JPH0763592B2 - Hollow fiber membrane and hollow fiber membrane type artificial lung using the same - Google Patents

Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Info

Publication number
JPH0763592B2
JPH0763592B2 JP1286382A JP28638289A JPH0763592B2 JP H0763592 B2 JPH0763592 B2 JP H0763592B2 JP 1286382 A JP1286382 A JP 1286382A JP 28638289 A JP28638289 A JP 28638289A JP H0763592 B2 JPH0763592 B2 JP H0763592B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
blood
membrane
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1286382A
Other languages
Japanese (ja)
Other versions
JPH03146121A (en
Inventor
智則 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1286382A priority Critical patent/JPH0763592B2/en
Publication of JPH03146121A publication Critical patent/JPH03146121A/en
Publication of JPH0763592B2 publication Critical patent/JPH0763592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、膜壁を介して、例えばガス交換等の流体処理
がなされる中空糸膜及びこれを用いた中空糸膜型人工肺
に関するものである。
TECHNICAL FIELD The present invention relates to a hollow fiber membrane in which fluid treatment such as gas exchange is performed through a membrane wall and a hollow fiber membrane type artificial lung using the hollow fiber membrane. Is.

[従来の技術] 近年、心臓手術等において、患者の血液を体外に導き、
これに酸素を添加し、かつ炭素ガスを除去するために、
体外循環回路を構成する中空糸膜型人工肺が用いられて
いる。
[Prior Art] In recent years, in heart surgery, etc., the blood of the patient is guided outside the body,
To add oxygen to this and remove carbon gas,
A hollow fiber membrane type artificial lung that constitutes an extracorporeal circulation circuit is used.

この中空糸膜型人工肺は、一般に、ハウジング内に複数
本の中空糸膜を束ねて、収納してなり、該中空糸膜の内
側又は外側のいずれか一方に被処理流体として血液を循
環させ、他方に処理流体として酸素含有ガスを吹送し、
中空糸膜の膜壁を介して気液接触させ、所望のガス交換
を行なうものである。このような中空糸膜型人工肺のう
ち、中空糸膜の外側に血液を循環させ、その内側に酸素
含有ガスを吹送する、いわゆる外部潅流型のものは、血
流における圧力損失が少ないため循環回路中の人工肺の
前に送血ポンプを設ける必要がなく、従って人体からの
落差のみによる脱血にて血液を人工肺に送ることが可能
となり、特に好ましいものである。
This hollow fiber membrane-type artificial lung is generally formed by bundling and storing a plurality of hollow fiber membranes in a housing, and circulating blood as a fluid to be processed either inside or outside the hollow fiber membranes. , Blowing an oxygen-containing gas as a processing fluid to the other,
A desired gas exchange is carried out by bringing gas and liquid into contact with each other through the membrane wall of the hollow fiber membrane. Of these hollow fiber membrane-type artificial lungs, the so-called external perfusion type, in which blood is circulated outside the hollow fiber membrane and oxygen-containing gas is blown into the inside, is a circulation type because there is little pressure loss in the blood flow. Since it is not necessary to provide a blood-sending pump in front of the artificial lung in the circuit, blood can be sent to the artificial lung only by removing blood from the human body, which is particularly preferable.

このような中空糸膜人工肺に用いられる中空糸膜として
は、ガス透過性、機械的強度等の面から例えばポリプロ
ピレンなどの疎水性の多孔質中空糸膜が主として用いら
れている。
As a hollow fiber membrane used in such a hollow fiber membrane artificial lung, a hydrophobic porous hollow fiber membrane such as polypropylene is mainly used in terms of gas permeability, mechanical strength and the like.

[発明が解決しようとする課題] ところで、上記疎水性の多孔質中空糸膜にあっては、従
来、ハウジング内において、中空糸膜と中空糸膜との間
隙が狭く、かつ軸方向に沿って積極的に変化することの
ない状態で、束ねられ、収納されていた。このような状
態で、中空糸膜内部空間に血液を流し外部に酸素含有ガ
スを中空糸膜束の軸方向に流すと、中空糸膜表面におい
ては酸素含有ガスの流れは層流となるのでガス交換能の
向上は一定以上望めない。また、中空糸膜を束ねること
により、中空糸膜束の間隙に酸素含有ガスが入り込みに
くく、中心部の中空糸膜は有効利用されていなかった。
[Problems to be Solved by the Invention] By the way, in the above-mentioned hydrophobic porous hollow fiber membrane, conventionally, in the housing, the gap between the hollow fiber membrane and the hollow fiber membrane is narrow, and along the axial direction. They were bundled and stored in a state where they did not change positively. In such a state, when blood is flown in the hollow fiber membrane internal space and oxygen-containing gas is flown outside in the axial direction of the hollow fiber membrane bundle, the flow of oxygen-containing gas becomes a laminar flow on the surface of the hollow fiber membrane. The exchange capacity cannot be expected to improve beyond a certain level. Further, by bundling the hollow fiber membranes, it is difficult for oxygen-containing gas to enter the gaps between the hollow fiber membrane bundles, and the hollow fiber membranes in the central portion have not been effectively used.

また、中空糸膜が疎水性であるために、特に外部潅流型
の場合に、その間隙に、プライミング時に除去されなか
った気泡が溜り易くなり、いわゆるエアートラップされ
た状態が生じる。これにより、血液の流通が悪くなり、
またエアートラップされた気泡の塊によって血液と酸素
含有ガスとの中空糸膜の膜壁を介する接触が阻害され、
従って有効膜面積が低下し、その結果、人工肺のガス交
換能が低下する等、問題であった。
In addition, since the hollow fiber membrane is hydrophobic, bubbles that have not been removed during priming tend to accumulate in the gap, particularly in the case of the external perfusion type, and a so-called air trapped state occurs. As a result, blood circulation becomes poor,
In addition, the contact of blood and oxygen-containing gas through the membrane wall of the hollow fiber membrane is hindered by the mass of air-trapped air bubbles,
Therefore, the effective membrane area is reduced, and as a result, the gas exchange capacity of the artificial lung is reduced, which is a problem.

そこで、種々の提案がなされ、例えば中空糸膜を捲縮
し、その平均捲縮振幅、捲縮率等について一定の条件を
付すことにより、各中空糸膜間において、その軸方向に
沿って幅が変化する間隙を形成するようにしたものが案
出されている。
Therefore, various proposals have been made, for example, by crimping the hollow fiber membranes and subjecting the average crimping amplitude, crimping rate, and the like to certain conditions, the width between the hollow fiber membranes along the axial direction is increased. What has been devised is to form a gap that changes.

本発明も、かかる問題点に鑑みなされたものであって、
その目的は、上記提案のものとは別異の条件で、中空糸
膜を捲縮することにより、中空糸膜を束ねるにあたっ
て、各中空糸膜間の間隙が狭くかつ積極的に変化しない
状態になるのを解消し、中空糸膜の外側を流れる血液又
は酸素含有ガスの流れに乱流を起こさせ、これによって
ガス交換能を高め、更に、例えば中空糸膜の膜壁を介
し、内側に酸素含有ガスが吹送され、外側を血液が流れ
るものである場合に、該間隙におけるエアートラップの
発生を抑制し、血液の流れを良好にし、血液と酸素含有
ガスとの接触をなす有効膜面積を十分確保し、ガス交換
能を向上させる等、該間隙における流体の流れを円滑に
し、膜壁を介して流体が接触し得る有効膜面積を積極的
かつ十分に確保し、流体処理能を向上させる中空糸膜及
びその中空糸膜型人工肺を提供するにある。
The present invention is also made in view of such problems,
The purpose is to crimp the hollow fiber membranes under a condition different from that of the above proposal, so that when the hollow fiber membranes are bundled, the gap between the hollow fiber membranes is narrow and does not change positively. Turbulence is caused in the flow of blood or oxygen-containing gas flowing outside the hollow fiber membrane, thereby enhancing the gas exchange capacity, and further, for example, through the membrane wall of the hollow fiber membrane, oxygen inside When the contained gas is blown and the blood flows outside, it suppresses the generation of air traps in the gap, improves the blood flow, and provides a sufficient effective membrane area for contacting the blood with the oxygen-containing gas. A hollow that secures and improves the gas exchange capacity, smooths the fluid flow in the gap, positively and sufficiently secures an effective membrane area where the fluid can contact through the membrane wall, and improves the fluid treatment capacity. Fiber membrane and its hollow fiber membrane type artificial To provide a.

[課題を解決するための手段] 上記従来の課題を解決するために、本発明にあっては、
膜壁を有し、該膜壁を介して、その内側又は外側のいず
れか一方の被処理流体と他方の処理流体との間で前記被
処理流体が流体処理される疎水性の多孔質中空糸膜にお
いて、該中空糸膜の滅菌処理後の捲縮率を0.1〜0.7%の
範囲に設定した構成を特徴とする中空糸膜を提案するも
のである。
[Means for Solving the Problems] In order to solve the above conventional problems, the present invention provides:
A hydrophobic porous hollow fiber having a membrane wall, through which the fluid to be treated is fluid-processed between the fluid to be treated on either the inside or the outside of the membrane and the fluid to be treated on the other side. A hollow fiber membrane is proposed, which is characterized in that the crimping rate of the hollow fiber membrane after sterilization is set in the range of 0.1 to 0.7%.

上記構成においては、前記捲縮率が0.3〜0.5%である構
成のものが提案される。
In the above structure, a structure having a crimp ratio of 0.3 to 0.5% is proposed.

また、上記構成においては、前記中空糸膜の内径を100
〜500μm、肉厚を27〜80μmとしてなる構成のものが
提案される。
Further, in the above configuration, the inner diameter of the hollow fiber membrane is 100
A structure having a thickness of ˜500 μm and a wall thickness of 27 to 80 μm is proposed.

更に、本発明は、前記被処理流体を血液とし、前記処理
流体を酸素含有ガスとし、上記中空糸膜の前記膜壁を介
してガス交換をなすとともに、前記中空糸膜がハウジン
グ内に、複数、束ねられ、収納されてなる中空糸膜型人
工肺を提案するものである。
Furthermore, in the present invention, the treated fluid is blood, the treated fluid is an oxygen-containing gas, gas exchange is performed through the membrane wall of the hollow fiber membrane, and the hollow fiber membrane is provided in a plurality of housings. The present invention proposes a hollow fiber membrane type artificial lung that is bundled and housed.

上記構成により、本発明に係る中空糸膜及びこれを用い
た中空糸膜型人工肺にあっては、疎水性の多孔質中空糸
膜を捲縮し、該中空糸膜の滅菌処理後の捲縮率を0.1〜
0.7%の範囲に設定しているので、中空糸膜と中空糸膜
との間には、間隙が十分大きくかつ中空糸膜の軸方向に
沿って積極的に変化して形成され、例えば、中空糸膜の
内側に処理流体として酸素含有ガスを吹送し、外側に被
処理流体として血液を循環、流通させた場合には、該各
中空糸膜の間隙が適度に生じるので、良好な血液の流通
がもたらされ、かつ血液と酸素含有ガスとの中空糸膜の
膜壁を介する接触が中空糸膜の全面にわたって均一にな
され、有効膜面積も十分確保され、更に血液の流れに乱
流を生じさせるので、高いガス交換能が得られる等、該
間隙における被処理流体又は処理流体の流れが円滑にな
り、中空糸膜の膜壁を介して流体が接触し得る有効膜面
積が積極的かつ十分に確保され、流体処理能の向上が可
能となる。
With the above-described structure, in the hollow fiber membrane according to the present invention and the hollow fiber membrane-type artificial lung using the same, the hydrophobic porous hollow fiber membrane is crimped, and the hollow fiber membrane is sterilized after sterilization. Reduction rate from 0.1 to
Since it is set in the range of 0.7%, a sufficiently large gap is formed between the hollow fiber membranes and the hollow fiber membranes are positively changed along the axial direction of the hollow fiber membranes. When an oxygen-containing gas is blown as the treatment fluid inside the fiber membrane and blood is circulated and circulated as the fluid to be treated outside, a proper gap is formed between the hollow fiber membranes, so that good blood circulation is achieved. And the contact between blood and oxygen-containing gas through the membrane wall of the hollow fiber membrane is made uniform over the entire surface of the hollow fiber membrane, sufficient effective membrane area is secured, and turbulent flow is generated in the blood flow. As a result, a high gas exchange capacity can be obtained, and the flow of the fluid to be treated or the fluid to be treated in the gap becomes smooth, and the effective membrane area where the fluid can contact through the membrane wall of the hollow fiber membrane is positive and sufficient. Therefore, the fluid processing ability can be improved.

[実施例] 以下、本発明の中空糸膜として、人工肺用のものを説明
する。
[Example] Hereinafter, the hollow fiber membrane of the present invention for an artificial lung will be described.

本実施例に係る中空糸膜は、その内径が100〜500μm、
好ましくは、150〜300μm、肉厚が27〜80μmで、好ま
しくは、40〜60μmである疎水性の多孔質中空糸膜であ
る。
The hollow fiber membrane according to this example has an inner diameter of 100 to 500 μm,
It is preferably a hydrophobic porous hollow fiber membrane having a thickness of 150 to 300 μm and a thickness of 27 to 80 μm, preferably 40 to 60 μm.

この多孔質中空糸膜には、捲縮が付与されている。この
捲縮を付与するにあたっては、中空糸膜が延伸される。
この延伸は、中空糸膜の破断強度の向上を図るととも
に、捲縮を付与するのに適正収縮率を得るためであり、
捲縮前熱収縮率は6±2%(75℃で30分間オーブン処理
後の収縮率)が良好である。
Crimping is applied to the porous hollow fiber membrane. When applying the crimp, the hollow fiber membrane is stretched.
This stretching is intended to improve the breaking strength of the hollow fiber membrane and to obtain an appropriate shrinkage ratio to impart crimp,
The heat shrinkage before crimping is 6 ± 2% (shrinkage after oven treatment at 75 ° C. for 30 minutes) is good.

捲縮にあたって、その捲縮率は、0.1〜0.7%の範囲に設
定されている。尚、本願における捲縮率は、該中空糸膜
が用いられる人工肺などの人工臓器については使用前に
滅菌処理を行なうので、その滅菌処理後の値である。捲
縮率が0.1%未満であると、中空糸膜を、例えば人工肺
中に組入れた際、中空糸と中空糸との間隙が十分とれ
ず、中空糸膜の外側を流れる流体に乱流を発生させるま
でには至らない。逆に捲縮率が0.7%を越えると、例え
ば中空糸膜を用いて人工肺を作成した場合に、人工肺が
必要以上に大型化する虞があり、特に中空糸膜の束径が
大きくなり過ぎると人工膜のハウジングに挿着する作業
の際に膜をハウジング内壁に過度に接触させ、その結
果、膜に孔をあける、いわゆるファイバーピンホールを
発生させる虞があるので、いずれも好ましくない。より
好ましくは0.3〜0.5%の範囲である。
In crimping, the crimping rate is set in the range of 0.1 to 0.7%. The crimp rate in the present application is a value after the sterilization process because an artificial organ such as an artificial lung in which the hollow fiber membrane is used is sterilized before use. When the crimping rate is less than 0.1%, when the hollow fiber membrane is incorporated into, for example, an artificial lung, the gap between the hollow fiber and the hollow fiber cannot be sufficiently secured, and turbulent flow is generated in the fluid flowing outside the hollow fiber membrane. It does not reach the point where it is generated. On the other hand, if the crimping rate exceeds 0.7%, for example, when an artificial lung is created using a hollow fiber membrane, the artificial lung may become unnecessarily large, and in particular, the bundle diameter of the hollow fiber membrane becomes large. If it passes, the membrane may be excessively contacted with the inner wall of the housing during the work of inserting the artificial membrane into the housing, and as a result, a so-called fiber pin hole may be formed in the membrane, which is not preferable. The range is more preferably 0.3 to 0.5%.

上記中空糸膜は、次に示すような方法で製造することが
できる。例えば、紡糸された後、延伸法あるいは相分離
法などにより多孔質とされた中空糸膜を、適当なボビン
等にクロス巻きに捲き取って捲縮を付与し、その後、適
当な条件下、例えば60℃で24時間程度、熱処理して捲縮
状態を固定することにより得られる。この際、捲縮の付
与における熱固定が必要以上に行なわれ、膜構造が変化
し、例えば、捲縮を与える前の状態より空孔率が20%以
上も低下するようなものにあっては、捲縮による効果が
発揮されず、また逆に熱固定が不十分に行なわれ、人工
肺の組立て時において所望の捲縮状態を保持しているの
にかかわらず、その後の残留応力により中空糸膜に張力
がかかり捲縮が失が失われるようなものであってもその
効果が得られない。
The hollow fiber membrane can be manufactured by the following method. For example, after being spun, the hollow fiber membrane which has been made porous by a stretching method or a phase separation method is wound around a suitable bobbin or the like in a cross winding to provide crimp, and then, under appropriate conditions, for example, It is obtained by heat-treating at 60 ° C for about 24 hours to fix the crimped state. At this time, heat setting during crimping is performed more than necessary, the film structure is changed, and, for example, if the porosity is reduced by 20% or more from the state before crimping, , The effect of the crimp is not exhibited, and conversely, the heat setting is insufficient, and the desired crimped state is maintained during the assembly of the artificial lung, but the hollow fiber is caused by the residual stress after that. Even if the film is tensioned and the crimp is lost, the effect cannot be obtained.

更に本発明の多孔質中空糸膜にあっては、空孔率が30〜
50%、好ましくは37〜43%であり、また酸素ガスフラッ
クスが15000〜35000/min・m2・0.5atm、好ましくは22
000〜27200/min・m2・0.5atmであると、人工肺用とし
て用いた場合、より一層優れた効果が期待できるものと
なる。
Further, in the porous hollow fiber membrane of the present invention, the porosity is 30 ~
50%, preferably 37 to 43%, and the oxygen gas flux is 15000 to 35000 / min · m 2 · 0.5 atm, preferably 22.
When it is 000 to 27200 / min · m 2 · 0.5 atm, even more excellent effects can be expected when used for an artificial lung.

中空糸膜の素材としては、例えばポリプロピレン、ポリ
エチレンなどのポリオレフィンやポリテトラフルオロエ
チレンなどの疎水性合成樹脂を用いることができ、その
内でも、機械的強度、耐熱性、加工性などの諸物性に優
れ、また多孔性の付与が容易であるなどの点からポリプ
ロピレンが特に良好である。
As the material of the hollow fiber membrane, for example, polyolefin such as polypropylene or polyethylene, or hydrophobic synthetic resin such as polytetrafluoroethylene can be used. Among them, various physical properties such as mechanical strength, heat resistance, and processability can be used. Polypropylene is particularly preferable because it is excellent and it is easy to impart porosity.

次に、上記中空糸膜を用いた中空糸膜型人工肺を図面に
基づき説明する。
Next, a hollow fiber membrane type artificial lung using the hollow fiber membrane will be described with reference to the drawings.

