハウジングの下
端に中空糸の内部空間と連通ずる第1の流体の出口また
は入口を有する下部ヘッドカバーを設け、しかも該ハウ
ジングの上部側壁に第1の流体の出口または入口を設け
たことを特徴とする中空糸型の流体処理装置である。
That is, in the present invention, a laminate of hollow fiber sheets is wound around a porous inner cylinder and housed in a porous outer cylinder, and the hollow fiber sheet is housed in a cylindrical housing. is supported by partition walls that close both ends of the housing so that both ends thereof are open, and a first fluid inlet or outlet communicating with the internal space of the hollow fiber is provided at the upper end of the housing, and a first fluid inlet or outlet is provided at the upper end of the housing, and the porous inner cylinder is an upper boat having a second fluid inlet or outlet communicating with the interior; and a lower head cover having a first fluid outlet or inlet communicating with the interior of the hollow fiber at the lower end of the housing; This is a hollow fiber type fluid treatment device characterized in that a first fluid outlet or inlet is provided on the upper side wall of the housing.

(作 用) 本発明の流体処理装置は多孔性の内筒に譲状に形成され
た中空糸シートを巻回し、これを多孔性の外筒内に収容
しているため、円筒状に巻回された中空糸シートの積層
体は内筒と外筒で挟持されることになる。そのため積層
された中空糸間に縦糸と中空糸とで規制された流路が形
成されてチャンネリングが防止でき、しかも圧力損失を
減少させることができる。
(Function) In the fluid treatment device of the present invention, a hollow fiber sheet formed in a compact shape is wound around a porous inner cylinder, and this is housed in a porous outer cylinder. The resulting laminate of hollow fiber sheets is sandwiched between the inner tube and the outer tube. Therefore, a flow path regulated by the warp fibers and the hollow fibers is formed between the stacked hollow fibers, so that channeling can be prevented and pressure loss can be reduced.

(実施例) 次に本発明の中空糸型の流体処理装置の一実施例を図面
にて説明する。
(Example) Next, an example of the hollow fiber type fluid treatment device of the present invention will be described with reference to the drawings.

第1図には本発明の流体処理装置の一例である人工肺の
断面図が示されている。該人工肺は円筒状ハウジング1
内にガス交換室を形成している。
FIG. 1 shows a sectional view of an artificial lung, which is an example of the fluid treatment device of the present invention. The oxygenator has a cylindrical housing 1
A gas exchange chamber is formed inside.

そして該ガス交換室に、多孔性の内筒3に1本または複
数本の中空糸の束を縦糸で譲状に形成した中空糸シート
を巻回して、多孔性の外筒4内に収容した中空糸シート
の積層体5が収納されている。
In the gas exchange chamber, a hollow fiber sheet in which a bundle of one or more hollow fibers was formed into a shape with warp threads was wound around a porous inner cylinder 3 and housed in a porous outer cylinder 4. A laminate 5 of hollow fiber sheets is housed.

上記中空糸はその両端が開口するようにハウジングの両
端を閉塞する隔壁6.6゛で支持固定されている。ハウ
ジングの上端は、中空糸の内部空間と連通ずるガスの入
口IOと多孔性の内筒3の内部と連通ずる血液の人口1
1を有する上部ヘッドカバー7で覆われている。またハ
ウジングの下端は中空糸の内部空間と連通ずるガスの出
口13を有する下部へラドカバ−8で覆われている。人
工肺では上記下部ヘッドカバー8は必ずしも設ける必要
はない。
The hollow fibers are supported and fixed by partition walls 6.6'' that close both ends of the housing so that both ends thereof are open. The upper end of the housing has a gas inlet IO communicating with the interior space of the hollow fiber and a blood population 1 communicating with the interior of the porous inner cylinder 3.
It is covered with an upper head cover 7 having a diameter of 1. Further, the lower end of the housing is covered with a rad cover 8, which has a gas outlet 13 communicating with the inner space of the hollow fiber. In an artificial lung, the lower head cover 8 does not necessarily need to be provided.

この場合にはガスは隔壁に埋め込まれた中空糸の端部開
口から直接大気に放出される。
In this case, the gas is discharged directly to the atmosphere through the end openings of the hollow fibers embedded in the partition wall.

また円筒状ハウジング1の上部側壁に血液の出口12が
設けられている。第1図では血液の入口11の先端は中
空芯管2の上部を閉塞する隔壁6を挿通して多孔性の内
筒3の内部に開口した例を示している。また血液の入口
は第2図に示すように、上部ヘッドカバー7の内部を分
割片14で2分割し、該分割されたヘッドカバーの内側
空間に血液の入口11を開口させ、しかも円筒状ハウジ
ングの上部を閉塞する隔壁6にヘッドカバー7の内側空
間と多孔性の内筒の内部とを連通ずる開口15を設けて
もよい。さらに第3図に示すように円筒状ハウジング1
の下端を閉塞する隔壁6°から血液案内具16を多孔性
の内筒の内部(こ液密に挿入固定してもよい。
A blood outlet 12 is also provided on the upper side wall of the cylindrical housing 1. FIG. 1 shows an example in which the tip of the blood inlet 11 passes through the partition wall 6 that closes the upper part of the hollow core tube 2 and opens into the inside of the porous inner cylinder 3. Further, as shown in FIG. 2, the blood inlet is provided by dividing the inside of the upper head cover 7 into two by a dividing piece 14, and opening the blood inlet 11 in the inner space of the divided head cover. An opening 15 may be provided in the partition wall 6 that closes off the head cover 7 to communicate the inner space of the head cover 7 with the inside of the porous inner cylinder. Furthermore, as shown in FIG.
The blood guide device 16 may be inserted and fixed in a liquid-tight manner into the porous inner cylinder from the 6° partition wall that closes the lower end of the blood guide device 16.

上記中空糸シートの積層体5は第4図に第1図のA−A
断面図で示すように、多孔性の内筒3に節状中空糸シー
トを巻回し、これに2つ割りの多孔性の外筒4を波山て
、この外筒の接合部を超音波接着により接着一体色して
いる。
The laminate 5 of the hollow fiber sheets is shown in FIG. 4 along A-A in FIG.
As shown in the cross-sectional view, a knotted hollow fiber sheet is wound around a porous inner cylinder 3, a two-part porous outer cylinder 4 is placed around it, and the joints of the outer cylinder are bonded by ultrasonic bonding. The adhesive is integrally colored.

