JPH04129565A - Hollow yarn model oxygenator - Google Patents

Hollow yarn model oxygenator

Info

Publication number
JPH04129565A
JPH04129565A JP24968290A JP24968290A JPH04129565A JP H04129565 A JPH04129565 A JP H04129565A JP 24968290 A JP24968290 A JP 24968290A JP 24968290 A JP24968290 A JP 24968290A JP H04129565 A JPH04129565 A JP H04129565A
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
bundle
annular
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24968290A
Other languages
Japanese (ja)
Inventor
Yasushi Shimomura
下村 泰志
Masahiko Yamaguchi
正彦 山口
Akio Funakubo
昭夫 舟久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP24968290A priority Critical patent/JPH04129565A/en
Priority to US07/668,562 priority patent/US5263982A/en
Priority to EP19910103946 priority patent/EP0446922A3/en
Publication of JPH04129565A publication Critical patent/JPH04129565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the blood filling quantity and miniaturize a device by providing a circular blood feed passage communicated to the inner space of an outer tube and liquid-tightly independent from the second cap, and providing a blood circular passage communicated to a blood outlet on the periphery section near the upper end section of an outer tube. CONSTITUTION:Blood is guided into the blood passage 31 of an exchanger 27 through a blood inlet 10, and it is heat-exchanged with the water flowing in a water passage 29 to the preset temperature. It is then guided into a circular chamber 15 through a blood circular feed passage 13, part of the blood enters a hollow yarn circular bundle 11, and the other portion flows into gaps 6 formed between an inner tube 12 and the hollow yarn circular bundle 11. The blood is gradually spread to the whole hollow yarn circular bundle 11, it flows on the outside of a hollow yarn film and reaches a blood circular passage 17 provided on the periphery section near the upper end section of an outer tube 14, then it is discharged from a blood outlet 18. The blood is gas-exchanged with the oxygen-containing gas guided through a gas inlet 19 and flowing in the hollow yarn film while it flows in the whole hollow yarn circular bundle 11, oxygen is added to the blood, and carbon dioxide is removed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は中空糸膜外側に血液を流し、酸素含有ガスは中
空糸膜内側に導入する、いわゆる血液外部潅流方式の中
空糸膜型人工肺に係り、更に詳しくは、低圧力損失、血
液のチャネリング(局部的に偏って不均一に流れる現象
)防止、及びガス交換効率の向上をバランス良く達成す
ることができる中空糸膜型人工節に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hollow fiber membrane oxygenator using a so-called blood external perfusion method, in which blood flows outside the hollow fiber membrane and oxygen-containing gas is introduced inside the hollow fiber membrane. More specifically, the present invention relates to a hollow fiber membrane type artificial joint that can achieve a good balance of low pressure loss, prevention of blood channeling (a phenomenon in which blood flows locally and unevenly), and improvement of gas exchange efficiency.

[従来の技術及び発明が解決しようとする課題]人工肺
には大別して気泡型と脱型とがあるが、ガス交換膜を用
いる膜を人工肺は気泡型と比べ、ガス交換方式かより生
理的であり、血液への悪影響が少ないという利点がある
[Prior art and problems to be solved by the invention] There are two types of oxygenators: bubble type and demolded type.Compared to the bubble type, oxygenators use a membrane that uses a gas exchange membrane. It has the advantage of being highly effective and having little adverse effect on the blood.

脱型人工肺は主に中空糸膜を用い、その中空糸膜を介し
て血液のガス交換を行なうものである。
Demolding oxygenators mainly use hollow fiber membranes to perform blood gas exchange through the hollow fiber membranes.

また、人工肺への血液の流入方式として、中空糸膜の内
側に血液、中空糸膜の外側にガスを流す内部潅流方式と
、逆に血液を中空糸膜外側へ流し、ガスを中空糸膜の内
側へ流す外部潅流方式とがある。前者は数十〜数百μm
という細い中空糸膜内側を血液が流れるため、血液を循
環する際の圧力損失か大きくなり、血液への損傷(血球
損傷)等も起こり得るといわれている。また近年遠心式
のポンプや拍動流ポンプも普及しつつあり、これらのポ
ンプにて体外循環が行なえるためにも、人工肺の圧力損
失は小さいことが望ましい。一方、後者は、前者に比べ
圧力損失、血球損傷等の面で有利な方式であるが、血液
が流れる流路が自由に取れるため、血液の偏流か生し易
い。また、中空糸膜の充填率を高くし、ガス交換効率や
血液の偏流の改善を図ろうとすると、圧力損失が増加す
る。
In addition, as methods for blood to flow into the oxygenator, there are two methods: internal perfusion, in which blood flows inside the hollow fiber membrane and gas flows outside the hollow fiber membrane, and conversely, blood flows outside the hollow fiber membrane, and gas flows through the hollow fiber membrane. There is an external perfusion method in which the blood is perfused inside the body. The former is tens to hundreds of μm
Because blood flows inside the thin hollow fiber membrane, the pressure loss during blood circulation increases, and it is said that damage to the blood (blood cell damage) may occur. Furthermore, centrifugal pumps and pulsatile flow pumps have become popular in recent years, and in order to enable extracorporeal circulation with these pumps, it is desirable that the pressure loss in the artificial lung be small. On the other hand, the latter method is more advantageous than the former method in terms of pressure loss, blood cell damage, etc., but because the flow path for blood can be freely provided, uneven flow of blood is likely to occur. Furthermore, when attempting to improve gas exchange efficiency and uneven blood flow by increasing the filling rate of the hollow fiber membrane, pressure loss increases.

この場合、膜面積を増大させ、上記の問題を解決しよう
とすると、人工肺の血液充填量か増大し、無輸血の体外
循環は困難となる。
In this case, if an attempt is made to solve the above problem by increasing the membrane area, the amount of blood filled in the oxygenator will increase, making extracorporeal circulation without blood transfusion difficult.

以上述べたような問題は、中空糸膜の配糸の仕方、充填
率、血液の出入11位置や血液の流れ方などに大きく影
響される。その対策として、従来においては、膜面積を
増大させたり、流路面積を大きくとることによりガス交
換効率および圧力損失の改善を図る方法、血液を中空糸
束の側面より流し、圧力損失の低減を図る方法等が知ら
れている。しかし、後者の方法は内部潅流方式に比較す
ると低圧力損失か得られるか、拍動流ポンプ等への対応
は困難てあり、また前者の方法は低圧力損失であるが、
血液充填量か大きいという欠点な持つ。
The above-mentioned problems are greatly influenced by the way the hollow fiber membranes are arranged, the filling rate, the blood inlet/output 11 positions, the way the blood flows, and the like. Conventional countermeasures have been to improve gas exchange efficiency and pressure loss by increasing the membrane area and channel area, and to flow blood from the side of the hollow fiber bundle to reduce pressure loss. There are known methods for achieving this. However, compared to the internal perfusion method, the latter method provides low pressure loss and is difficult to adapt to pulsatile flow pumps, etc., and the former method has low pressure loss, but
The drawback is that the blood filling volume is large.

一方、中空糸膜の配糸方杖としては、血液の偏流を防止
し高いガス交換能を得るために、コア状物に中空糸膜な
巻き付けたものが提案されているか、この場合には、血
液入口(中空糸束中に血液を導入する部分)において血
液ボートより入った血液か急激に中空糸束中に入り込み
、波路も急に狭められるため大きな圧力損失が生じる。
On the other hand, as a method for distributing hollow fiber membranes, in order to prevent uneven flow of blood and obtain high gas exchange ability, it has been proposed to wrap hollow fiber membranes around a core-like material. At the blood inlet (the part where blood is introduced into the hollow fiber bundle), blood entering from the blood boat suddenly enters the hollow fiber bundle, and the wave path is also suddenly narrowed, resulting in a large pressure loss.

また、これを防止するため血液入口を広くするような構
造とすると1人工肺が大型化することになる。
Furthermore, if a structure is adopted in which the blood inlet is made wider to prevent this, one oxygenator will become larger.

従って、本発明は上記した従来の問題を解決した中空糸
膜型人工肺を提供することを目的とする。
Therefore, an object of the present invention is to provide a hollow fiber membrane oxygenator that solves the above-mentioned conventional problems.

[課題を解決するための手段] そして、その目的は本発明によれば、中心部に空間部を
有する1本または複数本のガス透過性中空糸膜を綾巻状
に集束配糸して形成した円筒状の中空糸環状束を外筒内
に収納するとともに、該中空糸環状束内側の円柱状空間
部内に当該円柱状空間部の径より小さい径の内筒を挿入
し、前記中空糸環状束を中空糸膜の両端が開口するよう
に外筒の両端及び前記内筒の片端を閉塞するように隔壁
で支持し、外筒及び内筒の端部をともに閉塞する第一隔
壁には中空糸膜内部空間と連通する酸素含有ガスの入口
または出口を有する第一キャップを冠着し、かつ外筒の
端部は閉塞するが内筒の端部は閉塞しない第二隔壁には
中空糸膜内部空間と連通する酸素含有ガスの入口または
出口を有する第二キヤツジを冠着するとともに、前記外
筒の内部空間と連通しかつ該第二キャップとは流密に独
立した環状血液送入通路を設け、前記外筒の上端部近傍
の周縁部に血液出口に連通ずる血液環状通路を設けてな
る中空糸膜型人工肺、により達成することかできる。
[Means for Solving the Problems] According to the present invention, the object is to form one or more gas-permeable hollow fiber membranes having a space in the center by converging and distributing them in a cross-wound shape. The cylindrical hollow fiber annular bundle is housed in an outer cylinder, and an inner cylinder having a diameter smaller than the diameter of the cylindrical space is inserted into the cylindrical space inside the hollow fiber annular bundle. The bundle is supported by a partition wall so as to close both ends of the outer cylinder and one end of the inner cylinder so that both ends of the hollow fiber membrane are open, and the first partition wall that closes the ends of both the outer cylinder and the inner cylinder is hollow. A hollow fiber membrane is attached to the second partition, which is crowned with a first cap having an inlet or an outlet for oxygen-containing gas that communicates with the inner space of the fiber membrane, and which closes the end of the outer cylinder but does not close the end of the inner cylinder. A second cap having an inlet or an outlet for oxygen-containing gas that communicates with the inner space is mounted thereon, and an annular blood supply passage that communicates with the inner space of the outer cylinder and is fluidly independent of the second cap. This can be achieved by a hollow fiber membrane oxygenator in which a blood annular passage communicating with a blood outlet is provided at the peripheral edge of the outer cylinder near the upper end thereof.

また本発明においては、第二隔壁の中央部に、外筒と内
筒との間に形成される環状室と連通しかつ第一キャップ
とは液密に独立して血液の入口または出口を設けること
か好ましい。
Further, in the present invention, a blood inlet or outlet is provided in the center of the second partition, communicating with the annular chamber formed between the outer cylinder and the inner cylinder, and being fluid-tightly independent of the first cap. That's preferable.

さらに、本発明では、中空糸環状束の第一隔壁で支持さ
れる側の端部は、第一隔壁の外表面と同一面か、それよ
り中に位置する(即ち短くする)ことか好ましく、また
、内筒(内側コア)の第二隔壁側の端部は、凸状を呈す
るように形成することが、血液のスムーズな環状室への
導入のために好ましい。
Furthermore, in the present invention, it is preferable that the end portion of the hollow fiber annular bundle on the side supported by the first partition wall is located on the same plane as the outer surface of the first partition wall or is located inside it (i.e., shortened); Further, it is preferable that the end of the inner cylinder (inner core) on the second partition wall side be formed to have a convex shape in order to smoothly introduce blood into the annular chamber.

さらにまた、本発明においては、上記した構成に熱交換
器部を一体的に配設することか装を全体の効率化、コン
パクト化のため好ましい。
Furthermore, in the present invention, it is preferable to integrally provide the heat exchanger section with the above-described structure in order to make the entire system more efficient and compact.

未発IJiの人工肺における円筒状の中空糸(繊維)環
状束は、ガス透過性中空糸膜を外筒(外側ケーシング)
の長手方向に対して1008以上130°未渦の綾(稜
)角に開いて巻くことにより作製すると、中空糸膜のガ
ス交換能等の性能を十分に発揮させることかでき好まし
い。
The cylindrical hollow fiber (fiber) annular bundle in the oxygenator of undeveloped IJi has a gas-permeable hollow fiber membrane as an outer cylinder (outer casing).
It is preferable to manufacture the hollow fiber membrane by winding it at an angle of 1008 to 130 degrees with respect to the longitudinal direction of the hollow fiber membrane, so that the gas exchange ability and other performance of the hollow fiber membrane can be fully exhibited.

また本発明において、内筒(内側コア)と中空糸(繊#
I)環状束との間に設けられる間隙は、内筒から中空糸
(繊維)環状束内面まで片側において1mm〜lOem
程度あることが好ましく、2層飄〜5■■の範囲か更に
好ましい。また、この間隙は内筒と中空糸(繊#I)環
状束の両端の間で一定である必要は必ずしもないか、一
定であることか好ましい。
In addition, in the present invention, the inner cylinder (inner core) and the hollow fiber (fiber #
I) The gap provided between the inner cylinder and the annular bundle is 1 mm to 1 Oem on one side from the inner cylinder to the inner surface of the hollow fiber (fiber) annular bundle.
A certain degree is preferable, and a range of 2 layers to 5 inches is more preferable. Further, the gap does not necessarily need to be constant between the inner cylinder and both ends of the hollow fiber (fiber #I) annular bundle, but it is preferable that it be constant.

更に、本発明における環状面液送人通路の径は内筒の外
径より5−議程度小さい径以上であって中空糸(繊維)
環状束の内径までの範囲であることが好ましい。
Further, the diameter of the annular surface liquid sending passage in the present invention is at least 5 degrees smaller than the outer diameter of the inner cylinder, and
Preferably, the range is up to the inner diameter of the annular bundle.

また、ブライミング時の脱気を容易にするために、人工
肺および/あるいは血液回路内をあらかしめ炭酸ガスで
充填するための小型炭酸ガスカートリッジを人工[1I
liに一体的に内蔵し、プライミンク前に炭酸ガスを人
工肺および/あるいは血液回路内に充填させるようにす
ることは使用面て好ましいものである。
In addition, in order to facilitate degassing during briming, a small carbon dioxide cartridge was installed to prefill the oxygenator lung and/or blood circuit with carbon dioxide.
It is preferable in terms of use to integrate the li into the li and fill the oxygenator and/or blood circuit with carbon dioxide before priming.

[作用] 本発明の人工肺の作用を第1図を参照して説明する。[Effect] The operation of the artificial lung of the present invention will be explained with reference to FIG.

血液は血液人口10を通り、中空糸(繊維)環状束11
内側の円柱状空間部より小さい径の内筒12下部に設け
られた血液環状送入通路13より、外筒14と内筒12
との間に形成される環状室15に導入され、血液の一部
は中空糸環状束11中へ入り、他の血液は内筒12と中
空糸環状束11との間に形成される間隙16へと流れ込
み、その後中空糸環状束11全体へと徐々に血液は広が
り、中空糸環状束11内の中空糸膜の外側を流れて、外
筒14の上端部近傍の周縁部に設けられた血液環状通路
17に至った後、血液出口18より排出される。
Blood passes through blood population 10 and hollow fiber (fiber) circular bundle 11
The outer cylinder 14 and the inner cylinder 12 are connected from the blood annular feeding passage 13 provided at the bottom of the inner cylinder 12, which has a smaller diameter than the inner cylindrical space.
Some of the blood enters the annular chamber 15 formed between the inner cylinder 12 and the hollow fiber annular bundle 11, and the other blood enters the gap 16 formed between the inner tube 12 and the hollow fiber annular bundle 11. The blood then gradually spreads throughout the hollow fiber annular bundle 11, flows outside the hollow fiber membrane within the hollow fiber annular bundle 11, and flows into the blood provided at the periphery near the upper end of the outer cylinder 14. After reaching the annular passage 17, the blood is discharged from the blood outlet 18.

血液は、上述の如く中空糸環状束11全体な流れる間に
、ガス入口19から導入され中空糸膜の内部を流れる酸
素含有ガスとガス交換か行なわれて血液中に酸素が付加
されるとともに、炭酸ガスの除去か行なわれ、除去され
た炭酸ガスはガス出口20から排出される。
While the blood flows through the entire hollow fiber annular bundle 11 as described above, gas exchange occurs with the oxygen-containing gas introduced from the gas inlet 19 and flowing inside the hollow fiber membrane, and oxygen is added to the blood. Carbon dioxide gas is removed, and the removed carbon dioxide gas is discharged from the gas outlet 20.

上記したように、本発明によれば、血液は、環状面液送
人通路13からスムーズに外筒14と内筒12との間に
形成される環状室15に導入されさらに血液の一部は中
空糸環状束11へ入り、他の一部は内筒12と中空糸環
状束11とで形成される間隙部分16へと流れ込むため
に、血液の流れ方向か急激に曲げられたり、急激に狭め
られたりすることかなく、圧力損失の低下が可能となる
As described above, according to the present invention, blood is smoothly introduced into the annular chamber 15 formed between the outer cylinder 14 and the inner cylinder 12 from the annular surface liquid sending passage 13, and a part of the blood is In order to flow into the hollow fiber annular bundle 11 and the other part into the gap 16 formed between the inner cylinder 12 and the hollow fiber annular bundle 11, the blood flow direction is sharply bent or narrowed. It is possible to reduce pressure loss without causing damage.

更に、血液は中空糸環状束11内を放射状に流れてガス
交換を行った後、環状面液送人通路13の端部とは反対
側の外筒14の上端部近傍の周縁部に設けられた血液環
状通路17に流れるという構成としているため、血液が
一様、均一に流れ、血液の偏流を防ぐことができる。
Furthermore, after the blood flows radially within the hollow fiber annular bundle 11 to perform gas exchange, the blood flows through the hollow fiber annular bundle 11 at the peripheral edge near the upper end of the outer tube 14 on the opposite side from the end of the annular surface liquid delivery passage 13. Since the blood flows through the annular blood passage 17, the blood flows evenly and evenly, and uneven blood flow can be prevented.

次に、中空糸膜の集束・配糸方法について説明する。Next, a method for bundling and distributing hollow fiber membranes will be explained.

まず中空糸膜からなる中空糸束を一旦内筒12より径の
大きい筒体(集束筒)に集束配糸する。
First, a hollow fiber bundle made of hollow fiber membranes is once focused and distributed into a cylinder (a focusing cylinder) having a diameter larger than that of the inner cylinder 12.

集束配糸後、中空糸(繊維)環状束11を外筒14と内
筒12の間の空間に挿入して内筒12と中空糸環状束1
1の間に所定の間隙を設けるようにすることにより、本
発明人工肺の中空糸膜の集束・配糸な行なうことかでき
る。
After the bundle and distribution, the hollow fiber (fiber) annular bundle 11 is inserted into the space between the outer cylinder 14 and the inner cylinder 12 to separate the inner cylinder 12 and the hollow fiber annular bundle 1.
By providing a predetermined gap between the hollow fiber membranes 1 and 1, the hollow fiber membranes of the oxygenator of the present invention can be bundled and arranged.

集束筒の径は人工Mの内筒12より大きければよく、通
常集束筒と内筒12の径(直径)の差が2■■以上であ
ることが好ましく、更に好ましくは4〜10m層の範囲
である。
The diameter of the focusing tube only needs to be larger than the inner tube 12 of the artificial M, and it is usually preferable that the difference in diameter between the focusing tube and the inner tube 12 is 2■■ or more, more preferably in the range of 4 to 10 m layer. It is.

また、集束・配糸後、集束筒より人工肺の外筒14と内
筒12間の環状室(空間)15に中空糸環状束11を移
し変えることが必要であるため、移し変えの際、中空糸
環状束11に傷かつかずスムーズに移動可能なように、
集束筒の表面にはフッ素系樹脂等による表面平滑化処理
が施されていることが好ましい。又、集束筒の径が変化
し得るような構造のものとしてもよい。
In addition, after the focusing and yarn distribution, it is necessary to transfer the hollow fiber annular bundle 11 from the focusing tube to the annular chamber (space) 15 between the outer tube 14 and the inner tube 12 of the oxygenator. In order to be able to move smoothly without damaging the hollow fiber annular bundle 11,
It is preferable that the surface of the focusing tube is subjected to a surface smoothing treatment using a fluororesin or the like. Alternatively, the focusing cylinder may have a structure in which the diameter can be changed.

また、集束筒へ中空糸環状束11を集束・配糸するに際
し、集束時の中空糸膜の張力かあまり大きすぎるとか集
束筒表面を移動てきず、又移動できる場合てあっても中
空糸膜な傷つける恐れかあるため、通常中空糸膜にかけ
る張力は10g以上、好ましくは30〜170gである
。中空糸膜にかける張力は調節可能であり、中空糸環状
束外側に行くに従って高い張力となるよう変化させると
、中空糸膜の高い充填率か得られるとともに、血液の偏
流を防止し、高ガス交換能を達成することができ好まし
い。
In addition, when converging and distributing the hollow fiber annular bundle 11 to the converging tube, if the tension of the hollow fiber membrane at the time of convergence is too large, or the hollow fiber membrane does not move on the converging tube surface, or even if it can move, the hollow fiber membrane Since there is a risk of damage, the tension applied to the hollow fiber membrane is usually 10 g or more, preferably 30 to 170 g. The tension applied to the hollow fiber membrane can be adjusted, and by changing the tension toward the outside of the hollow fiber annular bundle, a high filling rate of the hollow fiber membrane can be obtained, and uneven flow of blood can be prevented and high gas It is preferable because exchangeability can be achieved.

本発明者は、ガス交換能か向上するような人工肺中にお
ける血液の流れ型を追求するため、中空糸膜の配糸方法
(巻き付は方法)を種々検討した結果、中空糸膜の充填
率を一定にした場合、外筒の投手力向に対する中空糸膜
の巻き付は稜角θがある特定の範囲にある場合、ガス交
換能が高くなることを見出した。即ち、人口肺の中空糸
稜角θはioo”以上130”未満であることが好まし
い。中空糸稜角Oか100°未満の場合、血液が中空糸
膜に沿って流れ易く充分な乱流効果か得られず、ガス交
換能か低下する好ましくなく、また中空糸稜角Oか13
0°以上ては血液の滞流か発生し易くなり血栓の発生が
起こり、好ましくない。
In order to pursue a blood flow type in an oxygenator that improves the gas exchange capacity, the present inventor investigated various methods of arranging (wrapping) hollow fiber membranes, and found that It has been found that when the ratio is constant, the winding of the hollow fiber membrane with respect to the pitcher's force direction of the outer cylinder increases the gas exchange ability when the edge angle θ is within a certain range. That is, the hollow fiber ridge angle θ of the artificial lung is preferably greater than or equal to ioo" and less than 130". If the hollow fiber edge angle O is less than 100°, blood tends to flow along the hollow fiber membrane, and a sufficient turbulence effect cannot be obtained, resulting in a decrease in gas exchange performance, which is undesirable.
If the angle is greater than 0°, blood stagnation tends to occur, leading to thrombus formation, which is undesirable.

更に、中空糸膜の充填率を内筒12近傍で最も密にし、
外側になるに従い疎になるように変化させて配糸するこ
とで、血液流入口付近にて中空糸束自体が血液の流れに
対する抵抗となって中空糸束外側まで血液を一様に行き
渡らせる働きをし、血液のチャネリングを防止すること
かOT濠になるため好ましい。
Furthermore, the filling rate of the hollow fiber membrane is made densest near the inner cylinder 12,
By arranging the fibers so that they become sparser toward the outside, the hollow fiber bundle itself acts as a resistance to the flow of blood near the blood inlet, allowing blood to spread evenly to the outside of the hollow fiber bundle. This is preferable because it prevents blood channeling and becomes an OT moat.

また、中空糸膜の材質としては、ポリプロピレン、ポリ
エチレンなどのポリオレフィン系樹脂、ポリフッ化ビニ
リデン、エチレンテトラフルオロエチレン共重合体など
のフッ素系樹脂、あるいはシリコーン樹脂などの疎水性
樹脂が好ましく用いられる。又、疎水性樹脂以外の材料
を用いる場合てあっても、その血液との接触面をシリコ
ーン樹脂等で処理し、疎水性としたものも用いることか
てきる。中空糸膜はガス透過性のものであれば使用する
ことができ、その周壁部に多数の微小細孔を有するもの
、あるいは無孔性のものであるかを問わない。なお1例
えば微小細孔を有するものの場合には微小細孔の平均細
孔径は一般にo、oi〜1μ麿が好ましい、さらに、中
空糸膜の空隙率は、一般に20〜80%程度であること
が好ましい 中空糸膜の充填率は、内筒12の近傍では0.5〜0.
65が好ましく、更に好ましくは0.55〜0.6の範
囲である。充填率がO,S未満では血液に対する抵抗の
役割なせず、内筒12より流出した血液はすぐに外筒1
4近傍に達し、そのまま外筒14近傍を流れ出口に達す
るため、中空糸束全体に血液は渡らず、良好なガス交換
能が得られず、好ましくない、また充填率が0.65を
超えると血液の流れに対する抵抗か大きくなるため、圧
力損失が大きくなり、好ましくない、一方、外筒14の
近傍では0.40〜0.55が好ましく、更に好ましく
は0.45〜0.50の範囲である。充填率が0.40
未満では血液のチャネリングが発生し易く、また血液充
@量も大きくなってしまい好ましくない。また、充填率
が0,55を超えると圧力損失が増大し、血球に影響を
与えてしまうため好ましくない。
Furthermore, as the material for the hollow fiber membrane, polyolefin resins such as polypropylene and polyethylene, fluorine resins such as polyvinylidene fluoride and ethylenetetrafluoroethylene copolymer, or hydrophobic resins such as silicone resins are preferably used. Furthermore, even if a material other than a hydrophobic resin is used, it is also possible to use a material whose contact surface with blood is treated with silicone resin or the like to make it hydrophobic. Any hollow fiber membrane can be used as long as it is gas permeable, and it does not matter whether it has a large number of micropores in its peripheral wall or is non-porous. Note 1: For example, in the case of a membrane having micropores, the average pore diameter of the micropores is generally preferably o, oi to 1 μm.Furthermore, the porosity of the hollow fiber membrane is generally about 20 to 80%. The filling factor of the hollow fiber membrane is preferably 0.5 to 0.0 in the vicinity of the inner cylinder 12.
65 is preferable, and the range of 0.55 to 0.6 is more preferable. If the filling rate is less than O or S, it will not function as a resistance to blood, and the blood flowing out from the inner cylinder 12 will immediately flow into the outer cylinder 1.
4, the blood flows directly near the outer cylinder 14 and reaches the outlet, so the blood does not spread throughout the hollow fiber bundle, making it impossible to obtain good gas exchange performance, which is undesirable, and if the filling rate exceeds 0.65. Since the resistance to blood flow increases, the pressure loss increases, which is undesirable.On the other hand, in the vicinity of the outer cylinder 14, the range is preferably 0.40 to 0.55, and more preferably 0.45 to 0.50. be. Filling rate is 0.40
If it is less than this, blood channeling tends to occur and the amount of blood becomes large, which is not preferable. Furthermore, if the filling rate exceeds 0.55, the pressure loss will increase, which will affect blood cells, which is not preferable.

ここで、中空糸膜の充填率とは中空糸束が占める部分の
全体の体積に対する中空糸膜のみの占める体積の割合を
いう。
Here, the filling rate of the hollow fiber membrane refers to the ratio of the volume occupied only by the hollow fiber membrane to the total volume of the portion occupied by the hollow fiber bundle.

[実施例] 以下0本発明を図示例に基づいてさらに説明するが、本
発明はこれらの実施例に限定されるものてはない。
[Examples] The present invention will be further described below based on illustrated examples, but the present invention is not limited to these examples.

第1図は本発明の一実施例を示す断面構成図である。FIG. 1 is a cross-sectional configuration diagram showing an embodiment of the present invention.

本実施例の人工肺は、ガス交#!器部工と、その下部に
一体的に配設された熱交換器部■とから構成されており
、熱交換器部Hの内側には炭酸ガスカートリウジが設け
られている。
The oxygenator of this example has gas exchange #! It consists of a heat exchanger section (1) and a heat exchanger section (2) that is integrally disposed below the heat exchanger section (H), and a carbon dioxide gas cartridge is provided inside the heat exchanger section (H).

ガス交換器部Iにおいて、外筒14と内筒12間の環状
室15内には、1本または複数本のガス透過性中空糸膜
を綾巻状に集束配糸して形成した円筒状の中空糸環状束
11か収納・配設されている。
In the gas exchanger section I, in the annular chamber 15 between the outer cylinder 14 and the inner cylinder 12, there is a cylindrical chamber formed by concentrating one or more gas-permeable hollow fiber membranes in a cross-wound manner. A hollow fiber annular bundle 11 is housed and arranged.

外筒14と内筒12の両端部においては、中空糸環状束
11を形成する中空糸膜の両端が開口するように、外筒
14の両端及び内筒12の片端が閉塞するように隔壁で
支持されており、そのうちの一方の隔壁である第一隔壁
21は外筒14及び内筒14の端部をともに閉塞してお
り、他方の隔壁である第二隔壁22は外筒14の端部は
閉塞するか内筒12の端部は閉塞しないように形成する
At both ends of the outer cylinder 14 and the inner cylinder 12, partition walls are provided so that both ends of the outer cylinder 14 and one end of the inner cylinder 12 are closed so that both ends of the hollow fiber membrane forming the hollow fiber annular bundle 11 are open. One of the partition walls, the first partition wall 21, closes the ends of both the outer cylinder 14 and the inner cylinder 14, and the other partition wall, the second partition wall 22, closes the end of the outer cylinder 14. The end portion of the inner cylinder 12 is formed so as to be closed or not to be closed.

第一隔壁21には、中空糸膜内部空間と連通ずる酸素含
有ガスの入口19を有する第一のキャップ23を冠着さ
れており、一方、第二隔壁22には中空糸膜内部空間と
連通ずる酸素含有ガスの出口20を有する第二のキャッ
プ24が冠着されている。また、第二隔壁22には外筒
14の環状室15と連通しかつ第二のキャップ24とは
流密に独立した環状面液送人通路13か設けられている
A first cap 23 having an inlet 19 for oxygen-containing gas communicating with the hollow fiber membrane internal space is attached to the first partition wall 21, while a first cap 23 having an oxygen-containing gas inlet 19 communicating with the hollow fiber membrane internal space is attached to the second partition wall 22. A second cap 24 is crowned with an outlet 20 for oxygen-containing gas communicating therewith. Further, the second partition wall 22 is provided with an annular liquid delivery passage 13 that communicates with the annular chamber 15 of the outer cylinder 14 and is independent of the second cap 24 in a fluid-tight manner.

さらに外筒14のL端部近傍の周縁部には、血液用[1
18に連通する血液環状通路17が設けられている。
Furthermore, the peripheral edge near the L end of the outer cylinder 14 is provided with blood [1].
A blood annular passage 17 is provided which communicates with 18.

尚、外筒14の外周は化粧筒25にて空間を介して被覆
されている。
The outer periphery of the outer tube 14 is covered with a decorative tube 25 with a space therebetween.

一方、熱交換器部■はガス交換器部Iの下部に一体的に
配設されており、熱交換器部Hの外側ハウシフタ26内
には、血液を所定の温度に保持させるための熱交換用チ
ューブから構成される熱交換器27が設けられている。
On the other hand, the heat exchanger section (2) is integrally arranged at the lower part of the gas exchanger section I, and inside the outer house shifter 26 of the heat exchanger section H is a heat exchanger for maintaining blood at a predetermined temperature. A heat exchanger 27 made of a tube is provided.

この熱交換器27は二重管構造の熱交換用チューブがら
せん状に巻回して構成されており、この例では内管28
の内部を水か流通する水流路29とし、内管28と外管
30との間を血液か流通する血液流路31としている。
This heat exchanger 27 is constructed by spirally winding a heat exchange tube with a double-tube structure, and in this example, an inner tube 28
A water flow path 29 is used for water to flow through the inside of the tube, and a blood flow path 31 is used for blood to flow between the inner tube 28 and the outer tube 30.

そして、熱交換器部■の熱交換器27の内部空間に炭酸
ガスカートリッジ32が装填され、炭酸ガスカートリッ
ジ32からの炭酸ガスかチューブ37を経て第二のキャ
ップ24に設けられた炭酸ガス入口38に連通し、プラ
イミングの際に用いられるようになっている。
Then, a carbon dioxide gas cartridge 32 is loaded into the internal space of the heat exchanger 27 of the heat exchanger section (2), and the carbon dioxide gas from the carbon dioxide cartridge 32 passes through the tube 37 to the carbon dioxide gas inlet 38 provided in the second cap 24. It is used for priming.

なお、血液人口10および血液出口18の夫々の近傍に
は採血ボート33,34、および測温ボート35.36
か設けられている。
In addition, blood collection boats 33, 34 and temperature measurement boats 35, 36 are provided near the blood population 10 and blood outlet 18, respectively.
Or is provided.

以上の構成において、血液は血液入口lOを通り、ます
熱交換器27の血液流路31に導入され、水流路29を
流通している水との間で熱交換されて所定の温度とされ
る。次いで、血液環状送入通路13より環状室15内に
導入され、血液の一部は中空糸環状束11中へ入り、他
の一部は内筒12と中空糸環状束11との間に形成され
る間隙16へと流れ込む。その後、血液は中空糸環状束
11全体へと徐々に広がり、中空糸環状束11内の中空
糸膜の外側を流れて、外筒14の上端部近傍の周縁部に
設けられた血液環状通路17に至った後、血液出口18
より排出される。
In the above configuration, blood passes through the blood inlet lO, is introduced into the blood flow path 31 of the heat exchanger 27, and is heated to a predetermined temperature by exchanging heat with the water flowing through the water flow path 29. . Next, blood is introduced into the annular chamber 15 from the annular blood feeding passage 13, and part of the blood enters the annular hollow fiber bundle 11, and the other part is formed between the inner tube 12 and the annular hollow fiber bundle 11. The liquid flows into the gap 16 where the liquid is formed. Thereafter, the blood gradually spreads throughout the hollow fiber annular bundle 11, flows outside the hollow fiber membrane within the hollow fiber annular bundle 11, and flows through the blood annular passage 17 provided at the periphery near the upper end of the outer cylinder 14. After reaching the blood outlet 18
more excreted.

上述のようにして、血液は中空糸環状束11全体を流れ
る間に、ガス入口19から導入され中空糸膜の内部を流
れる酸素含有ガスとガス交換が行なわれて血液中に酸素
か付加されるとともに、炭酸ガスの除去か行なわれる。
As described above, while the blood flows through the entire hollow fiber annular bundle 11, gas exchange occurs with the oxygen-containing gas introduced from the gas inlet 19 and flowing inside the hollow fiber membrane, and oxygen is added to the blood. At the same time, carbon dioxide gas is removed.

次に、具体的な実施結果を説明する。Next, specific implementation results will be explained.

(実施例1) 外径φ30■鳳の集束筒であって表面にフッ素系樹脂を
コーティングしたものを作製し、中空糸膜を集束した。
(Example 1) A focusing cylinder having an outer diameter of 30 mm and having a surface coated with a fluororesin was prepared, and a hollow fiber membrane was focused.

集束後、中空糸環状束な集束筒上な移動させ抜き取ると
同時に内筒と外筒の間に中空糸束を挿入し、下記寸法お
よび第1図に示す構成を有する人工肺を作製した。なお
中空糸膜の集束時の張力は前半100g、後半的150
gとした。
After convergence, the hollow fiber annular bundle was moved onto the concentrating tube and extracted, and at the same time, the hollow fiber bundle was inserted between the inner tube and the outer tube to produce an oxygenator having the following dimensions and the configuration shown in FIG. 1. The tension of the hollow fiber membrane when converging is 100 g in the first half and 150 g in the second half.
It was set as g.

集束筒二長さ・−350−■ 外径・・・φ30−膳 表面・・・フッ素系樹脂コーティング 外筒内径(外側ケーシング)・・・φ5Bms内筒(内
側コア)外径・・・φ25m麿多孔質中空糸膜内径・・
・約300gm外径・・・約400終■ 平均細孔径・・・0.22s■ 空隙率・・・65〜70% 材質・・・ポリプロピレン 中空糸束・・・綾巻き、角度0= 130’中空糸環状
東有効長さ・・・180m1支持部材・・・ポリウレタ
ン樹脂 内筒外面と中空糸束内面間の間隙 −・・片側2.5i*m(全体て5I1厘)環状血液送
入通路の内径・・・21mm環状血液送人通路のスリッ
ト巾・・・8■膳血液環状通路・・・4×、loamの
断面積を有する内径58會■のリング状通路 以上の構成、仕様を持つ人工肺を用い、新鮮生血にて性
fl試験を行なった。生血としてAAM 1(^5so
ciation for the Advance o
f Medical In5tru+5entatio
n)の定める標準静脈血を作製した後前記人工肺に導い
た。
Focusing tube 2 length -350-■ Outer diameter...φ30-Bottom surface...Fluorine resin coating Outer tube inner diameter (outer casing)...φ5Bms Inner tube (inner core) outer diameter...φ25m Porous hollow fiber membrane inner diameter...
・Approx. 300 gm Outer diameter: approx. 400 mm Average pore diameter: 0.22 s Porosity: 65-70% Material: Polypropylene hollow fiber bundle: twill winding, angle 0 = 130' Effective length of the hollow fiber annular east: 180 m1 Supporting member: Gap between the outer surface of the polyurethane resin inner cylinder and the inner surface of the hollow fiber bundle: 2.5 i*m on one side (5 I1 rin in total) of the annular blood feeding passage Inner diameter: 21mm Slit width of the circular blood sending passageway: 8mm Blood circular passageway: An artificial body with a configuration and specifications that are greater than or equal to the ring-shaped passageway with an inner diameter of 58cm and a cross-sectional area of 4 x loam. A sex fl test was performed using lungs and fresh blood. AAM 1 as fresh blood (^5so
cation for the Advance o
f Medical In5tru+5entatio
After the standard venous blood specified in item (n) was prepared, it was introduced into the oxygenator.

ガス交換能テストについては血液流量1fL/m103
M/win及び5文/■inについて行なった。
For gas exchange capacity test, blood flow rate 1fL/m103
This was done for M/win and 5 sentences/■in.

また圧力損失に関しては血液流にl見/鱈口、3立/1
0及び517sinについて行なった。採血及び圧力の
測定は人工肺の血液入口、血液出口の近傍にて行なった
。採血した血液は、ガス分析装置にて酸素分圧、飽和度
、二酸化炭素分圧、CO□量、PH等を得た後、計算に
て酸素移動量、二酸化炭素移動量を求めた。人工肺へは
血液流量対流j、S、の比が1:lとなるように調法し
て酸素ガスを送風した。
In addition, regarding pressure loss, blood flow is 1/Kamaguchi, 3/1
This was done for 0 and 517 sins. Blood sampling and pressure measurements were performed near the blood inlet and blood outlet of the artificial lung. After obtaining the oxygen partial pressure, saturation degree, carbon dioxide partial pressure, CO□ amount, PH, etc. of the collected blood using a gas analyzer, the amount of oxygen transfer and the amount of carbon dioxide transfer were calculated. Oxygen gas was blown into the oxygenator in such a manner that the ratio of blood flow rate and convection flow j and S was adjusted to be 1:l.

その結果を第2図、第3図および第4図に示す。The results are shown in FIGS. 2, 3 and 4.

この結果から明らかな通り、本人工肺においては、圧力
損失はそれほど高くない範囲で高い酸素移動量、炭酸ガ
ス移動量か得られ、ガス交換性能か良好であることかわ
かる。
As is clear from these results, in this artificial lung, a high amount of oxygen transfer and a high amount of carbon dioxide gas transfer were obtained while the pressure loss was not so high, indicating that the gas exchange performance was good.

[発明の効果] 以り説IJ1シたように、本発明の中空糸膜型人工肺に
よれば、血液はその流れ方向か急激に曲げられたり、急
激に狭められたりすることかないため圧力損失の低下か
可能となり、血液充填量を少なくでき装置を小型化する
ことかてきる。また、本発明の中空糸膜型人工肺では、
血液は中空糸環状束内を放射状に流れてガス交換を行っ
た後血液環状通路に流れるため、血液か一様、均一に流
れ、血液の偏流を防ぐことができるという利点を有する
[Effects of the Invention] As stated in Theory IJ1, according to the hollow fiber membrane oxygenator of the present invention, the blood flow direction is not sharply bent or narrowed, so that the pressure loss is reduced. This makes it possible to reduce the amount of blood filled, which allows the device to be made smaller. Furthermore, in the hollow fiber membrane oxygenator of the present invention,
Blood flows radially within the hollow fiber annular bundle and flows into the blood annular passage after gas exchange, which has the advantage that the blood flows evenly and uniformly and that uneven blood flow can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面構成図、第2図は
酸素移動量を示すグラフ、第3図は炭酸ガス移動量を示
すグラフ、第4図は人工肺の圧力損失を示すグラフであ
る。 10−・・血液入口、ll−・中空糸(繊維)環状束1
2・・・内筒(内側コア)、13−・・血液環状送入通
路、14・・・外筒、15・・・環状室、16・・・間
隙、17・・・血液環状通路、18・・・血液出口、1
9・・・ガス入口、20・・・ガス出口、21・・・第
一隔壁、22・・・第二隔壁、23−・・第一のキャッ
プ、24−・・第二のキャップ、25・・・化粧筒、2
6・・・外側ハウジンク、27・・・熱交換器、28・
・・内管、29川水流路30・・・外管、31・・・血
液流路、32−・・炭酸ガスカートリッジ、33.34
・・・採血ボート、35゜36・・・測温ボート、37
・・・チューブ、38・・・炭酸ガス入口。
Fig. 1 is a cross-sectional diagram showing an embodiment of the present invention, Fig. 2 is a graph showing the amount of oxygen transferred, Fig. 3 is a graph showing the amount of carbon dioxide transferred, and Fig. 4 shows the pressure loss of the oxygenator. It is a graph. 10-・Blood inlet, ll-・Hollow fiber (fiber) annular bundle 1
2... Inner tube (inner core), 13... Blood annular feeding passage, 14... Outer tube, 15... Annular chamber, 16... Gap, 17... Blood annular passage, 18 ...Blood outlet, 1
9... Gas inlet, 20... Gas outlet, 21... First partition, 22... Second partition, 23-... First cap, 24-... Second cap, 25...・・Cosmetic tube, 2
6...Outer housing, 27...Heat exchanger, 28.
...Inner pipe, 29 River water flow path 30...Outer pipe, 31...Blood flow path, 32-...Carbon dioxide gas cartridge, 33.34
... Blood collection boat, 35° 36 ... Temperature measurement boat, 37
...Tube, 38...Carbon dioxide gas inlet.

Claims (1)

【特許請求の範囲】[Claims] (1)中心部に空間部を有する1本または複数本のガス
透過性中空糸膜を綾巻状に集束配糸して形成した円筒状
の中空糸環状束を外筒内に収納するとともに、該中空糸
環状束内側の円柱状空間部内に当該円柱状空間部の径よ
り小さい径の内筒を挿入し、 前記中空糸環状束を中空糸膜の両端が開口するように外
筒の両端及び前記内筒の片端を閉塞するように隔壁で支
持し、 外筒及び内筒の端部をともに閉塞する第一隔壁には中空
糸膜内部空間と連通する酸素含有ガスの入口または出口
を有する第一キャップを冠着し、かつ外筒の端部は閉塞
するが内筒の端部は閉塞しない第二隔壁には中空糸膜内
部空間と連通する酸素含有ガスの入口または出口を有す
る第二キャップを冠着するとともに、前記外筒の内部空
間と連通しかつ該第二キャップとは流密に独立した環状
血液送入通路を設け、 前記外筒の上端部近傍の周縁部に血液出口に連通する血
液環状通路を設けたことを特徴とする中空糸膜型人工肺
(1) A cylindrical hollow fiber annular bundle formed by converging and distributing one or more gas permeable hollow fiber membranes having a space in the center in a twill shape is housed in an outer cylinder, and Insert an inner cylinder having a diameter smaller than the diameter of the cylindrical space into the cylindrical space inside the hollow fiber annular bundle, and insert the hollow fiber annular bundle into the cylindrical space at both ends of the outer cylinder so that both ends of the hollow fiber membranes are open. The inner cylinder is supported by a partition wall so as to close one end thereof, and the first partition wall that blocks the ends of both the outer cylinder and the inner cylinder has a first partition wall that has an inlet or an outlet for oxygen-containing gas that communicates with the inner space of the hollow fiber membrane. A second cap is attached to the first cap, and the second partition wall has an inlet or an outlet for oxygen-containing gas communicating with the inner space of the hollow fiber membrane, and the end of the outer cylinder is closed, but the end of the inner cylinder is not closed. and an annular blood feeding passage communicating with the inner space of the outer cylinder and independent of the second cap in a fluid-tight manner, and communicating with a blood outlet at the peripheral edge near the upper end of the outer cylinder. A hollow fiber membrane oxygenator characterized by having a blood annular passage.
JP24968290A 1990-03-14 1990-09-19 Hollow yarn model oxygenator Pending JPH04129565A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24968290A JPH04129565A (en) 1990-09-19 1990-09-19 Hollow yarn model oxygenator
US07/668,562 US5263982A (en) 1990-03-14 1991-03-13 Hollow fiber membrane type artificial lung
EP19910103946 EP0446922A3 (en) 1990-03-14 1991-03-14 Hollow fiber membrane type artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24968290A JPH04129565A (en) 1990-09-19 1990-09-19 Hollow yarn model oxygenator

Publications (1)

Publication Number Publication Date
JPH04129565A true JPH04129565A (en) 1992-04-30

Family

ID=17196636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24968290A Pending JPH04129565A (en) 1990-03-14 1990-09-19 Hollow yarn model oxygenator

Country Status (1)

Country Link
JP (1) JPH04129565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762869A (en) * 1996-07-24 1998-06-09 Gish Biomedical, Inc. Blood oxygenator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762869A (en) * 1996-07-24 1998-06-09 Gish Biomedical, Inc. Blood oxygenator

Similar Documents

Publication Publication Date Title
US4376095A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
US5230862A (en) Apparatus for extracorporeal blood oxygenation
CA1216207A (en) Hollow fiber-type artificial lung
JPH0829162B2 (en) External perfusion type blood oxygenator
EP0167162A2 (en) Hollow fiber type oxygenator
JPH04129565A (en) Hollow yarn model oxygenator
JPH0439862B2 (en)
JPS6237993B2 (en)
JPS6237992B2 (en)
JPH031875A (en) Membrane type oxygenator
JPH0448486B2 (en)
JPH0127794Y2 (en)
JPS6311972Y2 (en)
JPS609820B2 (en) Hollow fiber membrane mass transfer device
JPS6237994B2 (en)
JPH042066B2 (en)
JPH03264074A (en) Hollow yarn film type artificial lung and thread distribution
JPS60225572A (en) Hollow yarn membrane type artificial lung
JPH04109956A (en) Hollow yarn type mechanical lung
JPS61119273A (en) Hollow yarn membrane type artificial lung
JP3051510B2 (en) Extracorporeal circuit device
JPS6137251A (en) Heat exchanger built-in artificial lung
JP2515828Y2 (en) Hollow fiber type oxygenator
JPS59108564A (en) Hollow yarn type artifical long
JPS6129360A (en) Artificial lung having dialytic function