JPH0475664A - Model artificial lung - Google Patents

Model artificial lung

Info

Publication number
JPH0475664A
JPH0475664A JP18710190A JP18710190A JPH0475664A JP H0475664 A JPH0475664 A JP H0475664A JP 18710190 A JP18710190 A JP 18710190A JP 18710190 A JP18710190 A JP 18710190A JP H0475664 A JPH0475664 A JP H0475664A
Authority
JP
Japan
Prior art keywords
blood
hollow yarn
cylinder
bundle
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18710190A
Other languages
Japanese (ja)
Inventor
Yasushi Shimomura
下村 泰志
Masahiko Yamaguchi
正彦 山口
Akio Funakubo
昭夫 舟久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP18710190A priority Critical patent/JPH0475664A/en
Priority to US07/668,562 priority patent/US5263982A/en
Priority to EP19910103946 priority patent/EP0446922A3/en
Publication of JPH0475664A publication Critical patent/JPH0475664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the generation of the drift of blood and an excessive increase in pressure drop with the model artificial lung which passes blood to the outer side of hollow yarn by consisting a hollow yarn bundle of a bundle formed by disposing the hollow yarn in twill winding and a bundle formed by disposing the hollow yarn in substantially the same direction as the longitudinal direction of an inside cylinder and outside cylinder. CONSTITUTION:The blood is introduced from a blood inlet part 5, flows in a blood introducing part 6 to the hollow yarn bundles, flows in the hollow yarn bundle 3 consisting of the twill winding part and the hollow yarn bundle 4 consisting of the straight disposed yarn part and is discharged from a blood outlet part 7 provided at the end on the side opposite from the side of the outside cylinder 1 where the blood is introduced. On the other hand, the gas is introduced from a gas inlet part 8, flows in the hollow yarn bundles and is discharged from a gas outlet part 9 provided at the other end. The gas diffusible hollow yarn is previously disposed in the cylinder larger in diameter by several mm than the inside cylinder. The hollow yarn is first disposed at a twill angle, i.e., 125 deg. angle with the axial direction of the cylinder on the front surface of the cylinder until the thickness about half the thickness of the entire hollow yarn bundle is attained. Then, the yarn is disposed around this bundle in the direction same as the direction of the axis of the cylinder. The aggregated hollow yarn bundle is then disposed in the space between the inside cylinder and the outside cylinder and both ends are fixed by a potting material. The drift of the blood is prevented in this way and the pressure drop is suppressed to a lower level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、血液の体外循環中にガス透過性中空糸によっ
て血液のガス交換を行う膜型人工肺に係り、特に、その
配糸方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a membrane oxygenator that performs gas exchange of blood using gas-permeable hollow fibers during extracorporeal blood circulation, and particularly relates to a method for arranging the fibers. It is something.

〔従来の技術〕[Conventional technology]

関心術時に於ける血液のガス交換を行う手段として人工
肺が使用される。人工肺には大別して気泡型と脱型とが
ある。気泡型人工肺は血液中にガスを吹き込むものであ
り、血液とガスとが直接接触するため、血球の損傷、即
ち、溶血を引き起こす等の問題点が指摘されている。一
方、膜型人工肺はガス透過性膜を介して血液のガス交換
を行うため、°気泡型に比較してより生理的な方法であ
り、臨床的にも広く用いられている。この膜型人工肺に
は主にガス透過性中空糸が使用されており、血液が中空
糸の内側を流れる内部潅流方式と、血液が中空糸の外側
を流れる外部潅流方式とがある。
An artificial lung is used as a means of blood gas exchange during the surgical procedure. Artificial lungs can be roughly divided into bubble-type and de-type. Bubble oxygenators inject gas into the blood, and because the blood and gas come into direct contact, problems have been pointed out, such as damage to blood cells, ie, hemolysis. On the other hand, the membrane oxygenator performs blood gas exchange through a gas-permeable membrane, so it is a more physiological method than the bubble oxygenator, and is widely used clinically. Gas-permeable hollow fibers are mainly used in this membrane oxygenator, and there are two types: an internal perfusion system in which blood flows inside the hollow fibers, and an external perfusion system in which blood flows outside the hollow fibers.

内部潅流方式では、血液が内径数百ミクロン程度の中空
糸の内部を流れるため、それによる圧力損失が増大し、
血球の損傷、即ち、溶血を引き起こす可能性が高い。又
、血液が層流となっているため、膜表面近傍を流れる血
液以外の血液の酸素化が行われ難く、ガス交換能を向上
させるためには大きな膜面積を必要とし、それに伴い血
液充填量、即ち、体外循環血液量が増大する等の欠点も
ある。
In the internal perfusion method, blood flows inside hollow fibers with an inner diameter of several hundred microns, which increases pressure loss.
It is likely to cause damage to blood cells, ie hemolysis. In addition, since blood flows in a laminar flow, it is difficult to oxygenate blood other than blood flowing near the membrane surface, and a large membrane area is required to improve gas exchange ability, resulting in a reduction in blood filling volume. That is, there are also drawbacks such as an increase in the amount of extracorporeally circulating blood.

〔解決されるべき課H] 外部潅流方式では、血液は中空糸の外側を流れる。その
ため上記の内部潅流方式が有する欠点は解消する。しか
し、外部潅流方式を採用した場合、血液は各中空糸間の
空間を自由に流れることができるため、少しでも抵抗の
少ない流路があれば、その部分に偏って流れてしまう(
所謂チャネリング)ため、人工肺のガス交換能が著しく
低下してしまう。そのため、血液の偏流を防止すること
を目的として、中空糸を綾巻に巻回したもの、中空糸を
編んだもの等が開発されている。又、直線状に配糸した
ものもあるが、均一に配糸するためには細心の注意が必
要である。中空糸を綾巻にしたもの或いは中空糸を績ん
だもの等では血液の流れは複雑となる。そのため血液の
流れに対する抵抗が増大し、圧力損失も相当大きなもの
となる。−方、直線状に配糸したものでは、配糸の均一
性には限界があるため、ガス交換能を向上させるために
は、膜面積を大きくする必要があり、必然的に体外循環
血液量も増大し好ましくない。
[Problem to be solved H] In the external perfusion system, blood flows outside the hollow fibers. Therefore, the disadvantages of the above-mentioned internal perfusion system are eliminated. However, when an external perfusion method is adopted, blood can freely flow through the spaces between each hollow fiber, so if there is a flow path with even the slightest resistance, the blood will flow biased toward that part (
(so-called channeling), the gas exchange ability of the oxygenator is significantly reduced. Therefore, for the purpose of preventing blood drift, products in which hollow fibers are wound in a twill pattern, knitted hollow fibers, and the like have been developed. There are also products in which the threads are arranged in a straight line, but great care is required to arrange the threads evenly. Blood flow becomes complicated when hollow fibers are twisted or twisted. This increases the resistance to blood flow and causes considerable pressure loss. - On the other hand, there is a limit to the uniformity of the yarns with linear yarns, so in order to improve gas exchange ability, it is necessary to increase the membrane area, which inevitably increases the amount of extracorporeal blood circulation. It also increases, which is not desirable.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の膜型人工肺では、血液が各中空糸間の空間に流
入する際に、流路の不均一性により偏流が生ずることに
着目し、血液の流入部近傍は綾巻或いは編織した中空糸
束とすることにより偏流を防止し7、更に、その外周部
は直線状に配糸した中空糸束とすることにより圧力損失
の増大を防止する、・少なくとも二層の中空糸束からな
る構成とすることにより課題を解決したものである。
In the membrane oxygenator of the present invention, we focused on the fact that when blood flows into the space between each hollow fiber, uneven flow occurs due to the non-uniformity of the flow path. The fiber bundle prevents drifting flow7, and the outer periphery of the hollow fiber bundle is arranged in a straight line to prevent an increase in pressure loss. - A structure consisting of at least two layers of hollow fiber bundles. The problem was solved by doing this.

本発明の膜型人工肺では、血液流入部より円周方向に均
等に各中空糸間の流路に導入された血液は、綾巻部に先
ず流入し、各中空糸間の流路に偏流することなく、均一
に分散して流れることとなる。ここで、綾巻とは内筒或
いは外筒の長手方向に対して成る角度を以て配糸するこ
とを意味する。
In the membrane oxygenator of the present invention, blood is uniformly introduced into the flow path between each hollow fiber in the circumferential direction from the blood inflow portion, first flows into the twilled portion, and then flows unevenly into the flow path between each hollow fiber. It will flow in a uniformly dispersed manner without causing any turbulence. Here, twilling means arranging the yarn at an angle to the longitudinal direction of the inner cylinder or outer cylinder.

その角度は特に限定されるものではないが、実用上は6
0〜150°程度の範囲であればよい。本願発明の膜型
人工肺では90〜140°、特に100°以上130°
未満の範囲であるものが好ましい。綾巻部で均一に分散
された血流は、そのまま直線状配糸部に流入し、低い圧
力損失で人工肺出口まで流通する。ここで直線状配糸部
とは、内筒或いは外筒の長手方向に平行に配糸されたも
のばかりではなく、その方向に対して鋭角で以て綾巻状
に巻かれたものをも含むものである。又、綾巻部と直線
状配糸部との中空糸束厚さの比は特に限定されるもので
はないが、直線状配糸部の中空糸束厚さが相対的に厚い
ものが好ましい。
The angle is not particularly limited, but in practice it is 6
It may be within a range of about 0 to 150 degrees. In the membrane oxygenator of the present invention, 90 to 140°, particularly 100° or more and 130°
It is preferable that the range is less than The blood flow that has been uniformly dispersed in the twill portion flows directly into the linear thread portion and flows to the outlet of the oxygenator with low pressure loss. Here, the term "linear yarn arrangement" refers not only to yarns arranged parallel to the longitudinal direction of the inner cylinder or outer cylinder, but also includes yarns wound in a cheese pattern at an acute angle to that direction. It is something that Further, although the ratio of the thickness of the hollow fiber bundle between the twill portion and the linear yarn distribution portion is not particularly limited, it is preferable that the thickness of the hollow fiber bundle in the linear yarn distribution portion is relatively thick.

更に、本発明の膜型人工肺では、中空糸を内筒表面に直
接巻回してもよいし、内筒外径より大きい外径を有する
円筒表面に巻回した後、中空糸束を円筒から引き抜き、
得られた中空糸束を内、外筒間に配設してもよい、内筒
表面に直接巻回した場合、巻き密度が過大であると、血
液流入部での急激な血流路断面積の減少により、圧力損
失が増大するため好ましくない。内筒表面と中空県東内
表面との間に空隙を設ければ、そのような事態を防止す
ることができる。
Furthermore, in the membrane oxygenator of the present invention, the hollow fibers may be wound directly onto the surface of the inner cylinder, or after being wound around the surface of a cylinder having an outer diameter larger than the outer diameter of the inner cylinder, the hollow fiber bundle may be wound from the cylinder. Pull out,
The obtained hollow fiber bundle may be arranged between the inner and outer cylinders.If the bundle is wound directly on the surface of the inner cylinder, if the winding density is too high, the cross-sectional area of the blood flow path at the blood inflow part will suddenly increase. This is not preferable because the pressure loss increases due to the decrease in . Such a situation can be prevented by providing a gap between the inner cylinder surface and the hollow prefecture east inner surface.

〔作用〕[Effect]

本発明の膜型人工肺には、ガス透過性中空糸が綾巻され
た中空糸束と直線状に配糸された中空糸束とが存在する
ため、血液の偏流を生ずることなく、又、過度な圧力損
失の増大をも生じないものである。又、内筒外表面と中
空糸束の最内表面との間に空隙を存在させることにより
、血液が中空糸束に導入される入口部分での、急激な血
流路断面積の減少を無くし、過度な圧力損失の増大を防
止す゛ることができ、更に、中空糸束の円周方向への均
一な血液の流通をも可能とするものである。
Since the membrane oxygenator of the present invention includes a hollow fiber bundle in which gas-permeable hollow fibers are cross-wound and a hollow fiber bundle in which the fibers are arranged in a straight line, there is no uneven flow of blood, and It also does not cause an excessive increase in pressure loss. In addition, by providing a gap between the outer surface of the inner cylinder and the innermost surface of the hollow fiber bundle, a sudden decrease in the cross-sectional area of the blood flow path at the inlet portion where blood is introduced into the hollow fiber bundle is prevented. In addition, it is possible to prevent an excessive increase in pressure loss, and furthermore, it is possible to uniformly circulate blood in the circumferential direction of the hollow fiber bundle.

以下に実施例によって本発明を更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

(実施例) 第1図に本発明の膜型人工肺の断面の一例を示す。(Example) FIG. 1 shows an example of a cross section of the membrane oxygenator of the present invention.

本発明の膜型人工肺は、円筒状の外筒1と下端部が閉鎖
された内筒2、その間隙に配設された綾巻部からなる中
空糸束3、直線状配糸部からなる中空糸束4及びその両
端を中空糸が開口した状態で固定されたポツティング部
10.10°により構成される。
The membrane oxygenator of the present invention consists of a cylindrical outer cylinder 1, an inner cylinder 2 whose lower end is closed, a hollow fiber bundle 3 consisting of a twilled part disposed in the gap, and a linear yarn part. It is composed of a hollow fiber bundle 4 and a potting part 10.10 degrees fixed at both ends of the hollow fiber bundle with the hollow fibers open.

血液は血液入口部5より導入され、中空糸束への血液導
入部6を通り、綾巻部からなる中空糸束3、次いで、直
線状配糸部からなる中空糸束4を流れ、外筒1の血液が
導入される側と反対の側の端部に設けられた血液出口部
7がら排出される。
Blood is introduced from the blood inlet section 5, passes through the blood introduction section 6 into the hollow fiber bundle, flows through the hollow fiber bundle 3 consisting of a twilled section, then through the hollow fiber bundle 4 consisting of a straight yarn section, and flows through the outer tube. Blood is discharged from the blood outlet section 7 provided at the end opposite to the side into which the blood of No. 1 is introduced.

一方、ガスはガス入口部8より導入され、中空糸内部を
流れ、他端に設けられたガス出口部9より排出される。
On the other hand, gas is introduced from the gas inlet 8, flows inside the hollow fiber, and is discharged from the gas outlet 9 provided at the other end.

ガス透過性中空糸は、予め内筒より径が数閣大きい円筒
に配糸する。先ず、円筒表面に綾角(円筒の軸方向に対
する角度)125°で、全中空糸束の約半分の厚さにな
るまで配糸し、次いで、その周囲に円筒の軸方向と同じ
方向に配糸する。その後、この集束した中空糸束を内筒
と外筒との間の空隙に配設し、両端部をポツティング材
により固定する。チャネリングは内筒近傍の綾巻部によ
って防止される。綾巻部の中空糸の充填率(全断面積に
対する中空糸の存在する面積の割合)は0゜4〜0.7
程度、特に、0.55〜0.6程度が好ましいが、本実
施例では約0.6となっている。又、直線状配糸部の充
填率も特に限定されるものではないが、本実施例の場合
綾巻部と同様0.6である。
The gas-permeable hollow fibers are arranged in advance in a cylinder whose diameter is several orders of magnitude larger than the inner cylinder. First, the fibers are arranged on the cylinder surface at a winding angle (angle with respect to the axial direction of the cylinder) of 125° to a thickness of about half of the total hollow fiber bundle, and then around the hollow fibers are arranged in the same direction as the axial direction of the cylinder. Thread. Thereafter, this bundle of hollow fibers is placed in the gap between the inner tube and the outer tube, and both ends are fixed with potting material. Channeling is prevented by the twill portion near the inner cylinder. The filling rate of hollow fibers in the twill portion (the ratio of the area where hollow fibers exist to the total cross-sectional area) is 0°4 to 0.7
The degree, particularly, is preferably about 0.55 to 0.6, and in this example, it is about 0.6. Further, the filling rate of the linear yarn distribution portion is also not particularly limited, but in the case of this example, it is 0.6 as in the twill portion.

ガス透過性中空糸は、ガス透過性であって生体適合性の
優れたものであれば特に限定されるものではなく、例え
ば、ポリエチレン、ポリプロピレン等のポリオレフィン
、ポリ−テトラフルオロエチレン、ポリサルホン、シリ
コンラバー等からなる多孔質或いは均質の中空糸を使用
することができる。本実施例の場合は多孔質ポリプロピ
レン中空糸を使用している。
The gas permeable hollow fiber is not particularly limited as long as it is gas permeable and has excellent biocompatibility, and examples include polyolefins such as polyethylene and polypropylene, polytetrafluoroethylene, polysulfone, and silicone rubber. Porous or homogeneous hollow fibers made of, for example, can be used. In this example, porous polypropylene hollow fibers are used.

本実施例の主な仕様を下記に示す。The main specifications of this embodiment are shown below.

中空糸の内径         320μ中空糸の外径
         400μ綾巻部の外径      
    42mm直線状配糸部の外径       5
8mn中空糸充填率          0.6綾巻の
角度          125゜中空糸束内径と内筒
外径との間隙 約2閣有効長            
180薗有効膜面積           1.7ボ以
下に本発明の膜型人工肺を用いてガス交換能を評価した
実験及びその結果を示す。
Inner diameter of hollow fiber 320μ Outer diameter of hollow fiber 400μ Outer diameter of twill portion
42mm Outer diameter of linear thread part 5
8mm Hollow fiber filling rate 0.6Twill angle 125゜Gap between hollow fiber bundle inner diameter and inner cylinder outer diameter Approximately 2 mm effective length
180 Effective membrane area: 1.7 or less The following is an experiment in which gas exchange ability was evaluated using the membrane oxygenator of the present invention and its results.

(実験例) 実験は生血を用いて行った。生血は調整用の人工肺にて
以下に示す性状を有する標準静脈血を作製し、この標準
静脈血を試験用人工肺に潅流し、人工肺入口及び出口よ
り血液を採取し、血液ガス分析器にてpH1酸素ガス分
圧、炭酸ガス分圧等の項目を測定し、酸素及び炭酸ガス
の移動量を導出した。
(Experiment example) The experiment was conducted using fresh blood. For fresh blood, standard venous blood with the properties shown below is prepared in an oxygenator for adjustment, and this standard venous blood is perfused into the test oxygenator, blood is collected from the inlet and outlet of the oxygenator, and the blood is placed in a blood gas analyzer. Items such as pH 1 oxygen gas partial pressure and carbon dioxide gas partial pressure were measured at pH 1, and the amount of oxygen and carbon dioxide gas transferred was derived.

標準静脈血の性状 酸素飽和度      65±5% ヘモグロビン量    12±Ig/di炭酸ガス分圧
     45±5mmHg血液温度       3
7±2℃ BE(ペースエフセス) 0±5 meq/ i。
Standard venous blood properties Oxygen saturation 65±5% Hemoglobin amount 12±Ig/di Carbon dioxide partial pressure 45±5mmHg Blood temperature 3
7±2℃ BE (Pace Effects) 0±5 meq/i.

人工肺へは酸素ガスを血液とガスとの流量比が1=1と
なるように流した。以下に実験による結果を示す。
Oxygen gas was flowed into the artificial lung such that the flow rate ratio of blood to gas was 1=1. The experimental results are shown below.

(結果) 血液ガス分析の結果より算出した本発明の人工肺に於け
る酸素移動量及び炭酸ガス移動量は、血液流II 12
/分時各々65m1/分及び50m1/分、血液流量3
f/分時各々195m1/分及び140m1/分、血液
流量5f/分時各々3201I+1/分及び240m1
/分であった。又、圧力損失は血液流量1.3.51/
分時各々2o、7o、130o+mHgであった。
(Results) The oxygen transfer amount and carbon dioxide transfer amount in the artificial lung of the present invention calculated from the results of blood gas analysis are as follows: Blood flow II 12
/min time respectively 65 m1/min and 50 m1/min, blood flow rate 3
f/min time 195 m1/min and 140 m1/min respectively, blood flow rate 5 f/min time 3201 I+1/min and 240 m1 respectively
/minute. Also, the pressure loss is the blood flow rate 1.3.51/
The minutes were 2o, 7o, and 130o+mHg, respectively.

〔発明の効果〕〔Effect of the invention〕

本発明の膜型人工肺は、外部潅流型の問題点とされてい
た血液の偏流を防止し、又、圧力損失をも低く押さえる
ことができるものである。小型ながら優れたガス交換能
を有するものであり、体外血液循環量も小さいため小児
等にも適用可能である。拍動流のポンプの採用も可能と
なり、又、輸血量も微量でよく患者の負担を著しく軽減
できるものである。
The membrane type oxygenator of the present invention can prevent the uneven flow of blood, which has been a problem with external perfusion type oxygenators, and can also keep pressure loss low. Although it is small, it has excellent gas exchange ability, and the amount of extracorporeal blood circulation is small, so it can be applied to children. It is also possible to use a pulsatile flow pump, and the amount of blood transfused can be minimal, significantly reducing the burden on the patient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中空糸膜型人工肺の断面の−例を示し
たものである。 1:円筒状の外筒 2:下端部が閉塞された内筒 3:綾巻部からなる中空糸束 4:直線状配糸部からなる中空糸束 5:血液入口部 6:中空糸束への血液導入部 7:血液出口部 8:ガス入口部 9:ガス出口部 10.10゛ :ボッティング部
FIG. 1 shows an example of the cross section of the hollow fiber membrane type oxygenator of the present invention. 1: Cylindrical outer tube 2: Inner tube with a closed lower end 3: Hollow fiber bundle consisting of a twill portion 4: Hollow fiber bundle consisting of a straight yarn portion 5: Blood inlet portion 6: To the hollow fiber bundle Blood introduction part 7: Blood outlet part 8: Gas inlet part 9: Gas outlet part 10.10゛: Botting part

Claims (2)

【特許請求の範囲】[Claims] (1)内筒と外筒により構成される空間に、ガス透過性
中空糸を充填して中空糸束を形成し、中空糸の中空部内
に酸素含有ガスを流通させ、中空糸の外側に血液を流通
させる膜型人工肺に於いて、前記中空糸束が、中空糸を
綾巻きに配糸して形成される束と、中空糸を内筒及び外
筒の長手方向と実質的に同じ方向へ配糸して形成される
束とからなることを特徴とする膜型人工肺。
(1) The space formed by the inner cylinder and the outer cylinder is filled with gas-permeable hollow fibers to form a hollow fiber bundle, oxygen-containing gas is circulated in the hollow part of the hollow fibers, and blood flows outside the hollow fibers. In a membrane-type oxygenator that flows through a membrane oxygenator, the hollow fiber bundle is formed by arranging hollow fibers in a twill manner, and the hollow fibers are arranged in substantially the same longitudinal direction as the longitudinal direction of the inner cylinder and the outer cylinder. A membrane oxygenator characterized by comprising a bundle formed by arranging threads into a membrane.
(2)内筒外表面と中空糸束の最内表面との間に空隙が
存在することを特徴とする請求項(1)記載の膜型人工
肺。
(2) The membrane oxygenator according to claim (1), wherein a gap exists between the outer surface of the inner cylinder and the innermost surface of the hollow fiber bundle.
JP18710190A 1990-03-14 1990-07-17 Model artificial lung Pending JPH0475664A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18710190A JPH0475664A (en) 1990-07-17 1990-07-17 Model artificial lung
US07/668,562 US5263982A (en) 1990-03-14 1991-03-13 Hollow fiber membrane type artificial lung
EP19910103946 EP0446922A3 (en) 1990-03-14 1991-03-14 Hollow fiber membrane type artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18710190A JPH0475664A (en) 1990-07-17 1990-07-17 Model artificial lung

Publications (1)

Publication Number Publication Date
JPH0475664A true JPH0475664A (en) 1992-03-10

Family

ID=16200126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18710190A Pending JPH0475664A (en) 1990-03-14 1990-07-17 Model artificial lung

Country Status (1)

Country Link
JP (1) JPH0475664A (en)

Similar Documents

Publication Publication Date Title
US4659549A (en) Blood oxygenator using a hollow fiber membrane
JPH09509351A (en) Winding heat exchange oxygenator
US4148606A (en) Sterilization of dialyzer
US20050163656A1 (en) Device for treating blood for extracorporeal circulation
JP4026037B2 (en) Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof
JPH01104271A (en) Membrane type oxygenator
US5263982A (en) Hollow fiber membrane type artificial lung
JPH09290020A (en) Gas exchange device
EP3238758A1 (en) Hemodiafilter and hemodiafiltration device
JPH0475664A (en) Model artificial lung
JPH02213356A (en) Fluid treatment apparatus
JPH0439862B2 (en)
CN114796664A (en) Blood purification device and purification method thereof
JPH0321189B2 (en)
JPS61119273A (en) Hollow yarn membrane type artificial lung
JP2827228B2 (en) Hollow fiber type fluid treatment device
CA1236739A (en) Blood oxygenator using a hollow fiber membrane
JPH03264074A (en) Hollow yarn film type artificial lung and thread distribution
JPH04109956A (en) Hollow yarn type mechanical lung
CN215308924U (en) Blood purification device
JPH0260658A (en) Hollow yarn membrane type material transfer device
JPH0275330A (en) Hollow fiber membrane type mass transfer apparatus
JPH03146121A (en) Hollow fiber membrane and hollow fiber membrane-type breathing simulator using the membrane
JPS6131164A (en) Composite hollow yarn membrane type artificial lung
JPS6311972Y2 (en)