第1図は、その中空糸膜型人工肺の第1の実施例であ
り、中空糸膜6の内側に被処理流体として血液を循環、
流通させ、中空糸膜6の外側に処理流体として酸素含有
ガスを吹送する、いわゆる内部潅流型のものである。こ
の中空糸膜型人工肺1は、ハウジング2を具備してな
り、このハウジング2は、筒状本体3とその両端部に形
成された環状突起付き拡径部4,5とより一体的に構成さ
れている。ハウジング2内には、複数の、例えば10000
〜60000本の多孔質中空糸膜6がハウジング2の長手方
向に沿って中空糸膜束13として束ねられ、収納されてい
る。この中空糸膜6の両端部は、取付けカバー4,5内に
おいて各中空糸膜6の開口が閉塞されない状態で隔壁7,
8により液密に支持されている。この隔壁7,8により、多
孔質中空糸膜6の外周面と上記ハウジング2の内面との
間にはガス室9が形成されている。上記取付けカバー4,
5の内、一方の取付けカバー4には酸素含有ガスを供給
する酸素含有ガス導入口10が設けられており、他方の取
付けカバー5には酸素含有ガスを排出する酸素含有ガス
導出口11が設けられている。
FIG. 1 shows a first embodiment of the hollow fiber membrane type artificial lung, in which blood is circulated as a fluid to be treated inside the hollow fiber membrane 6,
This is a so-called internal perfusion type in which an oxygen-containing gas is circulated and blown with an oxygen-containing gas as a processing fluid to the outside of the hollow fiber membrane 6. The hollow fiber membrane-type artificial lung 1 comprises a housing 2, which is integrally formed with a tubular body 3 and expanded diameter portions 4 and 5 with annular projections formed at both ends thereof. Has been done. In the housing 2, a plurality of, for example, 10,000
About 60,000 porous hollow fiber membranes 6 are bundled and housed as a hollow fiber membrane bundle 13 along the longitudinal direction of the housing 2. Both ends of the hollow fiber membrane 6 are separated from each other by the partition walls 7, while the openings of the hollow fiber membranes 6 are not closed in the mounting covers 4 and 5.
Liquid-tightly supported by 8. The partition walls 7 and 8 form a gas chamber 9 between the outer peripheral surface of the porous hollow fiber membrane 6 and the inner surface of the housing 2. Above mounting cover 4,
Of the five, one mounting cover 4 is provided with an oxygen-containing gas inlet 10 for supplying an oxygen-containing gas, and the other mounting cover 5 is provided with an oxygen-containing gas outlet 11 for discharging the oxygen-containing gas. Has been.

なお、中空糸膜6の充填率にあっては、筒状本体3内の
中空糸膜束13の中央部における充填率Aが約55〜65%で
あり、中空糸束13の両端、つまり隔壁7,8の外面におけ
る充填率Bが約40〜50%であれば良好であり、充填率A
が57〜63%、充填率Bが43〜47%であれば特に好まし
い。
Regarding the filling rate of the hollow fiber membranes 6, the filling rate A in the central portion of the hollow fiber membrane bundle 13 in the tubular body 3 is about 55 to 65%, and both ends of the hollow fiber bundle 13, that is, partition walls. It is good if the filling rate B on the outer surface of 7, 8 is about 40 to 50%, and the filling rate A
Is 57 to 63% and the filling rate B is 43 to 47%.

なお、隔壁7,8は、極性の高い高分子ポッティング材、
例えば、ポリウレタン、シリコーン、エポキシ樹脂等を
ハウジング2の両端内壁面に遠心注入法を利用して流し
込み、硬化させることにより得られる。
The partition walls 7 and 8 are polymer potting materials with high polarity,
For example, it can be obtained by pouring polyurethane, silicone, epoxy resin or the like into the inner wall surfaces of both ends of the housing 2 by using a centrifugal injection method and curing the resin.

一方の隔壁7の外面は、略円錐形状の血液ポートカバー
15で覆われている。この血液ポートカバー15は、その内
周面に形成された環状突起15aと前記取付けカバー4の
外周面に形成された環状突起4aとが相互に係合すること
により、取付けカバー4に液密に嵌合され、その内部に
は、血液ポート領域23が形成されるようになっている。
血液ポートカバー15には、血液導出口26が形成されてい
る。
The outer surface of one of the partition walls 7 has a substantially conical blood port cover.
Covered with 15. The blood port cover 15 is liquid-tightly attached to the mounting cover 4 by the mutual engagement of the annular projection 15a formed on the inner peripheral surface thereof and the annular projection 4a formed on the outer peripheral surface of the mounting cover 4. It is fitted and a blood port region 23 is formed therein.
A blood outlet port 26 is formed in the blood port cover 15.

他方の隔壁8には、熱交換器12が接続されている。熱交
換器12は、ハウジング13を具備してなり、該ハウジング
13は、筒状本体13aと嵌合用部材13bとよりなっている。
筒状本体13a内には、複数本のステンレスパイプ14が配
設され、それら両端開口部が閉塞されない状態で隔壁1
7,18を介して液密に支持されている。また、筒状本体13
aの周側部には、冷温水流通口19,20が設けられ、筒状本
体13a内に冷水または温水の流路が形成され、これによ
り、パイプ14内を流通する血液が所望の温度に調整され
るようになっている。前記隔壁8に対して反対側に位置
する隔壁18の外面は、前記血液ポートカバー15と同様の
血液ポートカバー16で覆われている。図中、24は、血液
ポート領域、25は血液導入口である。嵌合用部材13b
は、拡径部5に対し、前記血液ポートカバー15と同様に
液密に嵌合され、隔壁17,5間に血液貯留空間27が形成さ
れている。
A heat exchanger 12 is connected to the other partition wall 8. The heat exchanger 12 comprises a housing 13,
The reference numeral 13 includes a tubular body 13a and a fitting member 13b.
A plurality of stainless steel pipes 14 are arranged in the cylindrical main body 13a, and the partition wall 1 is formed in a state where the openings at both ends thereof are not closed.
Liquid-tightly supported via 7,18. Also, the cylindrical body 13
Cold and hot water flow ports 19 and 20 are provided on the peripheral side of a, and a flow path of cold water or hot water is formed in the tubular main body 13a, whereby blood circulating in the pipe 14 reaches a desired temperature. It is supposed to be adjusted. The outer surface of the partition 18 located on the opposite side of the partition 8 is covered with a blood port cover 16 similar to the blood port cover 15. In the figure, 24 is a blood port region, and 25 is a blood inlet. Mating member 13b
Is liquid-tightly fitted to the expanded diameter portion 5 similarly to the blood port cover 15, and a blood storage space 27 is formed between the partition walls 17 and 5.

本実施例では、上記構成により、中空糸膜と中空糸膜と
の間には、間隙が十分大きくかつ中空糸膜の軸方向に沿
って積極的に変化して形成される。従って、ガス室9内
に吹送され、処理流体をなす酸素含有ガスは、該間隙を
良好に流通する。また、この酸素含有ガスと、血液貯蔵
空間27より中空糸膜6の内側を流れ、被処理流体をなす
血液との、中空糸膜の膜壁を介する接触が中空糸膜6の
全面にわたって均一になされ、有効膜面積も十分確保さ
れる。その結果、高いガス交換能を得ることができ、被
処理流体の流体処理能の向上が可能となる。
In this embodiment, with the above configuration, a gap is formed between the hollow fiber membranes so that the gap is sufficiently large and positively changes along the axial direction of the hollow fiber membranes. Therefore, the oxygen-containing gas blown into the gas chamber 9 and forming the processing fluid satisfactorily flows through the gap. Further, the contact of the oxygen-containing gas with the blood that flows inside the hollow fiber membrane 6 from the blood storage space 27 and is the fluid to be treated through the membrane wall of the hollow fiber membrane is uniform over the entire surface of the hollow fiber membrane 6. Therefore, the effective film area is sufficiently secured. As a result, a high gas exchange capacity can be obtained, and the fluid processing capacity of the fluid to be processed can be improved.

次に、本発明の中空糸膜型人工肺の第2の実施例とし
て、中空糸膜の外側に被処理流体として血液を循環し、
中空糸膜の内側に処理流体として酸素含有ガスを吹送す
る、いわゆる外部潅流型のものを第2図に基づき説明す
る。本実施例に係る中空糸膜型人工肺31は、ハウジング
32と、その両端部に設けられた酸素含有ガスポートカバ
ー34,35とより構成されている。ハウジング32内には、
前記実施例と同様に、隔壁7,8を介して中空糸膜6が支
持されている。その隔壁7,8により、ハウジング32内に
は、血液室39が形成され、酸素含有ガスポートカバー3
4,35内には、酸素含有ガスポート領域34a,35aが形成さ
れるようになっている。ハウジング32には血液を供給す
る血液導入口45及び血液を排出する血液導出口46がそれ
ぞれ設けられている。酸素含有ガスポートカバー34,35
にはそれぞれ酸素含有ガス導入口40および酸素含有導出
口41が形成されている。
Next, as a second embodiment of the hollow fiber membrane-type artificial lung of the present invention, blood is circulated as a fluid to be processed outside the hollow fiber membrane,
A so-called external perfusion type in which an oxygen-containing gas is blown as a treatment fluid inside the hollow fiber membrane will be described with reference to FIG. The hollow fiber membrane type artificial lung 31 according to the present embodiment is a housing
32, and oxygen-containing gas port covers 34 and 35 provided at both ends thereof. In the housing 32,
The hollow fiber membrane 6 is supported via the partition walls 7 and 8 as in the above-described embodiment. The partition walls 7 and 8 form a blood chamber 39 in the housing 32, and the oxygen-containing gas port cover 3 is formed.
Oxygen-containing gas port regions 34a, 35a are formed in 4,35. The housing 32 is provided with a blood inlet 45 for supplying blood and a blood outlet 46 for discharging blood. Oxygen-containing gas port cover 34,35
An oxygen-containing gas inlet 40 and an oxygen-containing outlet 41 are formed in each of them.

本実施例にあっては、上記構成により、各中空糸膜6間
には、その間隙が十分大きくかつ中空糸膜6の軸方向に
沿って積極的に変化して形成されているので、プライミ
ング時に除去されなかった気泡が該間隙に留り難くな
り、従って、いわゆるエアートラップされ難くなる。こ
れにより、該間隙における血液の流通が良好となるとと
もに、エアートラップされた気泡の塊によって生ずる、
血液と酸素含有ガスとの中空糸膜6の膜壁を介する接触
の阻害が解消され、従って有効膜面積が十分確保され
る。
In the present embodiment, due to the above-described configuration, the gap between the hollow fiber membranes 6 is formed to be sufficiently large and positively change along the axial direction of the hollow fiber membranes 6, so that priming is performed. At times, the air bubbles that have not been removed are less likely to stay in the gap, and thus are less likely to be so-called air trapped. This improves the circulation of blood in the gap, and is caused by the air trapped air bubble mass.
Inhibition of contact between blood and oxygen-containing gas through the membrane wall of the hollow fiber membrane 6 is eliminated, and therefore an effective membrane area is sufficiently secured.

また、血液の流れに乱流が生じ、ガス交換能の向上が果
される。
In addition, turbulence occurs in the blood flow, and the gas exchange capacity is improved.

その他の作用、効果は前述の実施例と同様である。Other functions and effects are similar to those of the above-described embodiment.

以上に、実施例を挙げて本発明を説明したが本発明は上
記実施例に限定されるものではなく、発明の要旨を変更
しない範囲で種々変更可能である。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.

次に、本発明者は、上記実施例の効果を確認するために
以下のような実験を行なった。
Next, the present inventor conducted the following experiment in order to confirm the effect of the above-mentioned embodiment.

(実験例) 本実験例に係る多孔質中空糸膜を次に示す方法で製造し
た。
(Experimental Example) A porous hollow fiber membrane according to this Experimental Example was produced by the following method.

相分離法に属するミクロ相分離法により形成された平均
細孔半径約500Åの微細孔を有する、内径180〜220μ
m、肉厚約50μmのポリプロピレン製多孔質中空糸膜
を、直径97mmのボビンにクロス巻きに捲き取り、60℃で
24時間オーブン中で熱処理することにより捲縮をかけ
た。ここにおいて捲縮率は第1表に示すとおりである。
180-220μ inner diameter with fine pores with an average pore radius of about 500Å formed by the micro phase separation method belonging to the phase separation method.
m, wall thickness about 50 μm polypropylene porous hollow fiber membrane wound around a bobbin with a diameter of 97 mm in a cross winding, at 60 ° C
Crimping was applied by heat treatment in an oven for 24 hours. Here, the crimp rate is as shown in Table 1.

このようにして得られた中空糸膜6を用い、前述の第1
の実施例に係る中空糸膜型人工肺1と同様な人工肺(テ
ルモ(株)製,CX−II)1Aを実施例1として、第2の実
施例に係る中空糸膜型人工肺31と同様な人工肺(テルモ
(株)製,CX−E)1Bを実施例2としてそれぞれ作成
し、酸素ガス添加能及び炭素ガス排除能を計測した。そ
の結果を第1表に示す。
Using the hollow fiber membrane 6 thus obtained, the first
The same artificial lung (CX-II, CX-II) 1A as the hollow fiber membrane oxygenator 1 according to Example 1 is used as Example 1 and the hollow fiber membrane oxygenator 31 according to the second embodiment is used. Similar artificial lungs (CX-E) 1B manufactured by Terumo Corp. were prepared as Example 2, and the oxygen gas addition ability and the carbon gas elimination ability were measured. The results are shown in Table 1.

(比較例) 上記実験例と比例するために、延伸法により軸方向に延
伸されて形成された平均細孔半径684Åの微細孔を有す
る、内径200μm、肉厚21.5μmのポリプロピレン製多
孔質中空糸膜を、捲縮させることなくそのまま用いて、
前述の実験例と同様に人工肺を作成し、人工肺1Aに対応
するものを比較例1として人工肺2A、人工肺1Bに対応す
るものを比較例2として人工肺2Bとし、酸素ガス添加能
及び炭素ガス排除能を計測した。その結果を第1表に示
す。
(Comparative example) In order to be proportional to the above experimental example, a polypropylene porous hollow fiber having an inner diameter of 200 μm and a wall thickness of 21.5 μm, which has fine pores with an average pore radius of 684Å formed by axially stretching by a stretching method. Using the membrane as it is without crimping,
An artificial lung was created in the same manner as in the above-mentioned experimental example, one corresponding to the artificial lung 1A was designated as the artificial lung 2A, and one corresponding to the artificial lung 1B was designated as the comparative lung 2B, and the oxygen gas addition ability was used. And the carbon gas elimination capacity were measured. The results are shown in Table 1.

なお、本明細書中における各用語の定義および測定方法
は次の通りである。
The definitions and measuring methods of each term in this specification are as follows.

内径、肉厚 中空糸膜を任意に10本抜き取り、鋭利なカミソリで2〜
3mm程度の長さに輪切りにする。万能投影機(ニコンプ
ロファイルプロジェクタ−V−12)でその断面を映し出
し、計測器(ニコンデジタルカウンターCM−6S)でその
外径d1、内径d2を測定し、肉厚tをt=d1−d2により算
出し、10本の平均値とした。
Inner diameter, wall thickness 10 hollow fiber membranes can be extracted arbitrarily and sharpened with a razor
Cut into 3mm length. The cross section is projected with a universal projector (Nikon profile projector-V-12), and its outer diameter d 1 and inner diameter d 2 are measured with a measuring instrument (Nikon digital counter CM-6S), and the wall thickness t is t = d 1 It was calculated by -d 2 and was taken as the average value of 10 lines.

空孔率(%) 中空糸膜を約2gとり、鋭利なカミソリにより5mm以下の
輪切りにする。得られた試料を水銀ポロシメーター(カ
ルロエルバ社65A型)にて1000kg/cm2まで圧力をかけ全
細孔量(単位重さ当りの中空糸の細孔体積)により空孔
率を得る。
Porosity (%) Approximately 2 g of hollow fiber membrane is taken and cut into 5 mm or less slices with a sharp razor. The porosity of the obtained sample is obtained by applying a pressure up to 1000 kg / cm 2 with a mercury porosimeter (Model 65A, manufactured by Carlo Erba Co.) and the total amount of pores (pore volume of hollow fiber per unit weight).

捲縮率 人工肺は、通常、使用前に滅菌されるので、その滅菌
後、該人工肺から取り出した中空糸膜について測定を行
なった。
Crimping rate Since the artificial lung is usually sterilized before use, the hollow fiber membrane taken out from the artificial lung was measured after the sterilization.

滅菌は、エチレンオキサイドガス滅菌により、その条件
は、次の通りである。すなわち、EOG/CO2:20/80
(%)、温度:55〜65℃、湿度:50〜80%RH、圧力:0.8〜
1.2kg/cm2、エチレンオキサイド濃度:550〜750mg/、
作用時間:150〜210分である。
Sterilization was carried out by ethylene oxide gas sterilization, and the conditions are as follows. That is, EOG / CO 2 : 20/80
(%), Temperature: 55 ~ 65 ℃, humidity: 50 ~ 80% RH, pressure: 0.8 ~
1.2 kg / cm 2 , ethylene oxide concentration: 550-750 mg /,
Action time: 150-210 minutes.

その取出した中空糸膜のサンプル長さとして、人工肺1
A,2Aのものにあっては、70mm、人工肺1B,2Bのものにあ
っては、100mmとした。
As the sample length of the extracted hollow fiber membrane, the artificial lung 1
It was 70 mm for A and 2A, and 100 mm for artificial lungs 1B and 2B.

測定方法としてはJIS L 1074 6.11.2の捲縮率の測定方
法を参考にした。
As the measurement method, the crimp rate measurement method of JIS L 1074 6.11.2 was referred to.

具体的には、試験機として、島津製作所製,オートグラ
フ,AGS−100Aの引張試験機を用い、それによる引張速度
としては、1mm/minとした。
Specifically, a tensile tester manufactured by Shimadzu Corporation, Autograph, AGS-100A was used as a tester, and the pulling speed thereby was set to 1 mm / min.

まず、上記サンプル長さの中空糸膜に対し、本試験機に
より1gの荷重をかけ、その際の荷重をaとし、次に、10
gの荷重をかけたときの長さをbとし、ストログラフの
サイクル試験モードにより、1gと10gの荷重間を3回、
上記引張速度でサイクル試験を行ない、3回の平均値を
もって、a,bの各値とした。このa,bの測定値から、次に
示す計算式により捲縮率を得た。
First, a load of 1 g was applied to the hollow fiber membrane of the above sample length by this tester, the load at that time was set to a, and then 10
Let b be the length when a load of g is applied, and use the cycle test mode of the strograph to load the load between 1g and 10g three times.
A cycle test was conducted at the above-mentioned tensile speed, and the average value of three times was used as each value of a and b. From the measured values of a and b, the crimp ratio was obtained by the following calculation formula.

捲縮率(%)=(b−a)/a×100 酸素ガスフラックス 多孔質中空糸膜で有効長さ23cm、有効膜面積0.1m2のも
のを作成し、片方の端を閉じた後、酸素で中空糸膜内部
に0.5気圧の圧力をかけ、定常状態になったときの酸素
ガスの流量を流量計(草野理化学機器製作所,フロート
メーター)により読み取った値とした。
Crimping rate (%) = (ba) / a × 100 Oxygen gas flux A porous hollow fiber membrane having an effective length of 23 cm and an effective membrane area of 0.1 m 2 was prepared, and after closing one end, A pressure of 0.5 atm was applied to the inside of the hollow fiber membrane with oxygen, and the flow rate of oxygen gas when in a steady state was read by a flow meter (Kusano Rikagaku Kikai Seisakusho, float meter).

酸素ガス添加能,炭素ガス排除能 (人工肺1A及び2A) 中空糸膜6の有効長さを80mm、膜面積を3.0m2とし、中
空糸膜6の内側にウシ血液(標準静脈血)をシングルパ
ス(Single Path)で5/minの流量で流し、中空糸膜
6の外側へ純酸素を5/minの流量で流し、人工肺入口
および出口のウシ血液のpH、炭酸ガス分圧(PCO2)、酸
素ガス分圧(PO2)を血液ガス測定装置(Radiometer社
製,BGA3型)により測定し、人工肺入口と人工肺出口と
の分圧差を算出した。なお人工肺モジュール仕様の詳細
は第2表に示す。
Oxygen gas addition ability, carbon gas elimination ability (artificial lungs 1A and 2A) The hollow fiber membrane 6 has an effective length of 80 mm and a membrane area of 3.0 m 2, and bovine blood (standard venous blood) is placed inside the hollow fiber membrane 6. A single path is used to flow at a flow rate of 5 / min, pure oxygen is flowed to the outside of the hollow fiber membrane 6 at a flow rate of 5 / min, and the pH of the bovine blood at the inlet and outlet of the artificial lung and the partial pressure of carbon dioxide (PCO) 2 ) Oxygen gas partial pressure (PO 2 ) was measured by a blood gas measuring device (Radioometer BGA3 type), and the partial pressure difference between the artificial lung inlet and the artificial lung outlet was calculated. Details of the specifications of the artificial lung module are shown in Table 2.

(人工肺1B及び2B) 中空糸膜6の有効長さを140mm、膜面積を5.0m2とし、中
空糸膜6の外側にウシ血液(標準静脈血)をシングルパ
ス(Single Path)で5/minの流量で流し、中空糸膜
6の内側へ純酸素を5/minの流量で流し、人工肺入口
および出口のウシ血液のpH、炭素ガス分圧(PCO2)、酸
素ガス分圧(PO2)を血液ガス測定装置(Radiometer社
製,BGA3型)により測定し、人工肺入口と人工肺出口と
の分圧差を算出した。なお人工肺モジュール仕様の詳細
は第2表に示す。
(Oxygenator 1B and 2B) The effective length of the hollow fiber membrane 6 is 140 mm, the membrane area is 5.0 m 2, and bovine blood (standard venous blood) is placed on the outside of the hollow fiber membrane 6 in a single path (5/5). At a flow rate of min, pure oxygen is flown inside the hollow fiber membrane 6 at a flow rate of 5 / min, pH of bovine blood at the inlet and outlet of the artificial lung, carbon gas partial pressure (PCO 2 ), oxygen gas partial pressure (PO 2 ) was measured by a blood gas measuring device (BGA3 type, manufactured by Radiometer), and the partial pressure difference between the artificial lung inlet and the artificial lung outlet was calculated. Details of the specifications of the artificial lung module are shown in Table 2.

また、人工肺1A,1B,2A,2Bともに、標準動脈血の性状は
第3表に示す。
Table 3 shows the properties of standard arterial blood in the artificial lungs 1A, 1B, 2A and 2B.

以上の結果、本発明の実施例に係る人工肺1A,1Bが、そ
の内でも特に外部潅流型のものである人工肺1Bが優れた
ガス交換能を有することが明らかになった。
As a result, it has been clarified that the artificial lungs 1A and 1B according to the examples of the present invention, in particular, the external perfusion type artificial lung 1B has excellent gas exchange ability.

更に、本願発明との比較のために、捲縮率が本願発明の
設定範囲0.1〜0.7%の上下の範囲を越える比較例3〜6
を第4表に示す。
Further, for comparison with the present invention, Comparative Examples 3 to 6 in which the crimping ratio exceeds the upper and lower ranges of the set range of 0.1 to 0.7% of the present invention.
Is shown in Table 4.

比較例3及び4は捲縮率が本願発明の設定範囲の上限を
越える1.0%の場合、比較例5及び6はその下限を下回
る0.05%の場合を示す。
Comparative Examples 3 and 4 show a case where the crimping rate is 1.0% which exceeds the upper limit of the set range of the present invention, and Comparative Examples 5 and 6 show a case where the crimping rate is 0.05% which is below the lower limit.

比較例3及び4では、実験の過程において、ファイバー
ピンホールの発生が多く見られ、それを補修した後のデ
ータであるが、該ピンホールの補修に労力を要し極めて
作業性が悪いものであった。又、比較例5及び6は本願
発明の場合に比しガス交換能が劣るものであった。
In Comparative Examples 3 and 4, the occurrence of fiber pinholes was often observed in the course of the experiment, and the data is after repairing them, but it takes labor to repair the pinholes and the workability is extremely poor. there were. Further, Comparative Examples 5 and 6 were inferior in gas exchange ability to the case of the present invention.

[発明の効果] 以上、説明したように本発明に係る中空糸膜及びこれを
用いた中空糸膜型人工肺にあっては、疎水性の多孔質中
空糸膜を捲縮し、該中空糸膜の滅菌処理後の捲縮率を0.
1〜0.7%の範囲に設定しているので、中空糸膜と中空糸
膜との間には、間隙が十分大きくかつ中空糸膜の軸方向
に沿って積極的に変化して形成され、例えば、中空糸膜
の内側に処理流体として酸素含有ガスを吹送し、外側に
被処理流体として血液を循環、流通させた場合には、該
各中空糸膜の間隙が適度に生じるので、良好な血液の流
通がもたらされ、かつ血液と酸素含有ガスとの中空糸膜
の膜壁を介する接触が中空糸膜の全面にわたって均一に
なされ、有効膜面積も十分確保され、更に血液の流れに
乱流を生じさせるので高いガス交換能が得られる等、該
間隙における被処理流体又は処理流体の流れが円滑にな
り、中空糸膜の膜壁を介して流体が接触し得る有効膜面
積が積極的かつ十分に確保され、流体処理能の向上が可
能となるとともに中空糸膜の束径を過度に大きくするこ
とがなく、これを例えば人工肺のハウジングに挿着する
場合に過度の接触により、いわゆるファイバーピンホー
ルを生じさせる虞がなくなり、作業性の向上が図られる
とともに小型化設計が容易になる等、種々の効果を奏す
る。
[Effects of the Invention] As described above, in the hollow fiber membrane according to the present invention and the hollow fiber membrane-type artificial lung using the hollow fiber membrane, the hydrophobic porous hollow fiber membrane is crimped to form the hollow fiber. The crimp rate after sterilization of the membrane is 0.
Since it is set in the range of 1 to 0.7%, a sufficiently large gap is formed between the hollow fiber membranes and the hollow fiber membranes, and the hollow fiber membranes are formed by actively changing along the axial direction of the hollow fiber membranes. When an oxygen-containing gas is blown into the hollow fiber membrane as a treatment fluid and blood is circulated and circulated as a fluid to be treated outside, a proper gap is formed between the hollow fiber membranes, so that good blood is obtained. And the blood and oxygen-containing gas are evenly contacted through the membrane wall of the hollow fiber membrane over the entire surface of the hollow fiber membrane, the effective membrane area is sufficiently secured, and the turbulent flow in the blood flow is further ensured. As a result, a high gas exchange capacity can be obtained, the flow of the fluid to be treated or the fluid to be treated in the gap becomes smooth, and the effective membrane area where the fluid can contact through the membrane wall of the hollow fiber membrane is positive and Sufficiently secured, it is possible to improve fluid processing capacity and Do not increase the bundle diameter of the empty fiber membrane excessively and eliminate the possibility of causing so-called fiber pinholes due to excessive contact when inserting this into the housing of the artificial lung, for example, and improve workability. And various effects such as easy miniaturization and design.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る中空糸膜型人工肺の第1の実施例
を示す半縦断正面図、第2図は本発明に係る中空糸膜型
人工肺の第2の実施例を示す半縦断正面図である。 1,31……中空糸膜型人工肺 2,32……ハウジング 6……中空糸膜
FIG. 1 is a semi-longitudinal front view showing a first embodiment of the hollow fiber membrane-type artificial lung according to the present invention, and FIG. 2 is a half view showing a second embodiment of the hollow fiber membrane-type artificial lung according to the present invention. FIG. 1,31 …… Hollow fiber membrane oxygenator 2,32 …… Housing 6 …… Hollow fiber membrane

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】膜壁を有し、該膜壁を介して、その内側又
は外側のいずれか一方の被処理流体と他方の処理流体と
の間で前記被処理流体が流体処理される疎水性の多孔質
中空糸膜において、該中空糸膜の滅菌処理後の捲縮率を
0.1〜0.7%の範囲に設定したことを特徴とする中空糸
膜。
1. A hydrophobic material having a membrane wall, wherein the fluid to be treated is fluid-processed between the fluid to be treated on either the inner side or the outer side thereof and the treatment fluid on the other side through the membrane wall. In the porous hollow fiber membrane of, the crimp ratio after sterilization treatment of the hollow fiber membrane is
A hollow fiber membrane characterized by being set in the range of 0.1 to 0.7%.
【請求項2】前記捲縮率が0.3〜0.5%である請求項1記
載の中空糸膜。
2. The hollow fiber membrane according to claim 1, wherein the crimping rate is 0.3 to 0.5%.
【請求項3】前記中空糸膜の内径を100〜500μm,肉厚を
27〜80μmとしてなる請求項1記載の中空糸膜。
3. The hollow fiber membrane has an inner diameter of 100 to 500 μm and a wall thickness of
The hollow fiber membrane according to claim 1, which has a thickness of 27 to 80 µm.
【請求項4】前記被処理流体を血液とし、前記処理流体
を酸素含有ガスとし、請求項1乃至3のいずれか1つに
記載の中空糸膜の前記膜壁を介してガス交換をなすとと
もに、前記中空糸膜がハウジング内に、複数、束ねら
れ、収納されてなる中空糸膜型人工肺。
4. The fluid to be treated is blood, and the treatment fluid is an oxygen-containing gas, and gas exchange is performed through the membrane wall of the hollow fiber membrane according to any one of claims 1 to 3. A hollow fiber membrane type artificial lung in which a plurality of the hollow fiber membranes are bundled and housed in a housing.
JP1286382A 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same Expired - Fee Related JPH0763592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286382A JPH0763592B2 (en) 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286382A JPH0763592B2 (en) 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Publications (2)

Publication Number Publication Date
JPH03146121A JPH03146121A (en) 1991-06-21
JPH0763592B2 true JPH0763592B2 (en) 1995-07-12

Family

ID=17703672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286382A Expired - Fee Related JPH0763592B2 (en) 1989-11-02 1989-11-02 Hollow fiber membrane and hollow fiber membrane type artificial lung using the same

Country Status (1)

Country Link
JP (1) JPH0763592B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN149938B (en) * 1977-11-30 1982-06-12 Monsanto Co
JPS615848A (en) * 1984-02-14 1986-01-11 東洋紡績株式会社 Bobbin for blood dialytic hollow yarn

Also Published As

Publication number Publication date
JPH03146121A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
AU611244B2 (en) Medical instrument
US5162102A (en) Medical instrument and production thereof
CA1158510A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
US8387804B2 (en) Diffusion and/or filtration device
JPS624994B2 (en)
JPS61128978A (en) Membrane type artificial lung
JPH01104271A (en) Membrane type oxygenator
JP3803421B2 (en) Gas exchange device
JPS63109871A (en) Blood dialytic membrane
JP5413317B2 (en) Hollow fiber microporous membrane and membrane oxygenator incorporating the same
JPH0763592B2 (en) Hollow fiber membrane and hollow fiber membrane type artificial lung using the same
WO2000012154A1 (en) Blood processing device
JPS61232860A (en) Polysulfone hollow yarn for separating serum
US4587168A (en) Hollow fiber membrane for dialysis
JP4683402B2 (en) Hollow fiber membrane for blood purification, method for producing the same, and blood purifier
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP5138840B2 (en) Hollow fiber microporous membrane and membrane oxygenator incorporating the same
JPS6242705A (en) Permselective hollow yarn and fluid separator
JPH0127794Y2 (en)
JPH0321188B2 (en)
JPS60150757A (en) Hollow yarn membrane type artificial lung
JPH01115364A (en) Porous hollow yarn membrane and hollow yarn membrane type/pump oxygenator
JPS59108563A (en) Hollow yarn type artifical long
JPH03158166A (en) Hollow fiber membrane type fluid treating device
Teber et al. Characterization and comparative evaluation of polysulfone and polypropylene hollow fiber membranes for blood oxygenators

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees