JPS60150757A - Hollow yarn membrane type artificial lung - Google Patents

Hollow yarn membrane type artificial lung

Info

Publication number
JPS60150757A
JPS60150757A JP673684A JP673684A JPS60150757A JP S60150757 A JPS60150757 A JP S60150757A JP 673684 A JP673684 A JP 673684A JP 673684 A JP673684 A JP 673684A JP S60150757 A JPS60150757 A JP S60150757A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
blood
membrane
oxygenator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP673684A
Other languages
Japanese (ja)
Inventor
純 加茂
家嗣 山藤
敦 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP673684A priority Critical patent/JPS60150757A/en
Publication of JPS60150757A publication Critical patent/JPS60150757A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は中空糸膜型人工肺に関し、詳細には特徴的な短
冊状微小空孔を有する多孔質ポリエチレン中空糸膜全ガ
ス交換膜とする中空糸膜型人工肺に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a hollow fiber membrane oxygenator, and in particular, a hollow fiber membrane that is a porous polyethylene hollow fiber membrane having characteristic strip-shaped micropores and a full gas exchange membrane. Regarding type artificial lungs.

〔在米技術〕[US technology]

従来より、脱型人工肺としてシリコン膜等の非多孔質膜
やテフロン、ポリプロピレンのような疎水性素材から成
る多孔質膜が用いらnてきた。又、膜形態としては平膜
型と中空糸膜型が形態としては装置の小型化が可能な中
空糸膜型が優れている。(多孔質中を糸膜を用いた人工
肺の例としては、例えば特開昭54−160098号や
特開昭57−136456号がある。)しかしながら、
これ1での多孔質中空糸膜にも、(1)ガス交換性能が
(特に二酸化炭素の除去能に於いて)未だ充分でない、
(2)長時間使用すると血液又は血漿の漏洩が認められ
る、という欠点がある。
Conventionally, non-porous membranes such as silicone membranes and porous membranes made of hydrophobic materials such as Teflon and polypropylene have been used as demolding oxygenators. Further, the membrane type is a flat membrane type and a hollow fiber membrane type, and the hollow fiber membrane type is superior because it allows for miniaturization of the device. (Examples of oxygenators using thread membranes in porous materials include, for example, Japanese Patent Application Laid-Open No. 160098/1982 and Japanese Patent Laid-open No. 136456/1989.) However,
The porous hollow fiber membrane in 1 also has (1) insufficient gas exchange performance (particularly in carbon dioxide removal ability);
(2) There is a drawback that blood or plasma leaks when used for a long time.

〔発明の目的〕[Purpose of the invention]

このような現状に鑑み、本発明者等は中空糸膜型人工肺
のガス交換性能を同上させ、かつ血液等を漏洩させない
ことを主な目的として鋭意検討した結果、本発明を完成
するに至った。
In view of the current situation, the present inventors conducted intensive studies with the main purpose of improving the gas exchange performance of the hollow fiber membrane oxygenator and preventing leakage of blood, etc., and as a result, completed the present invention. Ta.

〔発明の構成〕[Structure of the invention]

即ち、本発明の要旨とするところは、 1)微小空孔が中空糸膜内壁面より外壁面に相互につな
がった積層構造を有し、該微小空孔が下記の特性値で特
徴づけられ、空孔率が30〜90vot%、透水圧が4
 kg7cm2以上である多孔質ポリエチレン中空糸膜
をガス交換膜とすること′1cIP!f徴とする中空糸
膜型人工肺にある。
That is, the gist of the present invention is as follows: 1) The micropores have a laminated structure in which the inner wall surface of the hollow fiber membrane is interconnected with the outer wall surface, and the micropores are characterized by the following characteristic values, Porosity is 30-90 vot%, water permeability is 4
Use a porous polyethylene hollow fiber membrane with a weight of 7 cm2 or more as a gas exchange membrane'1cIP! Hollow fiber membrane oxygenator with f symptoms.