血液の入口11から多孔性の内筒3の内部に導入された
血液は多孔性の内筒に穿設された開口からガス交換室に
流入した該ガス交換室を外周方向に向って流れ円筒状ハ
ウジング1の上部側壁に設けられた血液の出口12から
流出する。一方ガスの人口10から中空糸の内部に導入
されたガスは円筒状ハウジングの下部に向って流れる。
Blood introduced into the porous inner cylinder 3 from the blood inlet 11 flows into the gas exchange chamber through an opening formed in the porous inner cylinder, flows toward the outer circumference of the gas exchange chamber, and forms a cylindrical shape. Blood flows out from an outlet 12 provided in the upper side wall of the housing 1. On the other hand, the gas introduced into the hollow fiber from the gas population 10 flows toward the bottom of the cylindrical housing.

このような外部潅流型人工肺において、多孔性の内筒2
に巻回して、外筒4内に収容される節状中空糸シートは
、例えば第5図に示すように平行に配列された1本の中
空糸または複数本の中空糸の束41を縦糸40で譲状に
形成された一枚の中空糸シ−トを多孔性内筒・上に連続
的に巻き付けても、あるいは第6図に示すように2枚の
節状中空糸シートを上部と下部の中空糸が交互に角度を
持つように重ねた状態で多孔性内筒・に巻き付けてもよ
い。この場合には隣接する中空糸を交差させることがで
きて血液のチャンネリングがより改善される。第7図(
a)、(b)は節状中空糸シートの断面図であり、第7
図(a)では1本の中空糸を用いた乙の、第7図(b)
では3本の中空糸の束を用いたものを示している。中空
糸を縦糸で譲状にするには、、!9J4J 縦糸で中空糸を編組しても、あるいは縦糸を中空糸に接
着してもよいが、特に中空糸を縦糸て編組する方法は節
状シートの製作が容易で好ましい。
In such an externally perfused oxygenator, the porous inner cylinder 2
For example, as shown in FIG. 5, the knotted hollow fiber sheet is wound around the outer tube 4 and is housed in the outer cylinder 4. For example, as shown in FIG. One hollow fiber sheet formed in the shape of a hollow fiber can be continuously wound around the porous inner cylinder, or two knotted hollow fiber sheets can be wrapped around the upper and lower parts as shown in Fig. 6. It is also possible to wrap the hollow fibers around the porous inner cylinder in a state in which the hollow fibers are alternately stacked at an angle. In this case, adjacent hollow fibers can cross each other, further improving blood channeling. Figure 7 (
a) and (b) are cross-sectional views of the knotted hollow fiber sheet;
In Figure (a), one hollow fiber is used, and in Figure 7 (b)
This shows an example using a bundle of three hollow fibers. To make hollow fibers into a warp shape,... 9J4J Hollow fibers may be braided with warp threads, or warp threads may be bonded to hollow fibers, but the method of braiding hollow fibers with warp threads is particularly preferred because it facilitates production of knotted sheets.

本発明装置を災療用に用いる際には、縦糸や接着剤が血
液に損傷を与えないものを選択する必要かある。中空糸
を縦糸で譲状に編組するにはどのような編み方を用いて
も構わないか、第7図(a)、(b)に示すくさり編み
のように各中空糸を一本づつ縦糸で固定することが好ま
しい。このように各中空糸を縦糸で固定すると、中空糸
シートを内筒に巻回する際、あるいは使用時に血流によ
る中空糸のずれが防止でき、常に隣接する中空糸間の間
隙を一定に保持することかできるためチャンネリングが
完全に防止できる。
When using the device of the present invention for emergency treatment, it is necessary to select warp yarns and adhesives that will not damage blood. What kind of knitting method can be used to braid the hollow fibers in a yield-like manner with the warp threads? As shown in Figure 7 (a) and (b), each hollow fiber is knitted one by one with the warp threads. It is preferable to fix it with By fixing each hollow fiber with warp threads in this way, it is possible to prevent the hollow fibers from shifting due to blood flow when winding the hollow fiber sheet around the inner cylinder or during use, and the gap between adjacent hollow fibers is always maintained constant. channeling can be completely prevented.

面状に形成される中空糸はガス透過性のあるものであれ
ば特に限定はなく、例えばポリエチレン、ポリプロピレ
ンなどのポリオレフィン系IatMlltや、ポリテト
ラフロオロエチレン、ポリスルフォン、シリコンゴムな
どの樹脂を素材とした多孔質あるいは均質の酸素ガス透
過性の高い中空糸が用いられる。中でもポリオレフィン
系樹脂からなる中空糸は膜厚が薄くても面状に形成した
際の中空糸の圧潰や変形か少なく好適である。
The hollow fiber formed in a planar shape is not particularly limited as long as it is gas permeable, and for example, it may be made of a polyolefin-based material such as polyethylene or polypropylene, or a resin such as polytetrafluoroethylene, polysulfone, or silicone rubber. A porous or homogeneous hollow fiber with high oxygen gas permeability is used. Among these, hollow fibers made of polyolefin resin are preferable because even if the film thickness is thin, the hollow fibers are less likely to be crushed or deformed when formed into a planar shape.

中空糸の外径(D)は50〜2000μ、膜厚は 3〜
500μである。外径や膜厚がこれより小さいと面状に
形成する際に糸折れや糸割れが発生し易く、反対にこれ
より大きいと装置のコンパクト性が実現し難い。通常中
空糸の外径(D)が100〜500μ、膜厚が6〜10
0μのものが好ましく、外径(D)が175〜400μ
、膜厚が10〜60μのものがさらに好ましく用いられ
る。
The outer diameter (D) of the hollow fiber is 50~2000μ, and the membrane thickness is 3~
It is 500μ. If the outer diameter or film thickness is smaller than this, yarn breakage or filament breakage is likely to occur when forming into a planar shape, and on the other hand, if it is larger than this, it is difficult to realize compactness of the device. Normally, the outer diameter (D) of the hollow fiber is 100 to 500μ, and the membrane thickness is 6 to 10μ.
0μ is preferable, and the outer diameter (D) is 175 to 400μ.
, those having a film thickness of 10 to 60 μm are more preferably used.

中空糸の有効長は通常3〜30cI11である。有効長
がこれより小さいと組立工程での中空糸の切断ロスが過
大となり経済性が悪く、反対にこれより大きいと装置の
コンパクト性を実現し稚い。
The effective length of the hollow fibers is usually 3 to 30 cI11. If the effective length is smaller than this, the cutting loss of the hollow fiber during the assembly process will be excessive and it will be uneconomical, while if it is larger than this, it will be difficult to make the device compact.

中空糸は1本または複数本の中空糸の束を単位の部系と
して面状に形成される。複数本の中空糸の束を面状に形
成する場合には35本以下、好ましくは24本以下の中
空糸の束が用いられる。35本以上の中空糸の束では1
つの構糸束の中の1本1本の中空糸が血液と十分に接触
できなくなり、ガス交換効率が低下する恐れがあって好
ましくない。
The hollow fibers are formed into a planar shape using a bundle of one or more hollow fibers as a unit system. When a bundle of a plurality of hollow fibers is formed into a planar shape, a bundle of 35 or less hollow fibers, preferably 24 or less hollow fibers is used. 1 for bundles of 35 or more hollow fibers
This is not preferable since each hollow fiber in the single fiber bundle may not be able to make sufficient contact with blood, which may reduce gas exchange efficiency.

通常は1本1本の中空糸を横糸として面状のシートが形
成される。この場合には各中空糸の表面積のほぼ100
%が血液とのガス交換に活用されるだけでなく、縦横の
糸によって形成されるほぼ四角の小さい均一なスリット
によって微小な単位て血液の分割、混合が極めて効率よ
く行なわれるたぬか、小さい膜面積で予想外に高いガス
交換能が達成でき、圧力損失ら小さくすることができる
Usually, a planar sheet is formed using each hollow fiber as a weft thread. In this case, approximately 100% of the surface area of each hollow fiber
% is not only utilized for gas exchange with the blood, but the blood is divided and mixed extremely efficiently in minute units by the small, almost square, uniform slits formed by the vertical and horizontal threads. An unexpectedly high gas exchange capacity can be achieved in terms of area, and pressure loss can be reduced.

中空糸を面状に形成する縦糸は特に限定されないが、例
えばポリエステル、ポリアミド、ポリイミド、ポリアク
リロニトリル、ポリエチレン、ポリプロピレン、ボリア
リレート、ポリビニルアルコールなどのように細手でも
強度の強い糸が用いられる。なかでもマルチフィラメン
トよりなる10〜150デニール、好ましくは25〜7
5デニールのポリエステルやポリアミドのヤーンは適度
な柔らかさと機械的強度を兼ね備えているため、面状に
加工する際に中空糸を傷つけることかなく好ましく用い
られる。
The warp yarns forming the hollow fibers into a planar shape are not particularly limited, but for example, thin but strong yarns such as polyester, polyamide, polyimide, polyacrylonitrile, polyethylene, polypropylene, polyarylate, polyvinyl alcohol, etc. are used. Among them, 10 to 150 deniers made of multifilament, preferably 25 to 7
Since 5-denier polyester or polyamide yarns have both appropriate softness and mechanical strength, they are preferably used without damaging the hollow fibers when processed into planar shapes.

本発明の装置を人工肺などの医療用途に用いる場合には
、縦糸への油剤の使用はできるだけ避けるべきであるが
、面状に形成する際などにやむを得ず使用する場合には
、安全性が確認されているもの、もしくは洗浄除去が可
能な油剤を用いる必要がある。
When using the device of the present invention for medical purposes such as an oxygenator, the use of oil on the warp threads should be avoided as much as possible, but if it is unavoidable, such as when forming into a planar shape, safety should be confirmed. It is necessary to use an oil that has been removed or that can be washed away.

上記面状の中空糸シートを巻回した積層体は使用時に中
空糸が血流で揺動しないように多孔性の内筒3と外筒4
で挟持される。かかる多孔性の内筒と外筒は積層された
中空糸シートの配列を保持して、血液流路を形成するた
め、および唾液のチャンネリングを防止するために必要
であり、ポリエチレン、ポリプロピレンなどのオレフィ
ン系樹脂、ポリスチレン、ポリアクリレート系樹脂、ポ
リアミド、ポリカーボネート樹脂、金属薄板などが使用
される。通常厚み0.5〜5++1mのポリカーボネー
ト、ポリアミド、ポリオレフィン系樹脂からなる筒状体
が好ましく用いられる。上記筒状体には孔径1〜LQm
mの多数の孔が穿設されている。外筒4は通常2つ割り
で、内筒3に巻回された中空糸シートを挟み込んで、接
合部を接着し一体化する。
The laminate in which the planar hollow fiber sheet is wound has a porous inner cylinder 3 and an outer cylinder 4 to prevent the hollow fibers from shaking due to blood flow during use.
It is held between the Such porous inner and outer cylinders are necessary to maintain the arrangement of the laminated hollow fiber sheets to form a blood flow path and to prevent saliva channeling, and are made of polyethylene, polypropylene, etc. Olefin resins, polystyrene, polyacrylate resins, polyamides, polycarbonate resins, thin metal plates, etc. are used. A cylindrical body made of polycarbonate, polyamide, or polyolefin resin with a thickness of usually 0.5 to 5++1 m is preferably used. The cylindrical body has a hole diameter of 1 to LQm.
A large number of m holes are drilled. The outer cylinder 4 is usually divided into two parts, and the hollow fiber sheet wound around the inner cylinder 3 is sandwiched between the outer cylinders 4 and the joined parts are glued together to integrate them.

上記人工肺のガス交換室に収納される面状の形成中空糸
シートは次のような条件を満たしていることが好ましい
It is preferable that the planar formed hollow fiber sheet to be accommodated in the gas exchange chamber of the oxygenator satisfies the following conditions.

まず筒状シートの縦糸の密度W(本/cm)は、高いガ
ス交換能を有し、かつ血液の滞留やチャンネリング防止
、低圧力損失、低プライミングボリュームの外部潅流を
の人工肺を再現性良く実現するために、 0.2≦W ≦ 40 でめることが好ましい。
First, the warp density W (lines/cm) of the cylindrical sheet has a high gas exchange ability, prevents blood stagnation and channeling, has low pressure loss, and allows reproducibility of external perfusion with low priming volume. For good implementation, it is preferable to satisfy 0.2≦W≦40.

すなわち縦糸の密度Wか02よりも小さいときには、縦
糸間に納まる中空糸が長いために、その間で中空糸のた
るみが起こり易い。その結果、横糸である中空糸を実質
上一定の間隔で平行に配列するよう規制することが困難
となり、中空糸の分布密度が不均一になり人工肺として
利用する際に血液が中空糸のたるみの多い疎なところを
多く直れて、高いガス交換能が達成できない恐れがある
That is, when the density W of the warp yarns is smaller than 02, the hollow fibers that fit between the warp yarns are long, and the hollow fibers tend to sag between the warp yarns. As a result, it becomes difficult to regulate the hollow fibers, which are weft threads, to be arranged in parallel at substantially constant intervals, and the distribution density of the hollow fibers becomes uneven, causing blood to sag in the hollow fibers when used as an oxygenator. There is a risk that high gas exchange performance may not be achieved by repairing many sparse areas with large amounts of gas.

密度Wが4,0よりも大きいときには、中空糸は極めて
均一な間隔て平行に規制され、その結果として中空糸間
の間隙を流れる血液流量は均一化される。しかしながら
縦糸の密度が大きくなるにつれて、縦糸と中空糸の接触
面積が増加し、中空糸膜と血液との接触面積(有効膜面
積)が減少するほか、縦糸と中空糸の接触部分(織り目
)は血液が流れにくいため、血液側での溶解ガスの拡散
性の低下、即ちガス交換能の低下と圧力損失の上昇が起
こる恐れがある。
When the density W is greater than 4.0, the hollow fibers are regulated in parallel at extremely uniform intervals, and as a result, the flow rate of blood flowing through the gaps between the hollow fibers is made uniform. However, as the warp density increases, the contact area between the warp and hollow fibers increases, the contact area between the hollow fiber membrane and blood (effective membrane area) decreases, and the contact area (weave) between the warp and hollow fibers decreases. Since it is difficult for the blood to flow, there is a risk that the diffusivity of dissolved gases on the blood side will decrease, that is, the gas exchange capacity will decrease and the pressure loss will increase.

さらに横糸である中空糸の長手方向の単位長さあたりの
糸密度F(木/cm)、積層された中空糸ノートの単位
厚さあたりの積層+!i、敗■(枚/am )の関係ら
重要な要件であり、本発明者らの実験によればFおよび
/またはIが増加するに連れて、人工肺のガス交換能は
明らかに向上するが、同時に血液側の圧力損失も増加す
る。従って低圧損で高いガス交換効率の人工肺を実現す
るためには、0.73 1Q@/(3,QX D )’≦FXI≦108バ・・
・×D)2の関係が存在していることが好ましい。
Furthermore, the yarn density F (wood/cm) per unit length in the longitudinal direction of the hollow fibers, which are the wefts, and the lamination + per unit thickness of the laminated hollow fiber notebook! This is an important requirement due to the relationship between F and F (sheets/am), and according to the experiments of the present inventors, as F and/or I increase, the gas exchange capacity of the oxygenator clearly improves. However, at the same time, the pressure loss on the blood side also increases. Therefore, in order to realize an oxygenator with low pressure drop and high gas exchange efficiency, 0.73 1Q@/(3,QX D )'≦FXI≦108B...
・×D) It is preferable that the relationship of 2 exists.

FXIがこの範囲上り小さいとガス交換能が低すぎるし
、またFXIがこれ以上だと圧力損失か大きくなりすぎ
る。なおこの式でDは、節状ノートの横糸として1本ず
つの中空糸を用いろときは使用される中空糸の外径(μ
)、複数本の中空糸の束を用いる場合には、所定の本数
の中空糸が圧潰しないように細密に充填してなる円筒の
外径(μ)を表す。
If FXI is too small within this range, the gas exchange capacity will be too low, and if FXI is above this range, the pressure loss will be too large. In this equation, D is the outer diameter of the hollow fiber (μ
), when a bundle of multiple hollow fibers is used, it represents the outer diameter (μ) of a cylinder formed by a predetermined number of hollow fibers packed closely together to prevent crushing.

本発明におけるもう一つの要件は多孔性の内外筒の間に
積層された中空糸ソートの積層厚みT(cm)か 05≦ T ≦ 12.0 の範囲にあることである。積層されたノート層の厚みは
特に圧力損失と関係するが、これ以上の厚みでは圧力損
失か大きくなりすぎて、拍動流型ポンプの利用の際に問
題になる。またこれ以下では、ブライミング時のエアー
抜き、人工心肺装置との配置、接続性などの面で取扱い
が面倒になる。
Another requirement of the present invention is that the stacked thickness T (cm) of the hollow fiber sort stacked between the porous inner and outer cylinders is in the range of 05≦T≦12.0. The thickness of the laminated notebook layer is particularly related to pressure loss, but if the thickness is greater than this, the pressure loss will be too large, which will be a problem when using a pulsatile flow pump. Moreover, if it is less than this, it becomes difficult to handle in terms of air removal during brimming, placement with an artificial heart-lung machine, connectivity, etc.

上記異状中空糸ノートは多孔性内筒に巻回され、多孔性
外筒内に収納した後、円筒状のハウジング内に収容され
る。中空糸ソートを巻回した積層体を収容したハウジン
グは中空糸の開口端を粘度の高い樹り旨で目詰めした後
、または中空糸の開口端をヒートンールや圧潰により閉
塞した後、遠心接着機に装着されて、その両端部にポリ
ウレタン、ンリコーン、エボキノ樹脂等を注入して、所
定の硬化を行い、次いで硬化した樹脂の外端部を切断し
て、中空糸を開口させる。
The anomalous hollow fiber notebook is wound around a porous inner tube, housed in a porous outer tube, and then housed in a cylindrical housing. The housing containing the laminate wound with the hollow fiber sort is assembled using a centrifugal bonding machine after the open ends of the hollow fibers are packed with a highly viscous wood fiber, or after the open ends of the hollow fibers are closed by heat rolls or crushing. Polyurethane, linicone, evokino resin, etc. are injected into both ends of the hollow fiber, and the hollow fiber is cured to a predetermined degree.The outer end of the cured resin is then cut to open the hollow fiber.

上記人工肺においては、熱交換器または貯血槽を内蔵さ
せろことができる。第8図は熱交換器を内蔵した人工肺
の断面図であり、多孔性の内筒3の内部にコイル状に巻
回した伝熱管20を収容している。該伝熱管20は多孔
性の内筒3の内部に伝熱管支持管21を挿通し、その両
端を円筒状ハウジングの両端を閉塞する隔壁6.6°に
埋設させて該隔壁で支弄されるようにしている。伝熱管
20は上記支持管21の周囲をコイル状に巻回して一端
は支持管の上部、他端は支持管の下部に開口している。
The oxygenator described above may have a built-in heat exchanger or blood reservoir. FIG. 8 is a sectional view of an oxygenator having a built-in heat exchanger, in which a porous inner cylinder 3 houses a heat transfer tube 20 wound in a coil shape. The heat exchanger tube 20 is supported by a heat exchanger tube support tube 21 inserted into the porous inner cylinder 3, with both ends buried in a partition wall 6.6° that closes both ends of the cylindrical housing. That's what I do. The heat transfer tube 20 is wound around the support tube 21 in a coil shape, and has one end opening at the top of the support tube and the other end opening at the bottom of the support tube.

該開口にはそれぞれパイプが接続されてハウジングの下
端に温水流入口22、及び温水流出口23が設けられて
いる。また第9図に示すように多孔性の内筒3の内部に
設けられた血液案内具16の周囲に伝熱管20をコイル
状に巻回してもよい。さらに第I0図に示すように多孔
性の内筒の内部にコイル状に巻回された伝熱管20を収
納してもよい。
Pipes are connected to the openings, respectively, and a hot water inlet 22 and a hot water outlet 23 are provided at the lower end of the housing. Alternatively, as shown in FIG. 9, the heat transfer tube 20 may be wound in a coil around the blood guiding device 16 provided inside the porous inner cylinder 3. Furthermore, as shown in FIG. 10, a heat exchanger tube 20 wound into a coil may be housed inside the porous inner cylinder.

第11図は貯[[1[を内臓した人工肺であり、円筒状
ハウジングlの外周に、該ハウジングの外壁との間でハ
ウジングの上部に設けられた開口30がら流出した血液
が貯留する貯血I!31が設けられている。該貯血槽3
1の下部には血液流出口32が設けられている。また第
8図〜第1O図に示す熱交換器を内蔵した人工肺と貯血
槽を組み合せた熱交換器と貯血槽を内蔵した人工肺を提
供することもできる。第12図は熱交換器と貯血槽を内
蔵する人工肺の一例であり、多孔性内筒3内にコイル状
に巻回した伝熱管20を収容し、円筒状ハウジング1の
外周に貯血槽31を設けた例である。第13図は貯血槽
31の内部にコイル状に巻回した伝熱管20を収容した
例であり、この人工肺は人工肺−貯血博一熱交換器の類
に配列されている。
FIG. 11 shows an artificial lung with a built-in blood reservoir, in which blood flows out from an opening 30 provided at the upper part of the housing between the outer wall of the housing and the outer periphery of a cylindrical housing l. I! 31 are provided. The blood storage tank 3
A blood outflow port 32 is provided at the bottom of 1. Further, it is also possible to provide an oxygenator having a built-in heat exchanger and a blood storage tank, which is a combination of an oxygenator with a built-in heat exchanger and a blood storage tank as shown in FIGS. 8 to 1O. FIG. 12 shows an example of an artificial lung incorporating a heat exchanger and a blood storage tank, in which a heat exchanger tube 20 wound in a coil is housed in a porous inner cylinder 3, and a blood storage tank 31 is placed on the outer periphery of the cylindrical housing 1. This is an example where . FIG. 13 shows an example in which a coiled heat transfer tube 20 is housed inside a blood storage tank 31, and this oxygenator is arranged in a type of oxygenator-blood storage Hiroichi heat exchanger.

本発明の装置は人工肺に止まらず他の多くの用途の流体
処理に用いられる。例えば中空糸を介して異なる2種類
の液体間で物質移動を行わせる透叶tとては2種類の液
体を中空糸の内部または外部のどちらに流しても構わな
いが、血液処理では血液を中空糸の内部に流すことが好
ましい。中空糸を介して気体と液体間で物質移動を行わ
せて液体中へ気体を溶解させたり、気体を放出させるガ
物質移動を行わせろ場合には2N類の気体を中空糸の内
部または外部のとちらに流しても構わない。
The device of the present invention can be used for fluid treatment in many other applications, not just oxygenators. For example, in a translucent trough that transfers mass between two different types of liquids through a hollow fiber, it does not matter whether the two types of liquids flow inside or outside the hollow fiber, but in blood treatment, blood It is preferable to flow it inside the hollow fiber. When mass transfer is performed between gas and liquid through a hollow fiber to dissolve the gas in the liquid or to release gas, 2N gas is transferred inside or outside the hollow fiber. I don't care if it goes anywhere.

中空糸により気体または液体に含まれる特定の物質を分
離する液体または気体のが過、a縮では液体または気体
の中空糸の内部または外部のどちらを流しても構わない
。通常中空糸の外部を施すことか好ましい。
When a specific substance contained in a gas or liquid is separated by a hollow fiber, the liquid or gas may be flowed either inside or outside the hollow fiber. It is usually preferable to apply hollow fibers on the outside.

次に本発明者らは、本発明の効果を確認するため、種々
の実験を行った。以下にその一例を示す。
Next, the present inventors conducted various experiments in order to confirm the effects of the present invention. An example is shown below.

実験例1 中空糸として、外径360μ、内径280μ、空孔率約
50%のポリプロピレン多孔性中空糸を1本づつ長さ方
向の密度(F)が17本/cmとなるように配列して、
縦糸として30デニール(12フイラメント)のポリエ
ステル糸を用いて密度(W)が1本/C!!lとなるよ
うに中空糸を譲状に編組して第5図に示す中空糸シート
を形成した。この中空糸シートを8IIIII+間隔で
直径3mmの多数の開孔を穿設した厚さ2 、5mmの
ポリプロピレン製の多孔性内筒(直径2cm)に単位厚
さ当りの積層枚数(T)か30枚/cm、厚さ(T)が
3cmとなるように巻回し、その周囲を81間隔て直径
3m+11の多数の開孔を穿没した厚さ2.5mmのポ
リプロピレン製の2つ割りの多孔性外筒(直径8.5c
m)で挟持して、核外筒の接合部を超音波接着により接
着して中空糸ノートの@液体を形成した。この積層体の
FXIは510てあり、有効膜面積は1.48m’であ
った。この積層体を直径10cI11厚さ2.5mmの
円筒状ハウジング内に収納した。
Experimental Example 1 As hollow fibers, polypropylene porous hollow fibers having an outer diameter of 360μ, an inner diameter of 280μ, and a porosity of about 50% were arranged one by one so that the density (F) in the length direction was 17 fibers/cm. ,
Using 30 denier (12 filament) polyester yarn as the warp, the density (W) is 1/C! ! The hollow fibers were braided in a yield shape to form a hollow fiber sheet shown in FIG. The number of laminated sheets per unit thickness (T) of this hollow fiber sheet is 30 sheets in a porous inner tube (2 cm in diameter) made of polypropylene with a thickness of 2.5 mm, in which a large number of holes with a diameter of 3 mm are bored at 8III+ intervals. /cm, wound so that the thickness (T) is 3 cm, and a porous outer shell made of polypropylene with a thickness of 2.5 mm, with a large number of holes of diameter 3 m + 11 bored at 81 intervals around the circumference. Tube (diameter 8.5c
m), and the joint portion of the nuclear outer cylinder was adhered by ultrasonic adhesion to form a hollow fiber notebook@liquid. The FXI of this laminate was 510, and the effective membrane area was 1.48 m'. This laminate was housed in a cylindrical housing with a diameter of 10cI11 and a thickness of 2.5mm.

そして中空糸の両端をハウジングの両端に形成されたポ
リウレタン樹脂の隔壁で支持させて第1図に示す装置を
作製した。一方、多孔性外筒を設けない装置を別に作製
した。そのとき中空系の有効長は7cmであった。
Then, both ends of the hollow fiber were supported by partition walls made of polyurethane resin formed at both ends of the housing, thereby producing the device shown in FIG. 1. On the other hand, a device without a porous outer cylinder was separately manufactured. The effective length of the hollow system was then 7 cm.

上記2種類の装置を37°Cに加温された牛血液を用い
て、酸素流量と血液流量の比が1.0になるように血液
と純酸素を流し、人工肺性能評価基学案(日本人工臓器
協会)に従って試験した結果を表1に示す。なお以下の
評価において最大血液流量が2000 CmQ1分/m
2)以下、または血液流ffi 612/分のときの圧
力損失が300 (mmH9)以上は実用上問題があり
本発明の範囲外とし右端に※印を記した。
Using bovine blood heated to 37°C, blood and pure oxygen were passed through the two types of devices mentioned above so that the ratio of oxygen flow rate to blood flow rate was 1.0. Table 1 shows the results of the tests conducted according to the Japanese Artificial Organ Association (Japan Artificial Organ Association). In addition, in the following evaluation, the maximum blood flow rate was 2000 CmQ1 min/m.
2) If the pressure drop is less than 300 (mmH9) or more than 300 (mmH9) when the blood flow ffi is 612/min, there is a practical problem and it is outside the scope of the present invention, and an asterisk (*) is marked on the right end.

実験例2 実験例1と同一の中空糸ソートを用いて多孔性内筒と外
筒間で挟持される中空糸の積層厚さ(T)を変えた4種
類の装置を作製し、実験例1と同一の試験を行った結果
を表−2に示す。
Experimental Example 2 Using the same hollow fiber sorting as in Experimental Example 1, four types of devices were fabricated with different stacking thicknesses (T) of the hollow fibers sandwiched between the porous inner cylinder and the outer cylinder. Table 2 shows the results of the same test as above.

表 実験例3 縦糸の密度(W)を変えた4種類の中空糸ソートを作製
して、実験例1と同様に中空糸ノートの積層厚みTが3
cm、膜面積1.48m”の積層体を形成し、実験例1
と同様の装置を作製して、同一の試験を行った結果を表
−3に示す。
Table Experimental Example 3 Four types of hollow fiber sorting with different warp densities (W) were made, and the stacking thickness T of the hollow fiber notebook was 3 as in Experimental Example 1.
Experimental Example 1
Table 3 shows the results of a similar test made using a similar device.

実験例1と同一の中空糸を用い、該中空糸の長さ方向の
密度(F)を変えて配列して実験例1と同様に縦糸密度
(W)が1本/Cmとなるように節状に編組した中空糸
ソートを形成し、該中空糸ノートの単位厚さ当りの積層
枚数■を変えて積層厚みTが3cmの積層体を形成して
、実験例1と同様の装置を作製し同一の試験を行った結
果を表−4に示す。
Using the same hollow fibers as in Experimental Example 1, the hollow fibers were arranged with different density (F) in the longitudinal direction and knotted so that the warp density (W) was 1/Cm as in Experimental Example 1. A device similar to Experimental Example 1 was prepared by forming a hollow fiber sort braided into a shape, and changing the number of laminated sheets per unit thickness of the hollow fiber notebook to form a laminate with a lamination thickness T of 3 cm. Table 4 shows the results of the same test.

以下余白 実験例4 実験例5 実験例1に示された中空糸を複数本束ね、かつ中空糸束
の配列を変えて、実験例1と同様に縦糸で編組して中空
糸ソートを形成した。そして積層厚み当りの積層枚数I
を変えて厚さ3cmの積層体を得た。この積層体を用い
て実験例1と同様の装置を作製し、同様の試験を行った
結果を表−5に示す。
Experimental Example 4 Experimental Example 5 A plurality of hollow fibers shown in Experimental Example 1 were bundled together, the arrangement of the hollow fiber bundles was changed, and the warp yarns were braided in the same manner as in Experimental Example 1 to form a hollow fiber sort. And the number of laminated sheets per laminated thickness I
A laminate with a thickness of 3 cm was obtained by changing the conditions. Using this laminate, a device similar to that in Experimental Example 1 was manufactured and the same tests were conducted. The results are shown in Table 5.

実験例6 中空糸として外径250μ、内径210μ、空孔率的5
0%のポリプロピレン多孔性中空糸を1本つつ縦糸で接
着した中空糸ノートの積層体を用い、表6に示すように
各パラメータ・−を変えた実験例1と同様な4種類の装
置を作製し、実験例1と同様な試験を行った結果を表−
6に示す。
Experimental Example 6 Hollow fiber with an outer diameter of 250μ, an inner diameter of 210μ, and a porosity of 5
Using a laminate of hollow fiber notebooks in which one 0% polypropylene porous hollow fiber was bonded with a warp thread, four types of devices similar to those in Experimental Example 1 were fabricated, with each parameter changed as shown in Table 6. The results of a test similar to Experimental Example 1 are shown below.
6.

実験例7 外径510μ、内径320μ、空孔率約50%のポリビ
ニルアルコールからなる多孔性中空糸を1本づつ長さ方
向の密度(F)が14本/amとなるように配列し、縦
糸として30デニール(12フイラメノト)のポリエス
テル糸を用いて密度(W)が1本/amとなるように中
空糸を面状に編組して、第5図に示す中空糸ノートを形
成した。この中空糸ノートを実験例1と同様な多孔性内
筒に単位厚さ当りの積層枚数(1)が22枚/cm、厚
さ(T)が4cmとなるようにした装置を作成した。こ
の積層体のFXrは308てあり、宵効嘆面積は0.5
2m2であった。この積層体を直径12cm厚さ2.5
mmの円筒状ハウジング内に収納し、第1図に示す装置
を作成した。
Experimental Example 7 Porous hollow fibers made of polyvinyl alcohol with an outer diameter of 510μ, an inner diameter of 320μ, and a porosity of about 50% were arranged one by one so that the density (F) in the length direction was 14 fibers/am, and the warp A hollow fiber notebook shown in FIG. 5 was formed by braiding the hollow fibers into a planar shape using polyester threads of 30 denier (12 filaments) at a density (W) of 1 thread/am. A device was fabricated in which this hollow fiber notebook was placed in a porous inner tube similar to Experimental Example 1, with the number of laminated sheets per unit thickness (1) of 22 sheets/cm and the thickness (T) of 4 cm. The FXr of this laminate is 308, and the effective area is 0.5.
It was 2m2. This laminate has a diameter of 12 cm and a thickness of 2.5 cm.
The device was housed in a cylindrical housing of mm in diameter, and the device shown in FIG. 1 was created.

方密度(W)か0125本/cmの中空糸シートを用い
て多孔性外筒を設けない装置を別に作成した。そのとき
の中空糸の有効長は7cmであった。
A separate device was prepared using a hollow fiber sheet with a square density (W) of 0.125 fibers/cm and without a porous outer cylinder. The effective length of the hollow fiber at that time was 7 cm.

上記2種類の装置を37℃に加温された牛血液で評価し
た。血液流量を100mQ/minとして中空糸の外部
に流し、中空糸の内部のが液を段階的に増加させ、30
分間に膜間圧力差が急激に上昇する直前のJ液a量を最
大が過流量< Q F、、、、)とした。
The above two types of devices were evaluated using bovine blood heated to 37°C. The blood flow rate was set to 100 mQ/min to the outside of the hollow fiber, and the liquid inside the hollow fiber was increased stepwise to 30 mQ/min.
The amount of J liquid a just before the transmembrane pressure difference sharply increases per minute was defined as the maximum overflow < Q F, , , ).

実験例8 外(& 225μ、内径175μのエチレンヒニルアル
コール共重合体からなる中空糸を1本づつ長さ方向の密
度(F)が24本/amとなるように配列し、縦糸とし
て30デニール(12フイラメント)のポリエステル糸
を用いて密度(W)が1本/amとなるように中空糸を
面状に編組して中空糸ノートを形成した。この中空糸シ
ートを4mm間隔で直径2.0mmの多数の開孔を穿設
した厚さ2.5mmのポリプロピレン製の多孔性内筒(
直径1cm)に単位厚さ当たりの積層枚数([)が45
枚/am厚さ3cmとなるように巻回し、その周囲を多
孔性外筒(直径7 、5cm )で挟持し、この積層体
を直径9 c m、厚さ2 、5mmの円筒状ハウジン
グ内に収納し、第1図に示す装置を作成した。この積層
体のFXIは1080であり、荷動膜面積はり、15m
″であった。一方密度(W)が0.1本ICl11の中
空糸シートを用いて多孔性外筒を設けない装置を別に作
成した。中空糸の有効長はgcmであった。
Experimental Example 8 Hollow fibers made of ethylene hinyl alcohol copolymer having an outer diameter of 225μ and an inner diameter of 175μ were arranged one by one so that the density (F) in the length direction was 24 fibers/am, and the warp was 30 denier. A hollow fiber notebook was formed by braiding the hollow fibers into a planar shape using a polyester yarn (12 filaments) at a density (W) of 1 fiber/am.The hollow fiber sheets were arranged at 4 mm intervals with a diameter of 2 mm. A porous inner tube made of polypropylene with a thickness of 2.5 mm with many holes of 0 mm in diameter (
The number of layers per unit thickness ([) is 45 for a diameter of 1 cm)
The laminate was wound into a cylindrical housing with a diameter of 9 cm and a thickness of 2.5 mm. Then, the device shown in FIG. 1 was created. The FXI of this laminate is 1080, and the loading membrane area is 15 m.
''. On the other hand, a separate apparatus was prepared using a hollow fiber sheet with a density (W) of 0.1 ICl11 without a porous outer cylinder. The effective length of the hollow fiber was gcm.

上記2種類の装置を37℃に加温された牛血液を用いて
、血液を中空糸内部、透析液を中空糸外部に流し、人工
腎臓性能評価基準(日本人工臓器協会)に従って試験し
た結果を表−8に示す。
The above two types of devices were tested using bovine blood heated to 37°C, with blood flowing inside the hollow fibers and dialysate flowing outside the hollow fibers, in accordance with the Artificial Kidney Performance Evaluation Standards (Japan Artificial Organ Association). It is shown in Table-8.

(発明の効果) 以上のように本発明の流体処理装置は、中空糸を介して
の単位面積当りの物質交換量が大きく、流体のチャンネ
リングや滞留部の発生は殆どなく、優れた性能が発揮で
きる。また、容異に製作ができるため安価で、かつコン
パクトなため、特に血液を処理するための装置としては
体外への血液搬出量が小さくなり、也者の負担を軽減す
るという利点を有している。
(Effects of the Invention) As described above, the fluid treatment device of the present invention has a large amount of material exchange per unit area through the hollow fibers, almost no fluid channeling or stagnation, and excellent performance. I can demonstrate it. In addition, because it can be produced in a variety of ways, it is inexpensive and compact, so it has the advantage of reducing the amount of blood carried out of the body, especially as a device for processing blood, and reducing the burden on people. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流体処理装置の断面図てあり、イ月 第2図及び第3図は他の・を示す断面図であり、第4図
は第1図のA−A断面図であり、第5図は中空糸ソート
を多孔性内筒に巻回した状聾を示す斜視図であり、第6
図は他の側を示す斜視図であり、第7図(a)、(b)
は節状に編組された中空糸ノートの断面図であり、第8
図〜第10図は熱交換器を内蔵した装置の断面図であり
、第1I図は貯血槽を内蔵した装置の断面図であり、第
12図及び第13図は熱交換器と貯血槽を内蔵した装置
の断面図である。 l・・・円筒状ハウジング  3・・・多 孔 性 内
 筒4・・・多孔性外筒    5・・・中空糸の積層
体6.6°・・・隔 壁     7・・・上部ヘッド
カバー8・・・下部ヘッドカバー 図面の停会(内容に変更なし) 第  1  図 第 図 第 図 第 図 第 図 第 図 第 図 第 図 (b) 第 図 第 図 第 図 第 図 第 1ろ 図 昭和63年11月30日 事件の表示 特願昭63−254651号 2、発明の名称 中空糸型の流体処理装置 補正をする者 事件との関係      特許出願人 倉敷市酒津1621番地 (108)株式会社 り ラ し 代表取締役 中村 尚夫 補正の内容 (1)明細書の発明の詳細な説明の欄 ■第11頁第10行の「ポリプロピレン」の後に、「、
ポリ−4−メチルペンテン−1」を挿入する。 ■第16頁第12行のr 10”/ (3,OX D 
)”≦F×■≦10”/ (0,93X D )’Jを
r to’/ (3,0×D)1≦F X ■< to
’/ (0,93x D )’jに訂正する。 ■第25頁の表−4を次のとおり訂正する。
FIG. 1 is a sectional view of the fluid treatment device of the present invention, FIGS. 2 and 3 are sectional views showing other points, and FIG. 4 is a sectional view taken along line A-A in FIG. 1. Figure 5 is a perspective view showing a hollow fiber sort wound around a porous inner cylinder;
The figure is a perspective view showing the other side, and FIGS. 7(a) and (b)
is a cross-sectional view of a hollow fiber notebook braided into knots;
Figures to Figures 10 are cross-sectional views of the device with a built-in heat exchanger, Figure 1I is a cross-sectional view of the device with a built-in blood storage tank, and Figures 12 and 13 are cross-sectional views of the device with a built-in heat exchanger and blood storage tank. FIG. 3 is a cross-sectional view of the built-in device. l... Cylindrical housing 3... Porous inner tube 4... Porous outer tube 5... Hollow fiber laminate 6.6°... Partition wall 7... Upper head cover 8. ... Suspension of lower head cover drawing (no change in content) Fig. 1 Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. (b) Patent Application No. 63-254651 No. 2, Title of the invention: Person who corrects hollow fiber type fluid treatment device Relation to the case Patent applicant: 1621-108 Sakazu, Kurashiki City Representative: Rira Shi Co., Ltd. Director Nao Nakamura Contents of the amendment (1) Detailed explanation of the invention in the specification ■ After “polypropylene” on page 11, line 10, “,
Poly-4-methylpentene-1' is inserted. ■Page 16, line 12 r 10”/ (3,OX D
)”≦F×■≦10”/ (0,93X D)’J to’/ (3,0×D)1≦F X ■< to
'/(0,93x D)'j. ■Table 4 on page 25 is corrected as follows.

Claims (1)

【特許請求の範囲】[Claims] 1、多孔性の内筒に簾状の中空糸シートを巻回して、多
孔性の外筒内に収容した中空糸シートの積層体を円筒状
ハウジング内に収納し、該中空糸を、その両端が開口す
るようにハウジングの両端を閉塞する隔壁で支持すると
ともに、該ハウジングの上端に中空糸の内部空間と連通
する第1の流体の入口または出口と、該多孔性の内筒の
内部と連通する第2の流体の入口または出口を有する上
部ヘッドカバーを設け、かつ該ハウジングの下端に中空
糸の内部空間と連通する第1の流体出口または入口を有
する下部ヘッドカバーを設け、しかも該ハウジングの上
部側壁に第2の流体の出口または入口を設けたことを特
徴とする中空糸型の流体処理装置。
1. A laminate of hollow fiber sheets is wound around a porous inner cylinder and housed in a porous outer cylinder, and the laminate of the hollow fiber sheets is housed in a cylindrical housing. The housing is supported by partition walls that close both ends of the housing so as to be open, and a first fluid inlet or outlet that communicates with the inner space of the hollow fiber at the upper end of the housing communicates with the inside of the porous inner cylinder. an upper head cover having a second fluid inlet or outlet communicating with the interior space of the hollow fiber at the lower end of the housing; 1. A hollow fiber type fluid treatment device, characterized in that a second fluid outlet or inlet is provided in the hollow fiber type fluid treatment device.
JP63254651A 1988-10-07 1988-10-07 Hollow fiber type fluid treatment device Expired - Fee Related JP2827228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63254651A JP2827228B2 (en) 1988-10-07 1988-10-07 Hollow fiber type fluid treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63254651A JP2827228B2 (en) 1988-10-07 1988-10-07 Hollow fiber type fluid treatment device

Publications (2)

Publication Number Publication Date
JPH0299067A true JPH0299067A (en) 1990-04-11
JP2827228B2 JP2827228B2 (en) 1998-11-25

Family

ID=17267974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63254651A Expired - Fee Related JP2827228B2 (en) 1988-10-07 1988-10-07 Hollow fiber type fluid treatment device

Country Status (1)

Country Link
JP (1) JP2827228B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191754A (en) * 1992-01-08 1993-07-30 Hitachi Ltd Multi-screen system
JPH0568547U (en) * 1992-02-26 1993-09-17 株式会社クラレ Blind-shaped hollow fiber sheet
WO2006126497A1 (en) * 2005-05-23 2006-11-30 Asahi Kasei Medical Co., Ltd. Body fluid treating filter device
CN105457118A (en) * 2015-12-17 2016-04-06 珠海健帆生物科技股份有限公司 Blood purifying apparatus and blood purifying system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155862A (en) * 1982-02-19 1983-09-16 ザ・ダウ・ケミカル・カンパニー Hollow fiber oxygen feeder, assembled apparatus thereof and production thereof
JPS62155852U (en) * 1986-03-26 1987-10-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155862A (en) * 1982-02-19 1983-09-16 ザ・ダウ・ケミカル・カンパニー Hollow fiber oxygen feeder, assembled apparatus thereof and production thereof
JPS62155852U (en) * 1986-03-26 1987-10-03

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191754A (en) * 1992-01-08 1993-07-30 Hitachi Ltd Multi-screen system
JPH0568547U (en) * 1992-02-26 1993-09-17 株式会社クラレ Blind-shaped hollow fiber sheet
WO2006126497A1 (en) * 2005-05-23 2006-11-30 Asahi Kasei Medical Co., Ltd. Body fluid treating filter device
US7597806B2 (en) 2005-05-23 2009-10-06 Asahi Kasei Kuraray Medical Co., Ltd. Body fluid treating filter device
JP5189360B2 (en) * 2005-05-23 2013-04-24 旭化成メディカル株式会社 Body fluid treatment filter device
CN105457118A (en) * 2015-12-17 2016-04-06 珠海健帆生物科技股份有限公司 Blood purifying apparatus and blood purifying system

Also Published As

Publication number Publication date
JP2827228B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US4911846A (en) Fluid treating apparatus and method of using it
EP0089122B1 (en) Hollow fibre oxygenator, assembly containing same and method for making same
US5429184A (en) Wound heat exchanger oxygenator
US5162102A (en) Medical instrument and production thereof
JP6097279B2 (en) Combined oxygenator and arterial filter device for processing blood in an extracorporeal blood circuit
EP0394221A1 (en) Outside perfusion type blood oxygenator.
JPH02109572A (en) Hollow yarn type fluid treating device
EP0041692B2 (en) Blood oxygenator
JPH02102660A (en) Hollow yarn type fluid processor
JPH0299067A (en) Hollow fiber type fluid treatment apparatus
JPS62243561A (en) Leucocyte removing filter device
JPH02213356A (en) Fluid treatment apparatus
CA2270953A1 (en) Integrated oxygenator and heat exchanger
JP2003111837A (en) Hollow fiber membrane type artificial lung
JPH1033667A (en) Hollow fiber type fluid treatment device
JPS60225572A (en) Hollow yarn membrane type artificial lung
JPS62240067A (en) Hollow fiber membrane type artificial lung
JPH02156957A (en) Hollow fiber film type oxygen enriching device
JP3025973B2 (en) Liquid treatment equipment
JPH09234245A (en) Outside perfusion type artificial lung
JPH01198557A (en) Hollow yarn membrane type oxygenator
JPS6137251A (en) Heat exchanger built-in artificial lung
JPH07108143A (en) Material exchanging device
JPH049424B2 (en)
JPH01139073A (en) Pump-oxygenator using hollow yarn membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees