JPH03158166A - Hollow fiber membrane type fluid treating device - Google Patents

Hollow fiber membrane type fluid treating device

Info

Publication number
JPH03158166A
JPH03158166A JP1299192A JP29919289A JPH03158166A JP H03158166 A JPH03158166 A JP H03158166A JP 1299192 A JP1299192 A JP 1299192A JP 29919289 A JP29919289 A JP 29919289A JP H03158166 A JPH03158166 A JP H03158166A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
housing
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1299192A
Other languages
Japanese (ja)
Inventor
Tomonori Muramoto
智則 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1299192A priority Critical patent/JPH03158166A/en
Publication of JPH03158166A publication Critical patent/JPH03158166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cause the uniform passage of flowing-in fluid between hollow fiber membranes and to perform the effective use of the whole of a membrane wall by a method wherein the optimum condition of the filling rate of the hollow fiber membrane in a housing is provided. CONSTITUTION:A porous hollow fiber membrane 6 is disposed substantially in parallel along the longitudinal direction of a housing 2. The filling rate in a housing of a hollow fiber membrane is set to a value within a range of 45-65%. Thus, flowing-in fluid uniformly passes a gap between the hollow fiber membranes 6 and 6. This constitution increases the efficient of contact between the membrane surface of the hollow fiber membrane and fluid, ensures an enough effective membrane area, and improves fluid treating ability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多孔質中空糸膜の膜壁を介して、たとえばガ
ス交換等の流体処理がなされる中空糸膜型流体処理装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hollow fiber membrane type fluid treatment device in which fluid treatment such as gas exchange is performed through the membrane wall of a porous hollow fiber membrane.

[従来の技術] 近年、心臓手術等において、患者の血液を体外に導き、
これに酸素を添加するとともに炭酸ガスを除去するため
に、体外循環回路を構成する中空糸膜型人工肺が用いら
れている。
[Prior art] In recent years, in heart surgery, etc., the patient's blood is guided outside the body.
In order to add oxygen and remove carbon dioxide gas, a hollow fiber membrane oxygenator is used to constitute an extracorporeal circulation circuit.

この中空糸膜型人工肺は、一般に複数本の中空糸膜を束
ねてハウジング内に収納してなり、これらの中空糸膜の
内側または外側のいずれか一方に被処理流体として血液
を循環させ、他方に処理流体として酸素含有ガスを吹送
し、中空糸膜の膜壁を介して気液接触させ、所望のガス
交換を行なうものである。
This hollow fiber membrane oxygenator generally has a plurality of hollow fiber membranes bundled together and housed in a housing, and blood is circulated as a fluid to be treated either inside or outside of these hollow fiber membranes. Oxygen-containing gas is blown to the other side as a processing fluid, and gas-liquid contact is carried out through the membrane wall of the hollow fiber membrane, thereby performing desired gas exchange.

このような中空糸膜型人工肺のうち、中空糸膜の内側に
血液を循環させ、その外側に酸素含有ガスを吹送する、
いわゆる内部潅流型のものとしては、実開昭55−13
8947号公報のものがあげられる。
Among such hollow fiber membrane oxygenators, blood is circulated inside the hollow fiber membrane, and oxygen-containing gas is blown outside the membrane.
As for the so-called internal perfusion type,
One example is the one published in Publication No. 8947.

[発明が解決しようとする課題] ところで、上記公報の中空糸膜型人工肺にあっては、従
来、ハウジング内において、中空糸膜と中空糸膜との間
隙が狭く、かつ軸方向に沿って積極的に変化することの
ない状態で束ねて収納され、拘束部によって中空糸膜束
に絞り部を有していた。このように中空糸膜の充填率が
絞り部で高く、それ以外の部分で低いため酸素含有ガス
を吹送した場合、このガスと中空糸膜表面との接触が不
均一であり、全体を有効に使用しているとはいえなかっ
た。
[Problems to be Solved by the Invention] Incidentally, in the hollow fiber membrane oxygenator disclosed in the above-mentioned publication, conventionally, the gap between the hollow fiber membranes is narrow in the housing, and the gap between the hollow fiber membranes is narrow along the axial direction. The hollow fiber membrane bundle was stored in a bundle in a state where it could not be actively changed, and the hollow fiber membrane bundle had a constriction part due to the restraining part. In this way, the filling rate of the hollow fiber membrane is high in the constricted area and low in other areas, so when oxygen-containing gas is blown, the contact between this gas and the hollow fiber membrane surface is uneven, making the entire area less effective. I couldn't say it was being used.

本発明はかかる問題点に鑑みてなされたものであって、
その目的は、ハウジング内における中空糸膜の充填率の
最適条件を与えることにより、流入した流体が中空糸膜
間を均等に通り、膜壁全体を有効に使用することができ
、たとえば中空糸膜の外側に酸素含有ガスが吹送され、
内側を血液が流れるものである場合に、酸素含有ガスの
流れを良好にし、血液と酸素含有ガスとの接触をなす有
効膜面積を十分確保し、ガス交換能を向上させる等、中
空糸膜間の間隙における流体の流れを円滑にし、膜壁を
介して流体が接触し得る有効膜面積を積極的かつ十分に
確保し、流体処理能を向上させることができる中空糸膜
型流体処理装置を提供することにある。
The present invention has been made in view of such problems, and includes:
The purpose is to provide optimal conditions for the filling rate of the hollow fiber membranes in the housing, so that the inflowing fluid can pass evenly between the hollow fiber membranes and the entire membrane wall can be used effectively. Oxygen-containing gas is blown outside the
When blood flows inside the hollow fiber membrane, it is possible to improve the flow of oxygen-containing gas, ensure sufficient effective membrane area for contact between blood and oxygen-containing gas, and improve gas exchange performance. Provided is a hollow fiber membrane type fluid treatment device that can smooth the flow of fluid in gaps, proactively and sufficiently secure an effective membrane area where fluid can come into contact through membrane walls, and improve fluid processing performance. It's about doing.

[課題を解決するための手段1 上記従来の課題を解決するために、本発明は、ハウジン
グを有し、このハウジング内に複数のガス交換用の多孔
質中空糸膜からなる中空糸束を収納し、前記多孔質中空
糸膜の膜壁を介してその内側または外側のいずれか一方
の被処理流体と他方の処理流体との間で被処理流体の流
体処理を行う中空糸膜型流体処理装置において、前記多
孔質中空糸膜をハウジングの長手方向に沿って実質的に
平行に配設するとともに、前記中空糸膜のハウジング内
における充填率を45〜65%の範囲に設定したことを
特徴とするものである。
[Means for Solving the Problems 1] In order to solve the above-mentioned conventional problems, the present invention has a housing, and a hollow fiber bundle consisting of a plurality of porous hollow fiber membranes for gas exchange is housed in the housing. and a hollow fiber membrane type fluid treatment device that performs fluid treatment of the fluid to be treated between the fluid to be treated on either the inside or outside of the porous hollow fiber membrane and the other fluid to be treated via the membrane wall of the porous hollow fiber membrane. The porous hollow fiber membrane is arranged substantially parallel to the longitudinal direction of the housing, and the filling rate of the hollow fiber membrane in the housing is set in a range of 45 to 65%. It is something to do.

また本発明に係る中空糸膜型流体処理装置においては、
多孔質中空糸膜の内径を100〜500μm、肉厚を2
7〜80μmとし、さらに当該中空糸膜を捲縮し、その
捲縮率を0,1〜0.7%の範囲に設定することが好ま
しい。
Further, in the hollow fiber membrane type fluid treatment device according to the present invention,
The inner diameter of the porous hollow fiber membrane is 100 to 500 μm, and the wall thickness is 2
It is preferable to set the hollow fiber membrane to 7 to 80 μm and further crimp the crimp rate in the range of 0.1 to 0.7%.

[作 用] 上記構成により本発明による中空糸膜型流体処理装置に
あっては、多孔質中空糸膜をハウジングの長平方向に沿
って実質的に平行に配設するとともに、前記中空糸膜の
ハウジングにおける充填率を45〜65%の範囲に設定
しているので、流入した流体は中空糸膜と中空糸膜との
間を均等に通るとともに、中空糸膜の膜表面と流体との
接触率が高(なり、有効膜面積を十分確保でき、その結
果流体処理能が向上する。
[Function] In the hollow fiber membrane type fluid treatment device according to the present invention having the above configuration, the porous hollow fiber membranes are disposed substantially parallel to each other along the longitudinal direction of the housing, and the hollow fiber membranes are arranged substantially parallel to each other along the longitudinal direction of the housing. Since the filling rate in the housing is set in the range of 45 to 65%, the inflowing fluid passes evenly between the hollow fiber membranes, and the contact rate between the membrane surface of the hollow fiber membrane and the fluid is reduced. is high (and a sufficient effective membrane area can be secured, resulting in improved fluid processing capacity).

さらに中空糸膜の捲縮率を0.1〜0.7%の範囲に設
定することにより、中空糸膜間の間隙を均等に確保でき
るので、いわゆる偏流(チャネリング)の発生を防止で
き、流体の流通が円滑になり、有効膜面積をより多く確
保することができると同時に、流体の流れに乱流を発生
させることができる。
Furthermore, by setting the crimp ratio of the hollow fiber membranes in the range of 0.1 to 0.7%, it is possible to ensure uniform gaps between the hollow fiber membranes, which prevents the occurrence of so-called channeling. The fluid flow becomes smoother, a larger effective membrane area can be secured, and at the same time, turbulence can be generated in the fluid flow.

したがって、中空糸膜の外側に処理流体として酸素含有
ガスを吹送し、内側に被処理流体としての血液を循環さ
せる中空糸膜型人工肺にあっては、血液と酸素含有ガス
との中空糸膜の膜壁を介する接触が中空糸膜の全面にわ
たって均一になされ、有効膜面積も十分確保され、高い
ガス交換能を得うることができる等、中空糸膜間の間隙
における被処理流体又は処理流体の流れが円滑になり、
中空糸膜の膜壁を介して流体が接触し得る有効膜面積が
積極的かつ十分に確保され、流体処理能の向上が可能と
なる。
Therefore, in a hollow fiber membrane oxygenator in which oxygen-containing gas is blown as a processing fluid to the outside of the hollow fiber membrane, and blood is circulated as a fluid to be treated inside the hollow fiber membrane, the hollow fiber membrane between blood and oxygen-containing gas is The fluid to be treated or the fluid to be treated in the gap between the hollow fiber membranes can be uniformly contacted over the entire surface of the hollow fiber membrane, and a sufficient effective membrane area can be secured to obtain high gas exchange performance. The flow becomes smoother,
An effective membrane area with which fluid can come into contact via the membrane wall of the hollow fiber membrane is positively and sufficiently ensured, making it possible to improve fluid processing ability.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る中空糸膜型人工肺を示
すものである。この人工肺は中空糸膜6の内側に被処理
流体として血液を循環させ、中空糸膜6の外側に処理流
体として酸素含有ガスを吹送する、いわゆる内部潅流型
のものである。
FIG. 1 shows a hollow fiber membrane oxygenator according to an embodiment of the present invention. This artificial lung is of a so-called internal perfusion type, in which blood is circulated as a fluid to be treated inside the hollow fiber membrane 6, and oxygen-containing gas is blown as a fluid to be treated outside the hollow fiber membrane 6.

この中空糸膜型人工肺lは、ハウジング2を有してなり
、このハウジング2は、筒状本体3とその両端部に形成
された環状突起付き拡径部4.5とより一体的に構成さ
れている。ハウジング2内には、複数の、たとえばio
、ooo〜60.000本の多孔質中空糸膜6がハウジ
ング2の長平方向に沿って中空糸束13として束ねられ
、収納されている。この中空糸膜6の両端部は、取付は
カバー4.5内において各中空糸膜6の開口が閉塞され
ない状態で隔壁7,8により液密に支持されている。こ
の隔壁7,8により多孔質中空糸膜6の外周面と上記ハ
ウジング2の内面との間にはガス室9が形成されている
。上記取付はカバー4.5の内、一方の取付はカバー4
には酸素含有ガスを供給する酸素含有ガス導入口10が
設けられており、他方の取付はカバー5には酸素含有ガ
スを排出する酸素含有ガス導出口11が設けられている
This hollow fiber membrane oxygenator 1 has a housing 2, which is integrally formed with a cylindrical main body 3 and an enlarged diameter part 4.5 with an annular projection formed at both ends thereof. has been done. Inside the housing 2, a plurality of, for example, io
, ooo~60,000 porous hollow fiber membranes 6 are bundled together as a hollow fiber bundle 13 along the longitudinal direction of the housing 2 and housed. Both ends of the hollow fiber membranes 6 are supported in a liquid-tight manner by partition walls 7 and 8 within the cover 4.5 with the openings of each hollow fiber membrane 6 not being closed. A gas chamber 9 is formed between the outer circumferential surface of the porous hollow fiber membrane 6 and the inner surface of the housing 2 by the partition walls 7 and 8 . The above installation is with cover 4.5, and one is with cover 4.
The cover 5 is provided with an oxygen-containing gas inlet 10 for supplying oxygen-containing gas, and the other attached cover 5 is provided with an oxygen-containing gas outlet 11 for discharging oxygen-containing gas.

なお、隔壁7,8は極性の高い高分子ボッティング材、
たとえばポリウレタン、シリコーン、ニボキシ樹脂等を
ハウジング2の開端内壁面に遠心注入法を利用して流し
込み、硬化させることにより得られる。
Note that the partition walls 7 and 8 are made of a highly polar polymer botting material,
For example, it can be obtained by pouring polyurethane, silicone, niboxy resin, etc. onto the inner wall surface of the open end of the housing 2 using a centrifugal injection method and curing it.

一方の隔壁7の外面は、略円錐形状の血液ボートカバー
15で覆われている。この血液ボートカバー15は、そ
の内周面に形成された環状突起15aと前記取付はカバ
ー4の外周面に形成された環状突起4aとが相互に係合
することにより、取付はカバー4に液密に嵌合され、そ
の内部には、血液ボート流域23が形成されるようにな
っている。血液ボートカバー15には血液導出口26が
形成されている。
The outer surface of one of the partition walls 7 is covered with a blood boat cover 15 having a substantially conical shape. This blood boat cover 15 is attached by attaching liquid to the cover 4 by mutually engaging an annular protrusion 15a formed on the inner circumferential surface thereof and an annular protrusion 4a formed on the outer circumferential surface of the cover 4. They are tightly fitted, and a blood boat basin 23 is formed therein. A blood outlet 26 is formed in the blood boat cover 15.

他方の隔壁8には、熱交換器12が接続されている。熱
交換器12は、ハウジング13を有してなり、このハウ
ジング13は、筒状本体13aと嵌合用部材13bとよ
りなっている。筒状本体13a内には、複数本のステン
レスバイブ14が配設され、それら両端開口部が閉塞さ
れない状態で隔壁17.18を介して液密に支持されて
いる。また、筒状本体13aの周側部には、冷温水流通
口19.20が設けられ、筒状本体13a内に冷水また
は温水の流路が形成され、これにより、バイブ14内を
流通する血液が所望の温度に調整されるようになってい
る。隔壁8に対して反対側に位置する隔壁18の外面は
、前記血液ボートカバー15と同様の血液ボートカバー
16が覆われている。なお、24は血液ボート領域、2
5は血液導入口である。嵌合用部材13−bは、拡径部
5に対し、前記血液ボートカバー15と同様に液密に嵌
合され、隔壁17,5間に血液貯留空間27が形成され
ている。
A heat exchanger 12 is connected to the other partition wall 8 . The heat exchanger 12 has a housing 13, and the housing 13 includes a cylindrical main body 13a and a fitting member 13b. A plurality of stainless steel vibrators 14 are disposed within the cylindrical main body 13a, and are supported in a liquid-tight manner via partition walls 17 and 18 with openings at both ends thereof not being closed. In addition, cold and hot water flow ports 19 and 20 are provided on the circumferential side of the cylindrical body 13a, and a cold water or hot water flow path is formed in the cylindrical body 13a. is adjusted to the desired temperature. The outer surface of the partition wall 18 located on the opposite side to the partition wall 8 is covered with a blood boat cover 16 similar to the blood boat cover 15 described above. In addition, 24 is a blood boat area, 2
5 is a blood introduction port. The fitting member 13-b is liquid-tightly fitted to the enlarged diameter portion 5 in the same way as the blood boat cover 15, and a blood storage space 27 is formed between the partition walls 17 and 5.

このような構成において、実施例の中空糸膜型人工肺に
おいては、ハウジング2の筒状本体3内における多孔質
中空糸膜6の充填率dは45〜65%の範囲に設定され
ている。45%未満の場合、多孔質中空糸膜6間の間隙
が平均して大きくなり、間隙のより大きい部分に酸素含
有ガスが偏流することとなる。すなわち、酸素含有ガス
が多孔質中空糸膜6間を均一に流れないことにより、実
際にガス交換に機能する膜面積が得られずに酸素添加能
、二酸化炭素除去能等が低下して実用に供し得ない。一
方、65%を超える場合には、多孔質中空糸膜6間の間
隙が小さくなり、中空糸束13の内部まで酸素含有ガス
が入り込まずに比較的中空糸束13の表面に偏流するこ
とになる。すなわち、酸素含有ガスが多孔質中空糸膜6
間を均一に流れないことにより、実際にガス交換に機能
する膜面積が得られずに酸素添加能、二酸化炭素除去能
等が低下して実用に供し得ない。
In such a configuration, in the hollow fiber membrane oxygenator of the embodiment, the filling rate d of the porous hollow fiber membranes 6 within the cylindrical body 3 of the housing 2 is set in the range of 45 to 65%. If it is less than 45%, the gaps between the porous hollow fiber membranes 6 will become larger on average, and the oxygen-containing gas will flow unevenly to the part where the gaps are larger. That is, because the oxygen-containing gas does not flow uniformly between the porous hollow fiber membranes 6, the membrane area that actually functions for gas exchange cannot be obtained, and the oxygen addition ability, carbon dioxide removal ability, etc. are reduced, making it difficult to put into practical use. I can't offer it. On the other hand, if it exceeds 65%, the gap between the porous hollow fiber membranes 6 becomes small, and the oxygen-containing gas does not enter the inside of the hollow fiber bundle 13, but flows relatively toward the surface of the hollow fiber bundle 13. Become. That is, the oxygen-containing gas flows through the porous hollow fiber membrane 6.
If the membrane does not flow uniformly between the membranes, a membrane area that actually functions for gas exchange cannot be obtained, and the oxygen addition ability, carbon dioxide removal ability, etc. are reduced, making it impossible to put it into practical use.

なお、充填率dは上記範囲のうち、55〜65%が好ま
しく、57〜65%がより好ましい。
Note that, within the above range, the filling rate d is preferably 55 to 65%, more preferably 57 to 65%.

また上記多孔質中空糸膜6は、その内径が100〜50
0μm、好ましくは150〜300μm、肉厚が27〜
80μmである。また、この多孔質中空糸膜6には、捲
縮率0.1〜0.7%の範囲の捲縮が付与されている。
Further, the porous hollow fiber membrane 6 has an inner diameter of 100 to 50
0 μm, preferably 150-300 μm, wall thickness 27-300 μm
It is 80 μm. Further, this porous hollow fiber membrane 6 is provided with crimp in a crimp ratio of 0.1 to 0.7%.

捲縮率が0.1〜0.7%の範囲であると、中空糸膜6
間の間隙を十分確保できる。好ましくは、0.3〜0.
5%の範囲である。O,1%未満であると多孔質中空糸
膜6間の間隙が十分とれず、逆に捲縮率が0.7%を越
えると、人工肺が必要以上に大型化する虞があり、いず
れも好ましくない。
When the crimp rate is in the range of 0.1 to 0.7%, the hollow fiber membrane 6
Enough space can be secured between the two. Preferably 0.3 to 0.
It is in the range of 5%. If the crimp ratio is less than 1%, the gaps between the porous hollow fiber membranes 6 will not be sufficiently secured, and if the crimp ratio exceeds 0.7%, there is a risk that the oxygenator will become larger than necessary, and eventually I also don't like it.

上記多孔質中空糸膜6は、次に示すような方法で製造す
ることができる。すなわち、延伸法あるいは相分離法な
どにより紡糸され、多孔質とされた中空糸膜な、適当な
ボビン等にクロス巻きに捲き取って捲縮を付与し、その
後、適当な条件下、たとえば60’Cで24時間程度、
熱処理して捲縮状態を固定することにより得られる。こ
の際、捲縮を付与する際の熱固定が必要以上に行なわれ
、膜構造が変化し、たとえば捲縮を与える前の状態より
空孔率が10%以上も低下するようなものにあっては、
捲縮による効果が発揮されない。また逆に熱固定が十分
に行なわれず、人工肺の組立て時において所望の捲縮状
態を保持しているのにかかわらず、その後の残留応力に
より中空糸膜に張力がかがり捲縮が失われるようなもの
においても、その効果は得られない。
The porous hollow fiber membrane 6 can be manufactured by the following method. That is, a hollow fiber membrane made porous by being spun by a drawing method or a phase separation method is wound cross-wound around a suitable bobbin or the like to impart crimps, and then crimped under suitable conditions, e.g. About 24 hours at C.
It is obtained by fixing the crimp state by heat treatment. At this time, when applying crimps, heat setting is performed more than necessary, and the membrane structure changes, for example, in cases where the porosity decreases by 10% or more compared to the state before crimping. teeth,
The effect of crimp is not achieved. Conversely, heat fixation may not be performed sufficiently, and even though the desired crimp state is maintained during the assembly of the oxygenator, residual stress builds up in the hollow fiber membranes and causes the crimp to be lost. Even with things, you can't get that effect.

さらにこの多孔質中空糸膜6は、空孔率が37%であり
、また酸素ガスフラックスが20 000〜30.00
0β/min−m” 0.5atm、好ましくは24.
600±2.600f27min−m” 0.5 at
mであると、より一層優れた効果が期待できるものとな
る。
Furthermore, this porous hollow fiber membrane 6 has a porosity of 37% and an oxygen gas flux of 20,000 to 30.00.
0β/min-m” 0.5 atm, preferably 24.
600±2.600f27min-m” 0.5 at
m, even better effects can be expected.

多孔質中空糸膜6の素材としては、たとえばポリプロピ
レン、ポリエチレンなどのポリオレフィンやポリテトラ
フルオロエチレンなどの疎水性合成樹脂を用いることが
でき、その内でも、機械的強度、耐熱性、加工性などの
諸物性に優れ、また多孔性の付与が容易であるなどの点
からポリプロピレンが特に良好である。
As the material for the porous hollow fiber membrane 6, for example, polyolefins such as polypropylene and polyethylene, and hydrophobic synthetic resins such as polytetrafluoroethylene can be used. Polypropylene is particularly suitable because it has excellent physical properties and can be easily imparted with porosity.

本実施例の中空糸膜型人工肺では、ハウジング2を筒状
とすることにより、多孔質中空糸膜6をハウジング2の
長平方向に沿って実質的に平行に配設するとともに、多
孔質中空糸膜6のハウジング2内における充填率を45
〜65%の範囲に設定し、さらに捲縮率を0.1〜0.
7%の範囲に設定したことから、ガス導入口IOから酸
素含有ガスが流入した場合、多孔質中空糸膜6の膜表面
との接触率が高(なり、しかも多孔質中空糸膜6間の間
隙がハウジング2の長手方向に沿って均一になる。した
がって、ガス室9内に吹送された酸素含有ガスは、偏流
を起こさず、中空糸束13の中心部における多孔質中空
糸膜6間の間隙までも円滑に流通する。また、この酸素
含有ガスと、血液ポート領域24より多孔質中空糸膜6
の内側を流れる血液との接触が多孔質中空糸膜6の全面
にわたって均一になされ、荷動膜面積も十分確保され、
その結果高いガス交換能を得ることができる。
In the hollow fiber membrane oxygenator of this embodiment, the housing 2 is formed into a cylindrical shape, so that the porous hollow fiber membranes 6 are disposed substantially parallel to the longitudinal direction of the housing 2, and the porous hollow The filling rate of the thread membrane 6 in the housing 2 is 45.
~65%, and further set the crimp rate to 0.1~0.
Since it is set in the range of 7%, when oxygen-containing gas flows in from the gas inlet IO, the contact rate with the membrane surface of the porous hollow fiber membrane 6 is high (and the contact rate between the porous hollow fiber membranes 6 is high). The gap becomes uniform along the longitudinal direction of the housing 2. Therefore, the oxygen-containing gas blown into the gas chamber 9 does not cause drift, and is distributed between the porous hollow fiber membranes 6 in the center of the hollow fiber bundle 13. The oxygen-containing gas flows smoothly even into the gaps.Also, this oxygen-containing gas flows from the blood port region 24 to the porous hollow fiber membrane 6.
Contact with the blood flowing inside the porous hollow fiber membrane 6 is made uniform over the entire surface of the porous hollow fiber membrane 6, and a sufficient loading membrane area is secured.
As a result, high gas exchange performance can be obtained.

第3図は本発明の他の実施例として、多孔質中空糸膜6
の外側に被処理流体として血液を循環させ、多孔質中空
糸膜6の内側に処理流体として酸素含有ガスを吹送する
、いわゆる外部潅流型の中空糸膜型人工肺を示すもので
ある。
FIG. 3 shows a porous hollow fiber membrane 6 as another embodiment of the present invention.
This is a so-called external perfusion type hollow fiber membrane oxygenator in which blood is circulated as a treatment fluid outside the porous hollow fiber membrane 6 and oxygen-containing gas is blown inside the porous hollow fiber membrane 6 as a treatment fluid.

本実施例に係る中空糸膜型人工肺31は、筒状のハウジ
ング32と、その開端部に設けられた酸素含有ガスポー
トカバー33.34とより構成されている。
The hollow fiber membrane type oxygenator 31 according to this embodiment is composed of a cylindrical housing 32 and oxygen-containing gas port covers 33 and 34 provided at the open end of the cylindrical housing 32.

ハウジング32内には、前記実施例と同様に、隔壁7.
8を介して多孔質中空糸膜6からなる中空糸束13が支
持されている。そしてその隅壁78により、ハウジング
32内には、血液室35が形成されている。一方酸素含
有ガスポートカバー33.34内には、酸素含有ガスポ
ート領域33a、34aが形成されている。ハウジング
32には血液を供給する血液導入口36および血液を排
出する血液導出口37がそれぞれ設けられている。また
酸素含有ガスポートカバー33゜34にはそれぞれ酸素
含有ガス導入口38および酸素含有導出口39が形成さ
れている。
Inside the housing 32, as in the previous embodiment, there is a partition wall 7.
A hollow fiber bundle 13 made of porous hollow fiber membranes 6 is supported through the fibers 8 . A blood chamber 35 is formed within the housing 32 by the corner wall 78 . On the other hand, oxygen-containing gas port regions 33a, 34a are formed within the oxygen-containing gas port cover 33,34. The housing 32 is provided with a blood inlet 36 for supplying blood and a blood outlet 37 for discharging blood. Further, an oxygen-containing gas inlet 38 and an oxygen-containing outlet 39 are formed in the oxygen-containing gas port covers 33 and 34, respectively.

本実施例の中空糸膜型人工肺にあっては、上記構成によ
り、酸素含有ガスポート領域33aより多孔質中空糸膜
6の内側に吹送された酸素含有ガスが、多孔質中空糸膜
6の細孔を介して多孔質中空糸膜6間の間隙を流れる血
液に接触する際、この間隙に留り難(なり、したがって
いわゆるエアートラップされ難くなる。これにより多孔
質中空糸膜6間の間隙における血液の流通が良好となる
とともに、エアートラップされた酸素含有ガスの塊によ
って生ずる、血液と酸素含有ガスとの多孔質中空糸膜6
の膜壁を介する接触の阻害が解消され、したがって有効
膜面積が十分確保される。
In the hollow fiber membrane oxygenator of this embodiment, with the above configuration, the oxygen-containing gas blown into the inside of the porous hollow fiber membrane 6 from the oxygen-containing gas port region 33a is transferred to the inside of the porous hollow fiber membrane 6. When coming into contact with blood flowing through the gaps between the porous hollow fiber membranes 6 through the pores, it becomes difficult for the blood to remain in the gaps (therefore, it becomes difficult to be trapped by so-called air traps. This makes the gaps between the porous hollow fiber membranes 6 The porous hollow fiber membrane 6 between the blood and the oxygen-containing gas is created by the air-trapped oxygen-containing gas mass.
The inhibition of contact through the membrane wall is eliminated, and therefore a sufficient effective membrane area is ensured.

その他の作用、効果は前述の実施例と同様である。Other functions and effects are similar to those of the previous embodiment.

次に、本発明者は、上記実施例の人工肺の効果を確認す
るために以下のような実験を行った。
Next, the present inventor conducted the following experiment in order to confirm the effect of the artificial lung of the above example.

(実施例1〜4) 先ず、多孔質中空糸膜を次に示す方法で製造した。(Examples 1 to 4) First, a porous hollow fiber membrane was manufactured by the following method.

ミクロ相分離抽出法により形成された平均細孔半径約5
00人の微細孔を有する、内径180〜220μm、肉
厚的50μmのポリプロピレン製多孔質中空糸膜を5直
径95mmのボビンにクロス巻きに捲き取り、60℃で
24時間オーブン中で熱処理することにより0.3〜0
.5%の範囲の捲縮をかけた。
The average pore radius formed by micro phase separation extraction method is approximately 5
A porous hollow fiber membrane made of polypropylene having 0.00 micropores, an inner diameter of 180 to 220 μm, and a wall thickness of 50 μm is wound crosswise around a bobbin with a diameter of 95 mm, and heat treated in an oven at 60° C. for 24 hours. 0.3~0
.. A crimping range of 5% was applied.

このようにして得られた中空糸膜6を用い、前述の第1
の実施例に係る中空糸膜型人工肺lと同じ構成で、充填
率が57.8,60.0゜61.9,62.4と異なる
人工肺をそれぞれ作成し、酸素ガス添加能および炭酸ガ
ス排除能を計測した。その結果を表1に示す。
Using the hollow fiber membrane 6 obtained in this way, the first
Oxygenators with the same configuration as the hollow fiber membrane oxygenator l according to Example 1 but with different filling rates of 57.8, 60.0°, 61.9, and 62.4 were created, and oxygen gas addition capacity and carbon dioxide Gas elimination ability was measured. The results are shown in Table 1.

(実施例5〜8.比較例1〜4) 上記実施例1〜4と同様に捲縮を付与した多孔質中空糸
膜6の充填率を、実施例1〜4の人工肺より低くした人
工肺(実施例5〜8)、実施例1〜4より高くした人工
肺(比較例1〜4)をそれぞれ作製し、酸素ガス添加能
および炭酸ガス排除能を計測した。その結果を表−2お
よび表−3に示す。
(Examples 5 to 8. Comparative Examples 1 to 4) An artificial lung in which the filling rate of the porous hollow fiber membrane 6 crimped in the same manner as in Examples 1 to 4 was lower than that in Examples 1 to 4. Lungs (Examples 5 to 8) and artificial lungs (Comparative Examples 1 to 4) which were higher than those of Examples 1 to 4 were prepared, respectively, and their oxygen gas addition ability and carbon dioxide removal ability were measured. The results are shown in Table-2 and Table-3.

表1 表2 表3 なお、本明細書中における各用語の定義および測定方法
は次の通りである。
Table 1 Table 2 Table 3 The definitions and measurement methods of each term in this specification are as follows.

L1里 ハウジングにより中空糸束全周が拘束されている箇所の
充填率については、ハウジング内部空間の断面積に対し
て中空糸膜の総断百積の占めす割合、すなわち、 で表わされる。なお、ハウジングにより中空糸束全周が
拘束されていない箇所の充填率については、前記のハウ
ジング内部空間の断面積を中空糸束の外周包絡線で囲ま
れた面積とする。
The filling rate of the area where the entire circumference of the hollow fiber bundle is restrained by the L1 housing is expressed as the ratio of the total cross-sectional area of the hollow fiber membranes to the cross-sectional area of the internal space of the housing, that is, Regarding the filling rate of the portion where the entire circumference of the hollow fiber bundle is not restrained by the housing, the cross-sectional area of the housing interior space is defined as the area surrounded by the outer circumferential envelope of the hollow fiber bundle.

ユ1工血1 中空・糸膜を任意に10本抜き取り、鋭利なカミソリで
LOmm程度の長さに輪切りにする。
Yu 1 Blood Engineering 1 Remove 10 hollow thread membranes arbitrarily and cut them into rounds with a length of about LOmm using a sharp razor.

万能投影機にコンプロファイルプロジェクタ−V−12
)でその断面を映し出し、計測器にコンデジタルカウン
ターCM−63)でその外径d8、内径d2を測定し、
肉厚tをt=dl  dzにより算出し、10本の平均
値とした。
Conprofile projector V-12 as a universal projector
) and measure its outer diameter d8 and inner diameter d2 with a digital counter CM-63).
The wall thickness t was calculated as t=dl dz, and the average value of the 10 pieces was taken as the average value.

=LJL立莢り 中空糸膜を約2gとり、鋭利なカミソリにより5mm以
下の輪切りにする。得られた試料を水銀ポロシメーター
(カルロエロバ社65A型)にて1000 kg/am
”まで圧力をかけ全細孔量(単位重さ当りの中空糸の細
孔体積)により空孔率を得る。
=Take about 2 g of LJL standing hollow fiber membrane and cut into rounds of 5 mm or less with a sharp razor. The obtained sample was heated to 1000 kg/am using a mercury porosimeter (Carloerova Model 65A).
” to obtain the porosity from the total pore volume (pore volume of the hollow fiber per unit weight).

1櫃」 人工肺を滅菌した後、この人工肺から取出した多孔質中
空糸膜について測定を行った。
After sterilizing the oxygenator, measurements were performed on the porous hollow fiber membrane taken out from the oxygenator.

その取出した多孔質中空糸膜のサンプル長さは70n+
+++とじた。測定方法としてはJIS L 1074
6、11.2の捲縮率の測定方法を参考にした。
The sample length of the porous hollow fiber membrane taken out was 70n+
+++ Closed. The measurement method is JIS L 1074
The crimp rate measurement method in 6.11.2 was used as a reference.

具体的には、試験機として、高滓製作所製の引張試験機
(オートグラフ、 AGS−100A)を用い、それに
よる引張速度を1 mm/ winとした。
Specifically, a tensile testing machine (Autograph, AGS-100A) manufactured by Takasugi Seisakusho was used as a testing machine, and the tensile speed thereof was set to 1 mm/win.

そして、上記サンプル長さの多孔質中空糸膜に対し、本
試験機により1gの荷重をかけ、その際の荷重なaとし
、次に、Logの荷重をかけたときの長さをbとし、ス
トログラフのサイクル試験モードで1gとlogの荷重
間を3回、上記引張速度でサイクル試験を行い、3回の
平均値をもって、a、bの多値とした。このa、bの測
定値から、次に示す計算式により倦縮率を得た。
Then, a load of 1 g is applied to the porous hollow fiber membrane of the above sample length using this testing machine, and the load at that time is designated as a, and then the length when a load of Log is applied is designated as b, A cycle test was performed three times between 1 g and log loads in the strograph cycle test mode at the above-mentioned tensile speed, and the average value of the three times was taken as the multi-value of a and b. From the measured values of a and b, the shrinkage rate was obtained using the following calculation formula.

捲縮率(%) = (b−a) /ax l 00、ガ
ス      ガス 多孔質中空糸膜6の有効長さを100〜1351Tlr
11.ll!面積を0.8〜5.0m”とし、多孔質中
空糸膜6の内側にウシ血液(標準静脈血)をシングルパ
ス(Single Path )で0.8〜5.0β/
minの流量で流し、多孔質中空糸膜6の外側へ純酸素
を0.8〜5.On/minの流量で流し、人工肺入口
および8口のウシ血液のpH1炭酸ガス分圧(PCO2
)、酸素ガス分圧(PO2)を血液ガス測定装置(Ra
dioraeter社製、BGAB型)により測定し、
人工肺入口と人工肺出口との分圧差を算巴した。
Crimping rate (%) = (b-a) /ax l 00, gas Effective length of gas porous hollow fiber membrane 6 is 100 to 1351 Tlr
11. ll! The area is set to 0.8 to 5.0 m'', and bovine blood (standard venous blood) is fed inside the porous hollow fiber membrane 6 in a single pass at a rate of 0.8 to 5.0 β/
Pure oxygen is supplied to the outside of the porous hollow fiber membrane 6 at a flow rate of 0.8 to 5 min. Flow at a flow rate of On/min, pH 1 partial pressure of carbon dioxide (PCO2
), oxygen gas partial pressure (PO2) is measured using a blood gas measuring device (Ra
Measured by dioraeter, BGAB type),
The partial pressure difference between the oxygenator inlet and the oxygenator outlet was calculated.

以上の結果、充填率が45〜65%の範囲の本実施例1
〜4に係る人工肺が、酸素含有ガスが多孔質中空糸膜6
間を均一に流れ、多孔質中空糸膜6が有効に使われる結
果、優れたガス交換能を有することが明らかになった。
As a result of the above, this Example 1 has a filling rate in the range of 45 to 65%.
~4 The oxygen-containing oxygen-containing oxygen-containing gas is a porous hollow fiber membrane 6.
It has been revealed that the porous hollow fiber membrane 6 has an excellent gas exchange ability as a result of the porous hollow fiber membrane 6 being used effectively.

以上に実施例を挙げて本発明を説明したが、本発明は上
記実施例に限定されるものではなく、本発明の要旨を変
更しない範囲で種々変更可能である。たとえば上記実施
例においては本発明を中空糸膜型人工肺に適用した例に
ついて説明したが、その他中空糸膜型の人工腎臓等にも
種々適用できることは勿論である。
Although the present invention has been described above with reference to Examples, the present invention is not limited to the above-mentioned Examples, and can be modified in various ways without changing the gist of the present invention. For example, in the above embodiments, an example in which the present invention is applied to a hollow fiber membrane type artificial lung has been described, but it goes without saying that the present invention can be applied to various other hollow fiber membrane type artificial kidneys and the like.

[発明の効果] 以上説明したように本発明に係る中空糸膜型流体処理装
置にあっては、ハウジングに絞り部を設けることなく、
多孔質中空糸膜をハウジングの長平方向に沿って実質的
に平行に配設するとともに、当該多孔質中空糸膜の充填
率を45〜65%の範囲に設定したので、流入した流体
は多孔質中空糸膜間の間隙を均等に通るとともに、多孔
質中空糸膜の膜表面と流体との接触率が高くなり、有効
膜面積を十分確保でき、その結果流体処理能が向上する
[Effects of the Invention] As explained above, in the hollow fiber membrane type fluid treatment device according to the present invention, without providing a constriction part in the housing,
The porous hollow fiber membranes were arranged substantially parallel to the longitudinal direction of the housing, and the filling rate of the porous hollow fiber membranes was set in the range of 45 to 65%, so that the inflowing fluid was porous. It passes evenly through the gaps between the hollow fiber membranes, increases the contact rate between the membrane surface of the porous hollow fiber membrane and the fluid, and ensures a sufficient effective membrane area, resulting in improved fluid treatment performance.

したがって、多孔質中空糸膜の外側に処理流体として酸
素含有ガスを吹送し、内側に被処理流体としての血液を
循環させる中空糸膜型人工肺にあっては、血液と酸素含
有ガスとの中空糸膜の膜壁な介する接触が中空糸膜の全
面にわたって均一になされ、有効膜面積も十分確保され
、高いガス交換能を得ることができる。
Therefore, in a hollow fiber membrane oxygenator in which oxygen-containing gas is blown as a processing fluid to the outside of a porous hollow fiber membrane, and blood is circulated as a fluid to be treated inside the membrane, the hollow fibers between blood and oxygen-containing gas are Contact through the membrane wall of the fiber membrane is made uniform over the entire surface of the hollow fiber membrane, a sufficient effective membrane area is secured, and high gas exchange performance can be obtained.

また多孔質中空糸膜を捲縮し、捲縮率を0.1〜0.7
%の範囲に設定しているので、多孔質中空糸膜間には、
間隙が十分大きくかつ中空糸膜の軸方向に沿って積極的
に変化して形成され、たとえば多孔質中空糸膜の内側に
酸素含有ガスを吹送した場合には、当該膜が疎水性であ
っても、中空糸膜間の間隙に酸素含有ガスが溜ることな
く、良好な血液の流通がもたらされ、ガス交換能がより
一層向上する等、中空糸膜間の間隙における被処理流体
または処理流体の流れが円滑になり、中空糸膜の膜壁を
介して流体が接触し得る有効膜面積が積極的かつ十分に
確保され、流体処理能の向上が可能となるという効果を
奏する。
In addition, the porous hollow fiber membrane is crimped, and the crimping rate is 0.1 to 0.7.
Since it is set in the range of %, there is a
If the gaps are sufficiently large and actively change along the axial direction of the hollow fiber membrane, for example, when oxygen-containing gas is blown inside the porous hollow fiber membrane, the membrane is hydrophobic. Also, oxygen-containing gas does not accumulate in the gaps between the hollow fiber membranes, resulting in good blood circulation and further improving gas exchange ability. The flow becomes smooth, the effective membrane area where the fluid can come into contact through the membrane wall of the hollow fiber membrane is positively and sufficiently secured, and the fluid processing ability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る中空糸膜型人工肺
を示す半断面正面図、第2図は本発明の第2の実施例に
係る中空糸膜型人工肺を示す半断面正面図である。 1.31・−・中空糸膜型人工肺 2.32・・・ハウジング 6・・・中空糸膜、13・・・中空糸束℃ ミ
FIG. 1 is a half-sectional front view showing a hollow fiber membrane oxygenator according to a first embodiment of the present invention, and FIG. 2 is a half-sectional front view showing a hollow fiber membrane oxygenator according to a second embodiment of the present invention. It is a cross-sectional front view. 1.31...Hollow fiber membrane oxygenator 2.32...Housing 6...Hollow fiber membrane, 13...Hollow fiber bundle °C

Claims (3)

【特許請求の範囲】[Claims] (1)ハウジングを有し、このハウジング内に複数のガ
ス交換用の多孔質中空糸膜からなる中空糸束を収納し、
前記多孔質中空糸膜の膜壁を介してその内側または外側
のいずれか一方の被処理流体と他方の処理流体との間で
被処理流体の流体処理を行う中空糸膜型流体処理装置に
おいて、前記多孔質中空糸膜をハウジングの長手方向に
沿って実質的に平行に配設するとともに、前記中空糸膜
のハウジング内における充填率を45〜65%の範囲に
設定したことを特徴とする中空糸膜型流体処理装置。
(1) having a housing, in which a hollow fiber bundle consisting of a plurality of porous hollow fiber membranes for gas exchange is housed;
A hollow fiber membrane type fluid treatment device that performs fluid treatment of a fluid to be treated between either one of the fluid to be treated and the other fluid on the inside or outside of the porous hollow fiber membrane through the membrane wall, The hollow fiber membrane is characterized in that the porous hollow fiber membrane is arranged substantially parallel to the longitudinal direction of the housing, and the filling rate of the hollow fiber membrane in the housing is set in a range of 45 to 65%. Thread membrane type fluid treatment device.
(2)前記多孔質中空糸膜の捲縮率を0.1〜0.7%
の範囲に設定してなる請求項1記載の中空糸膜型流体処
理装置。
(2) The crimp rate of the porous hollow fiber membrane is 0.1 to 0.7%.
The hollow fiber membrane type fluid treatment device according to claim 1, wherein the hollow fiber membrane type fluid treatment device is set within the range of .
(3)前記多孔質中空糸膜の内径を100〜500μm
、肉厚を27〜80μmの範囲に設定してなる請求項2
記載の中空糸膜型流体処理装置。
(3) The inner diameter of the porous hollow fiber membrane is 100 to 500 μm.
Claim 2, wherein the wall thickness is set in the range of 27 to 80 μm.
The hollow fiber membrane type fluid treatment device described.
JP1299192A 1989-11-17 1989-11-17 Hollow fiber membrane type fluid treating device Pending JPH03158166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299192A JPH03158166A (en) 1989-11-17 1989-11-17 Hollow fiber membrane type fluid treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299192A JPH03158166A (en) 1989-11-17 1989-11-17 Hollow fiber membrane type fluid treating device

Publications (1)

Publication Number Publication Date
JPH03158166A true JPH03158166A (en) 1991-07-08

Family

ID=17869331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299192A Pending JPH03158166A (en) 1989-11-17 1989-11-17 Hollow fiber membrane type fluid treating device

Country Status (1)

Country Link
JP (1) JPH03158166A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488317A (en) * 1977-11-30 1979-07-13 Monsanto Co Hollow fiber for fluid separation
JPH01198557A (en) * 1987-06-28 1989-08-10 Terumo Corp Hollow yarn membrane type oxygenator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488317A (en) * 1977-11-30 1979-07-13 Monsanto Co Hollow fiber for fluid separation
JPH01198557A (en) * 1987-06-28 1989-08-10 Terumo Corp Hollow yarn membrane type oxygenator

Similar Documents

Publication Publication Date Title
CA1158510A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
EP0081118A1 (en) Heat exchanger-incorporated hollow fiber type artificial lung
EP0908191B1 (en) Hollow fiber membrane oxygenator
EP0446922A2 (en) Hollow fiber membrane type artificial lung
US5626760A (en) Multifunction device for the treatment of blood
JPH03158166A (en) Hollow fiber membrane type fluid treating device
WO2000012154A1 (en) Blood processing device
JPH07255839A (en) Hollow yarn membrane type liquid processor
JPH03146121A (en) Hollow fiber membrane and hollow fiber membrane-type breathing simulator using the membrane
JPH029816Y2 (en)
JPH0127794Y2 (en)
JPH01115364A (en) Porous hollow yarn membrane and hollow yarn membrane type/pump oxygenator
JPS6242705A (en) Permselective hollow yarn and fluid separator
JP2888607B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JPH0275330A (en) Hollow fiber membrane type mass transfer apparatus
JP2000042100A (en) Hollow fiber membrane type liquid treatment apparatus
JPS61268304A (en) Fluid separator
JPH0260658A (en) Hollow yarn membrane type material transfer device
JPH04109956A (en) Hollow yarn type mechanical lung
JPS6244948B2 (en)
JPH0116504B2 (en)
JPS59108563A (en) Hollow yarn type artifical long
JPH0321188B2 (en)
JPS59108564A (en) Hollow yarn type artifical long
JP4304611B2 (en) Permselective hollow fiber membrane with excellent blood compatibility