(リ 繊維長刀向に配列した短冊状微小空孔であり、繊
維長刀向への平均的な長?(′tv)と平均的中(dv
)とが、2v=cL2〜5 pm、 Lv/clv=3
〜50の関係にあり、 (2)短冊状微小空孔をバブルポイント法で測定したと
きに、バブルポイントが1kg/α2〜12kg/cr
n2の範囲に入る。
(Li) It is a strip-shaped microvoid arranged in the direction of the fibers, and the average length ('tv) and the average hit (dv) in the direction of the fibers.
), 2v=cL2~5 pm, Lv/clv=3
~50, (2) When the strip-shaped micropores are measured by the bubble point method, the bubble point is 1 kg/α2 ~ 12 kg/cr.
falls within the range of n2.

本発明の中空糸膜は不質的にポリエチレンより形成され
たものであり、更に従来にない特徴的な膜構造を形成し
ている。即ち、繊維長刀向に配列した短冊状微小空孔で
あり、繊維長刀向がこの範囲より小さいとガス交換性能
が充分ではなく、この範囲よフ大きいと水蒸気の蒸発が
大となり中空糸膜外壁面へ付着し、二酸化炭素の除去能
を低下させる。
The hollow fiber membrane of the present invention is made of polyethylene, and has a unique membrane structure not seen in the past. In other words, they are strip-shaped micropores arranged in the direction of the fibers. If the direction of the fibers is smaller than this range, the gas exchange performance will not be sufficient, and if it is larger than this range, the evaporation of water vapor will be large and the outer wall surface of the hollow fiber membrane will be damaged. It adheres to the carbon dioxide and reduces the ability to remove carbon dioxide.

他方、短冊状微小空孔を後述のバブルポイント法で測定
したときに、バブルポイントが1 kg/cm2〜15
 kg/cm2の範囲に入らなければならない。
On the other hand, when the strip-shaped micropores are measured by the bubble point method described below, the bubble point is 1 kg/cm2 to 15
It must be within the range of kg/cm2.

1 kg7cm2未満であると前述と同様に水蒸気蒸発
が大となり二酸化炭素の除去能が経時的に低下する。又
、血液等の漏洩の危険性が高い。15kgZ−全超える
とガス交換性能が充分でない。
If it is less than 1 kg7cm2, water vapor evaporation will increase as described above, and the carbon dioxide removal ability will decrease over time. Also, there is a high risk of leakage of blood, etc. If the weight exceeds 15kgZ, the gas exchange performance will not be sufficient.

膜素材が疎水性であっても、血液が加圧下に置かれるた
め多孔化している場合は血液や血漿が膜を通過すること
がある。不発明者等は模型人工肺の通常の操作圧力範囲
で血液等が漏洩しない条件を種々検討した結果、前記の
特徴的な短冊状微小空孔でおって、かつ後述の測定法に
よる透水圧が4 kg/ crn2以上であれば血液等
の漏洩がないことを見出し本願発明全完成した。
Even if the membrane material is hydrophobic, blood or plasma may pass through the membrane if it is porous because the blood is placed under pressure. The inventors investigated various conditions under which blood, etc. would not leak within the normal operating pressure range of a model oxygenator, and found that the above-mentioned characteristic strip-shaped micropores have a water permeability pressure measured by the measurement method described below. It was found that there was no leakage of blood etc. when the weight was 4 kg/crn2 or more, and the present invention was completely completed.

更に、このよ5な中空糸膜は空孔率が30〜90 vo
1%の範囲に入ることが必要である。シリコン膜のよう
な非多孔質膜ではガスが膜中に溶解し拡散によって透過
するが、多孔質膜ではガスが膜の多孔部を体積流で透過
するため・多孔質膜の万がガス交換性能に優れると一般
に言われている。しかしながら、本発明のようなポリエ
チレンでは非多孔部分に於けるガスの透過速度はシリコ
ンに比較して非常に低いため、血液のガス交換性能を向
上させるためには開孔数が極めて重要な因子となる。本
発明者等の検討によれに、開孔数全空孔率で表現したと
きに、30 vo1%未満であると酸素付加能及び二酸
化炭素除去能ともに不光分である。90 vo1%を超
えると中空糸膜自身の強度が不光分になり、中空糸膜の
取り扱い時や使用時にピンホールを発生する危険性が非
常に大となる。より好筐しい空孔率の範囲は40〜90
 vo1%である。
Furthermore, such a hollow fiber membrane has a porosity of 30 to 90 vo
It is necessary to fall within the range of 1%. With non-porous membranes such as silicone membranes, gas dissolves in the membrane and passes through by diffusion, but with porous membranes, gas passes through the pores of the membrane in a volumetric flow.The gas exchange performance of porous membranes is It is generally said to be excellent in However, in the polyethylene of the present invention, the gas permeation rate in the non-porous part is very low compared to silicone, so the number of pores is an extremely important factor in improving blood gas exchange performance. Become. According to studies by the present inventors, when expressed as total porosity, oxygen addition ability and carbon dioxide removal ability are opaque when the number of open pores is less than 30 vo1%. If it exceeds 90 vol 1%, the strength of the hollow fiber membrane itself becomes opaque, and there is a very high risk of pinholes occurring when handling or using the hollow fiber membrane. A more favorable porosity range is 40 to 90.
vo1%.

又、このような中空糸膜の内径I’m 100〜500
μmであることが好ましい。100 pm以下であると
血液の流体力学的な抵抗が非常に大きくなり、溶血の程
度が極めて甚大である。更に中空糸膜内部で血液も凝固
し易くなる。500pmを超えると、ガス交換性能が低
くなジ実用に耐える装置を組むことが不可能である。
Moreover, the inner diameter I'm of such a hollow fiber membrane is 100 to 500
Preferably it is μm. If it is less than 100 pm, the hydrodynamic resistance of blood becomes very large, and the degree of hemolysis becomes extremely large. Furthermore, blood also tends to coagulate inside the hollow fiber membrane. If it exceeds 500 pm, the gas exchange performance will be low and it will be impossible to assemble a device that can withstand practical use.

膜厚は10〜150μmであることが好ブしい。10μ
m未満であると、中空糸膜の強度が低下し、偏平化した
クビンホール等の欠陥を発生し易くなる。150μmを
超えるとガスの透過抵抗が大きくなり性能が光分発現さ
れない。
The film thickness is preferably 10 to 150 μm. 10μ
If it is less than m, the strength of the hollow fiber membrane decreases, and defects such as flattened holes are likely to occur. If it exceeds 150 μm, the gas permeation resistance becomes large and the optical performance cannot be achieved.

このようなポリパチレン中空糸膜は例えば1〜15のメ
ルトインテックス0.955以上、好1しくけ0960
以上の密度を有する不質的に分岐の少い高密度ポリエナ
レン全出発物質として、135〜215℃の温度領域で
中空糸膜製造用ノズルを用いて紡糸ドラフト100〜1
0000の範囲で溶融紡糸し、次いで40℃以下の温度
で5〜200%冷延伸を行い、次いで40〜130℃の
温度領域に於て1段又は多段に熱延伸を行い、その際冷
延伸及び熱延伸を合せた総延伸量が100〜900%の
範囲であり、しかる後必要に厄じて100〜120℃の
温度領域に於て熱セラトラ行うことによって製造される
Such a polypatylene hollow fiber membrane has a melt index of 1 to 15, preferably 0.955 or more, preferably 0.960
High-density polyenalene with a density of 100 to 100% is used as a total starting material with a density of 100 to 100% by using a nozzle for producing hollow fiber membranes in the temperature range of 135 to 215°C.
0000, followed by cold stretching by 5 to 200% at a temperature of 40°C or lower, followed by hot stretching in one or multiple stages in a temperature range of 40 to 130°C, during which cold stretching and The total amount of stretching including hot stretching is in the range of 100 to 900%, and then, if necessary, heat celatra is performed in a temperature range of 100 to 120°C.

第1図はこのような手段で得られる中空糸膜表面の構造
の1例を模式的に示したものである。
FIG. 1 schematically shows an example of the structure of the surface of a hollow fiber membrane obtained by such a method.

第1図において1は短冊状微小を孔であj)、Lv。In FIG. 1, 1 is a strip-shaped microhole (j), Lv.

dvは1つの短冊状微小空孔の長さと中金示している。dv indicates the length of one rectangular micropore and the inner diameter.

平均的なjv、請求めるVCは、走査型電子顕微鏡によ
る観察視野の中から無作為に抽出して算術平均すれば良
い。
The average JV and billable VC can be determined by randomly extracting them from the field of view observed using a scanning electron microscope and calculating the arithmetic average.

第2図はこのような多孔質ポリエチレン中空糸膜を組み
込んでなる中空糸膜型人工肺の1例でらる。筒体(2)
の内部に、中空糸膜(3)がほぼ平行に配列されており
、両末端にウレタン樹脂等の接着用樹脂(9)で筒体(
2)に固定されており、中空部分は両端で開口している
。中空糸膜内部に血液を流す場合には、血液は導入口(
4)に導かれ、中空糸膜(3)の中空部を流れた後排出
口(5)より中空糸膜型人工肺の外に出る。−万酸素又
は酸素を含むガスは、導入口(6)より中空糸膜型人工
肺に導かれ、ガス室(8)ヲ流れ血液とのガス交換をお
こなった後、排出口(7)より中空糸膜型人工肺の外に
出る。−万、中空糸膜外部空間に血液を流す場合は導入
口(6)より血液を導入し、排出口(乃より血液を排出
する。又、ガスは導入口(4)より導入し中空糸膜の中
空部を通過し排出口(5)より排出される。第2図■中
空糸膜型人工肺は1例に過ぎず、取り扱い性等を考慮す
れば、種々の型式が可能なことは言う1でもない。
FIG. 2 shows an example of a hollow fiber membrane oxygenator incorporating such a porous polyethylene hollow fiber membrane. Cylinder (2)
Hollow fiber membranes (3) are arranged almost parallel inside the cylinder body (
2), and the hollow part is open at both ends. When blood flows inside the hollow fiber membrane, the blood flows through the inlet (
4), flows through the hollow part of the hollow fiber membrane (3), and then exits the hollow fiber membrane oxygenator through the outlet (5). - 1,000,000 oxygen or a gas containing oxygen is introduced into the hollow fiber membrane oxygenator through the inlet (6), flows through the gas chamber (8), exchanges gas with blood, and then enters the hollow fiber membrane oxygenator through the outlet (7). Exit the thread membrane oxygenator. - When blood is to flow into the space outside the hollow fiber membrane, the blood is introduced from the inlet (6) and the blood is discharged from the outlet (no). Also, gas is introduced from the inlet (4) and the hollow fiber membrane It passes through the hollow part and is discharged from the discharge port (5).Figure 2 ■The hollow fiber membrane oxygenator is just one example, and it is possible to use various types if handling ease is taken into account. Not even 1.

以上、述べて米たように特徴的な短冊状微小空孔を有す
る多孔質ポリエチレン中空糸膜を組み込んでなる中空糸
膜型人工肺は、従来の人工肺に比較してガス交換性能に
優れるため小型軽量化が可能であり、そのため血液ブラ
イミング量が少ないと言う特徴ばかりでなく、二酸化炭
素除去能の経時変化が極めて少なく、かつ血液等の洩れ
がないと言った特性を有するため、開心術は言うに及ば
ず、長期の体外循環10M0)等にも非常に有用である
As mentioned above, the hollow fiber membrane oxygenator, which incorporates a porous polyethylene hollow fiber membrane with characteristic strip-shaped micropores, has superior gas exchange performance compared to conventional oxygenators. Open-heart surgery is possible because it can be made smaller and lighter, and therefore has the characteristics of less blood brimming, as well as extremely little change in carbon dioxide removal ability over time and no leakage of blood, etc. Needless to say, it is also very useful for long-term extracorporeal circulation (10M0), etc.

〔実施例〕〔Example〕

以下、不発明を実施例により更に詳しく説明するが、本
発明において使用する測定方法は以下に示した方法によ
った。
Hereinafter, the invention will be explained in more detail with reference to Examples, and the measuring method used in the present invention was as shown below.

(1)’2孔率:水銀圧入ポロシメーターCカルロエル
バ社221型)音用いて測定した。
(1) '2 Porosity: Measured using a mercury intrusion porosimeter C Carlo Erba Model 221).

(2)透水圧;多孔質ポリエチレン中空糸膜96不f 
11字型に束ねて中空開口部全つVタン樹脂で固めてモ
ジュールを作成しfC6中孕糸膜の有効長は20zとし
た。このモジュールの中空内部に25℃に温度コン′ト
ロールした加圧水をα25 klil/m2間隔で昇圧
していき(各圧力での保持時間は30 secとした)
、中空糸膜を透過してくる水の量をメスシリンダーで計
測した。圧力と透過水量との関係を作図し、透過水量が
50 mlと20mLの2点をm線で結び、圧力軸との
交点を透水圧とした。圧力単位はkg/6n2とした〇 (3)バブルポイント;多孔質ポリエチレン中空糸膜を
48本U字型に束ねて中窒開ロ部全ウレタン樹脂で固め
てモジュールを作成した。
(2) Water permeability pressure; porous polyethylene hollow fiber membrane 96f
A module was created by bundling them in an 11-shape and solidifying all the hollow openings with V-tan resin, and the effective length of the fC6 medium fiber membrane was set to 20z. Pressurized water whose temperature was controlled at 25°C was raised inside the hollow interior of this module at intervals of α25 klil/m2 (the holding time at each pressure was 30 sec).
The amount of water permeating through the hollow fiber membrane was measured using a measuring cylinder. The relationship between the pressure and the amount of permeated water was plotted, the two points where the amount of permeated water was 50 ml and 20 mL were connected with an m line, and the intersection with the pressure axis was taken as the permeated pressure. The pressure unit was kg/6n2. (3) Bubble point: A module was created by bundling 48 porous polyethylene hollow fiber membranes into a U-shape and solidifying the inner opening with urethane resin.

中空糸膜の有効長は20c1nとした。このモジュール
f 99.5 vo1%エタノール中に浸漬し、かつエ
タノールを中空糸膜内部へ光分に浸透させた後(エタノ
ールの温度は25℃)、中空内部に窒素ガスf 11に
97cm2の間隔で昇圧正大した(各圧力での保持時間
は10θθCとしfc)。圧力バランスが破れてエタノ
ール中に気泡が発生していく様子を目視により観察し、
中空糸膜全体から均一に気泡が発生する時点の窒素ガス
圧力をバブルポイントとした。圧力単位はに9/6n2
とした。
The effective length of the hollow fiber membrane was 20c1n. After this module was immersed in F 99.5 VO 1% ethanol and the ethanol was allowed to penetrate into the inside of the hollow fiber membrane (the temperature of the ethanol was 25°C), nitrogen gas F 11 was added into the hollow interior at intervals of 97 cm2. The pressure was increased to a normal level (the holding time at each pressure was 10θθC, fc). Visually observe how the pressure balance is broken and bubbles are generated in the ethanol.
The nitrogen gas pressure at which bubbles were uniformly generated throughout the hollow fiber membrane was defined as the bubble point. Pressure unit is 9/6n2
And so.

(4)血液ガス分析:血液ガス分析計(コーニング社1
58型)により、血液のpH,酸素濃度、二酸化炭素濃
度を測定した。
(4) Blood gas analysis: Blood gas analyzer (Corning Co., Ltd. 1
58 type) to measure blood pH, oxygen concentration, and carbon dioxide concentration.

実施例1〜4及び比較例1〜3 明細書中に記載の方法に準じて種々の条件を変え表−1
に示すような特性値を有する多孔質ポリエチレン中空糸
膜を作製した。これらの中空糸膜を束ねて、第2図に示
すような有効長が9cmで膜面積が1.2 m2の中空
糸膜型人工肺を作製した。人工肺筒体内での中空糸膜の
光填率はいずれの場合も50%とした。
Examples 1 to 4 and Comparative Examples 1 to 3 Various conditions were changed according to the method described in the specification Table 1
A porous polyethylene hollow fiber membrane having the characteristic values shown in was fabricated. These hollow fiber membranes were bundled to produce a hollow fiber membrane oxygenator having an effective length of 9 cm and a membrane area of 1.2 m2 as shown in FIG. The light filling rate of the hollow fiber membrane inside the oxygenator cylinder was 50% in all cases.

ヘマトクリット値55%、ヘモグロビン濃度11.7り
/dtの新鮮ヘパリン加牛血を静脈血作製装置に導き、
入口条件が02飽和度Elv02=65±5%、C02
分圧PvO02=45±5 turn Hfの静脈血を
作製した。熱交換器により37℃とした牛血液を血流量
1200 mt/minで試作人工肺入口(4)より送
る一万、人工肺のガス室(8)に1212−0O/m1
no 流iで100%02ガスを吹送した。このような
回路にて血液中のガス交換を行ない、開始後1時間、5
時間、15時間の02付加能。
Fresh heparinized bovine blood with a hematocrit value of 55% and a hemoglobin concentration of 11.7 l/dt is introduced into a venous blood preparation device,
Inlet conditions are 02 saturation Elv02=65±5%, C02
Venous blood with partial pressure PvO02=45±5 turns Hf was prepared. Bovine blood heated to 37°C by a heat exchanger was sent through the prototype oxygenator inlet (4) at a blood flow rate of 1200 mt/min to the oxygenator's gas chamber (8) at 1212-0 O/m1.
100% 02 gas was blown with flow i. Gas exchange in the blood is carried out in such a circuit, and 1 hour after the start, 5
02 additional capacity of 15 hours.

CO2除去能、血液等の洩れの有無を測定した。The CO2 removal ability and the presence or absence of leakage of blood, etc. were measured.

o2付加能、C02除去能は、人工肺の前後で採血した
血液中の02濃度、Co2濃度及びpHを血液ガス分析
計で測定し算出し几。尚、測定中に血液が不足した場合
は、再度前記静脈血条件に調整し直した後に測定を継続
した。
The O2 addition capacity and CO2 removal capacity are calculated by measuring the O2 concentration, Co2 concentration, and pH in blood collected before and after oxygenation using a blood gas analyzer. If there was a shortage of blood during the measurement, the measurement was continued after readjusting to the venous blood conditions described above.

このようにして測定した各人工肺の02付加能。02 addition capacity of each oxygenator measured in this way.

002除去能、血液等の漏洩の有無の結果全表−2に示
す。不発明の範囲内に入る中空糸膜型人工肺(実施例A
1〜4)の02付加能及びCO2除去能はいずれも良好
であり、しかも経時的な変化が極めて少なかった。他方
、比較実施例A1のように空孔率が低いと02付加能及
びCO□除去能は極めて低く実用性に乏しいものであっ
た。
The results of the 002 removal ability and the presence or absence of leakage of blood etc. are shown in Table 2. Hollow fiber membrane oxygenator falling within the scope of non-invention (Example A
The 02 addition ability and CO2 removal ability of Nos. 1 to 4) were both good, and there was very little change over time. On the other hand, when the porosity was low as in Comparative Example A1, the 02 addition ability and CO□ removal ability were extremely low and impractical.

又、比較実施例屋2のように透水圧が2.0ゆ/an2
と低い中空糸膜を使用した場合、血漿の漏洩が認められ
、そのためガス交換性能の経時的な低下が人きく中空糸
膜型人工肺としては用をなさないものであった3、ざら
に、比較実施例A5のように中空糸膜の内径が550μ
mと大きい場合には、ガス交換性能の水準が極めて低く
実用的ではなかった。
Also, like Comparative Example 2, the water permeability pressure is 2.0 Yu/an2
When using a hollow fiber membrane with a low temperature, plasma leakage was observed, and as a result, the gas exchange performance deteriorated over time, making it useless as a hollow fiber membrane oxygenator3. The inner diameter of the hollow fiber membrane is 550μ as in Comparative Example A5.
When the diameter is as large as m, the level of gas exchange performance is extremely low and is not practical.

このように不発明の中空糸膜型人工肺のガス交換性能は
極めて良好であり、がり経時的低下も少ない。更に血液
等の漏洩もなく安全の点からも長時間の使用が可能であ
る。
As described above, the gas exchange performance of the hollow fiber membrane oxygenator according to the invention is extremely good, and there is little decrease in stiffness over time. Furthermore, there is no leakage of blood, etc., and it can be used for a long time from a safety point of view.

表 −1 表−一 2Table-1 Table-1 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、不発明に使用される多孔質ポリエチレン中壁
糸膜表面の構造の1例を示す模式図である。第2図は、
不発明の中空糸膜型人工肺の1例である。 1・・・短冊状微小便孔 Lv・・・短冊状微小便孔の繊維長方向の長さdv・・
・短冊状微小便孔の巾 2・・・中空糸膜型人工肺の筒体 3・・・多孔質ポリエチレン中空糸膜 4・・・血液又はガス導入口 5・・・血液又はガス排出口 6・・・ガス又は血液導入口 ア・・・ガス又は血液排出口 8・・・ガス又は血液室(中壁糸膜外部空間)9・・・
接層用樹脂 第1図における矢印は繊維長方向を示す。 出 願 人 三菱レイヨン株式会社 峙 2 ン
FIG. 1 is a schematic diagram showing an example of the structure of the porous polyethylene inner wall fiber membrane surface used in the invention. Figure 2 shows
This is an example of an uninvented hollow fiber membrane oxygenator. 1... Rectangular micro urinary hole Lv... Length dv of the rectangular micro urinary hole in the fiber longitudinal direction...
- Width of the rectangular micro-urinary hole 2 ... Cylindrical body of the hollow fiber membrane type oxygenator 3 ... Porous polyethylene hollow fiber membrane 4 ... Blood or gas inlet 5 ... Blood or gas outlet 6 ...Gas or blood inlet port A...Gas or blood outlet port 8...Gas or blood chamber (space outside the medial membrane) 9...
The arrow in FIG. 1 indicates the fiber length direction. Applicant: Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)微小空孔が中空糸膜内壁面より外壁面に相互につな
がった積層構造を有し、該微小空孔が下記の特性値で特
徴づけられ、空孔率が30〜90 VOI%、透水圧が
4’に9/cm2以上である多孔質ポリエチレン中空糸
膜をガス父換膜とすることを特徴とする中空糸膜型人工
肺。 (1)繊維長ガロに配列し−た短冊状微小空孔でめり、
繊維長ガロへの平均的な長さくtv)と平均的中(av
)とが、ン■=α2〜571m、 lv/dv=3〜5
0の関係にあり、 (2)短冊状微小空孔をバブルポイント法で測定したと
きに、バブルポイント法 〜15kg/crn2の範囲に入る。 2)多孔質ポリエチレン中空糸膜の内径が100〜50
0μm1膜厚が10〜150μmである特許請求の範囲
第1項記載の中空糸膜型人工肺。 3)多孔質ポリエチレン中空糸膜の空孔率が、30〜9
0 vo1%である特許請求の範囲第1項又は第2項記
載の中空糸膜型人工肺。
[Claims] 1) The micropores have a laminated structure in which the inner wall surface of the hollow fiber membrane is interconnected with the outer wall surface, and the micropores are characterized by the following characteristic values, and the porosity is 30. A hollow fiber membrane oxygenator characterized in that a porous polyethylene hollow fiber membrane having a VOI% of ~90 VOI% and a water permeability of 4' to 9/cm2 or more is used as a gas exchange membrane. (1) Filled with strip-shaped micropores arranged in long fibers,
Average length (tv) and average hit (av) to fiber length Gallo
) and n■=α2~571m, lv/dv=3~5
(2) When the strip-shaped micropores are measured by the bubble point method, the weight falls within the range of bubble point method to 15 kg/crn2. 2) The inner diameter of the porous polyethylene hollow fiber membrane is 100 to 50
The hollow fiber membrane oxygenator according to claim 1, wherein the membrane thickness is 10 to 150 μm. 3) The porosity of the porous polyethylene hollow fiber membrane is 30 to 9
The hollow fiber membrane oxygenator according to claim 1 or 2, which has a content of 0 vol%.
JP673684A 1984-01-18 1984-01-18 Hollow yarn membrane type artificial lung Pending JPS60150757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP673684A JPS60150757A (en) 1984-01-18 1984-01-18 Hollow yarn membrane type artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP673684A JPS60150757A (en) 1984-01-18 1984-01-18 Hollow yarn membrane type artificial lung

Publications (1)

Publication Number Publication Date
JPS60150757A true JPS60150757A (en) 1985-08-08

Family

ID=11646504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP673684A Pending JPS60150757A (en) 1984-01-18 1984-01-18 Hollow yarn membrane type artificial lung

Country Status (1)

Country Link
JP (1) JPS60150757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141467A (en) * 1984-08-03 1986-02-27 株式会社クラレ Membrane for artificial lung
JPH01104271A (en) * 1987-07-11 1989-04-21 Dainippon Ink & Chem Inc Membrane type oxygenator
US6885615B1 (en) 1998-12-21 2005-04-26 Seiko Epson Corporation Piezoelectric actuator, time piece, and portable device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141467A (en) * 1984-08-03 1986-02-27 株式会社クラレ Membrane for artificial lung
JPH0611319B2 (en) * 1984-08-03 1994-02-16 株式会社クラレ Membrane for artificial lung
JPH01104271A (en) * 1987-07-11 1989-04-21 Dainippon Ink & Chem Inc Membrane type oxygenator
US6885615B1 (en) 1998-12-21 2005-04-26 Seiko Epson Corporation Piezoelectric actuator, time piece, and portable device
US7078847B2 (en) 1998-12-21 2006-07-18 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
US7253552B2 (en) 1998-12-21 2007-08-07 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device

Similar Documents

Publication Publication Date Title
EP0299381B1 (en) Membrane-type artificial lung and method of using it
US5192320A (en) Artificial lung and method of using it
US5938929A (en) Polysulfone hollow fiber semipermeable membrane
EP0164025B1 (en) Hollow fiber membrane type oxygenator and method for manufacturing same
JPS624994B2 (en)
JP2700170B2 (en) Membrane oxygenator
BRPI0514312B1 (en) hollow fiber membrane module and process for manufacturing a hollow fiber membrane module
WO1989002282A1 (en) Medical instrument and production thereof
US4925534A (en) Hemodialysis method and membrane
EP0041692B1 (en) Blood oxygenator
JPS60150757A (en) Hollow yarn membrane type artificial lung
JPH0439862B2 (en)
JPS61232860A (en) Polysulfone hollow yarn for separating serum
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPS63230173A (en) Hollow yarn membrane type artificial lung
JPH042067B2 (en)
JPS6237993B2 (en)
JPS6237992B2 (en)
JPH0321189B2 (en)
JPS59108564A (en) Hollow yarn type artifical long
JPH0321188B2 (en)
JP3152691B2 (en) Porous hollow fiber membrane, oxygenator and extracorporeal circuit
JPS59108563A (en) Hollow yarn type artifical long
JP2002035557A (en) Hollow fiber microporous membrane and membrane type oxygenator having the same incorporated therein
JPH0763505B2 (en) Method for producing porous hollow fiber for artificial lung