JPH03145162A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03145162A
JPH03145162A JP28385289A JP28385289A JPH03145162A JP H03145162 A JPH03145162 A JP H03145162A JP 28385289 A JP28385289 A JP 28385289A JP 28385289 A JP28385289 A JP 28385289A JP H03145162 A JPH03145162 A JP H03145162A
Authority
JP
Japan
Prior art keywords
gate electrode
diffusion layer
high melting
source
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28385289A
Other languages
Japanese (ja)
Inventor
Takehiro Arie
武浩 有得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28385289A priority Critical patent/JPH03145162A/en
Publication of JPH03145162A publication Critical patent/JPH03145162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make a semiconductor device low in resistance and to enable it to be easily manufactured by a method wherein the surfaces of a polysilicon gate electrode and a source and a drain diffusion layer formed on a silicon substrate are exposed, and a high melting metal layer grown through a selective CVD method is formed in contact with the exposed surfaces concerned. CONSTITUTION:A polysilicon gate oxide film 3 is formed on a region demarcated by a LOCOS oxide film 2 on a P-type semiconductor substrate 1, and a gate electrode 4 is formed thereon. A low concentration N-type diffusion layer 5 is formed taking advantage of the gate electrode 4. Thereafter, a side wall 6 is formed on both the sides of the gate electrode 4 respectively, impurity is implanted taking advantage of the side walls 6 to form an N-type high concentration diffusion layer 7. Then, the surface of the polysilicon gate electrode 4 and a source and a drain diffusion layer, 7 and 7, of silicon are exposed, and tungsten is selectively grown on the exposed surface concerned through a CVD method to form a high melting metal layer 8. By this setup, the gate electrode 4, the source diffusion layer 7, and the drain diffusion layer 7 are made low in resistance by the high melting metal layer 8 to enable an element to operate at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に配線の低抵抗化を図っ
て動作速度の向上を図ったMOS)ランジスタを備える
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device including a MOS (MOS) transistor whose wiring resistance is lowered to improve its operating speed.

〔従来の技術〕[Conventional technology]

従来、この種の半導体装置は、MOSトランジスタのソ
ース、ドレイン及びゲート電極の低抵抗化を図るために
、これらに接する高融点金属シリサイド化合物を自己整
合法により形成している。
Conventionally, in this type of semiconductor device, in order to reduce the resistance of the source, drain, and gate electrodes of a MOS transistor, a high-melting point metal silicide compound is formed in contact with the source, drain, and gate electrodes by a self-alignment method.

第2図はその一例を示しており、その製造方法と共に説
明する。先ず、P形半導体基板11に1μm程度のLO
GO3(選択酸化法)酸化膜12を形成後、ゲート酸化
膜13.ゲート電極14を形成する。そして、N型不純
物を低濃度注入して低濃度N型拡敞層15を形成する。
FIG. 2 shows an example thereof, which will be explained together with its manufacturing method. First, an LO of about 1 μm is formed on the P-type semiconductor substrate 11.
After forming the GO3 (selective oxidation method) oxide film 12, the gate oxide film 13. A gate electrode 14 is formed. Then, a low concentration N type expansion layer 15 is formed by implanting N type impurities at a low concentration.

更に、ゲート電極14の両側にサイドウオール16を形
成した後、全面に高融点金属(例えば、チタン)をスパ
ッタして熱処理し、ソース、ドレイン及びゲート電極上
の高融点金属をそれぞれシリサイド化合物にする。そし
て、シリサイド化されていない高融点金属のみを選択的
にエツチング除去することで、自己整合的に高融点金属
シリサイド層18を形成する。なお、その後、高濃度N
型拡散N17を形成する。
Furthermore, after sidewalls 16 are formed on both sides of the gate electrode 14, a high melting point metal (for example, titanium) is sputtered and heat-treated on the entire surface to convert the high melting point metals on the source, drain, and gate electrodes into silicide compounds. . Then, by selectively etching and removing only the high melting point metal that has not been silicided, the high melting point metal silicide layer 18 is formed in a self-aligned manner. Furthermore, after that, high concentration N
A type diffusion N17 is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置では、高融点金属シリサイド
層18を自己整合法で形成するために、高融点金属の全
面スバツタ工程、熱処理(シリサイド化)工程2選択的
エツチング除去工程が必要であり、工程が長く煩雑とな
る。また、高融点金属をシリサイド化してしまうため、
配線として使用するには抵抗が比較的に大きくなってし
まうという問題がある。
In the conventional semiconductor device described above, in order to form the high melting point metal silicide layer 18 by a self-alignment method, a whole surface sputtering process of the high melting point metal, a heat treatment (silicidation) process 2 and a selective etching removal process are required. becomes long and complicated. Also, since it turns high melting point metal into silicide,
There is a problem in that the resistance becomes relatively large when used as wiring.

本発明の目的は、低抵抗化を図るとともに、容易に製造
することを可能にした半導体装置を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that has low resistance and can be easily manufactured.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、ポリシリコンで形威したゲート
電極、及びシリコン基板に形威したソース、ドレインの
各拡散層の表面を露呈し、これらの露呈した表面に接し
た状態で選択CVD法により成長した高融点金属層を形
成している。
In the semiconductor device of the present invention, the surfaces of the gate electrode made of polysilicon and the source and drain diffusion layers formed in the silicon substrate are exposed, and the semiconductor device is processed by selective CVD in contact with these exposed surfaces. A grown high melting point metal layer is formed.

〔作用〕[Effect]

この構成では、シリコン素材の露呈された表面にのみ選
択CVD法により高融点金属層が成長されるため、この
成長工程のみで低抵抗化を図った半導体装置の製造が可
能となる。
In this configuration, the high melting point metal layer is grown only on the exposed surface of the silicon material by selective CVD, so it is possible to manufacture a semiconductor device with low resistance using only this growth step.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

この構成を製造工程に従って説明する。This configuration will be explained according to the manufacturing process.

先ず、P型半導体基板1に1μm程度のLOCO8酸化
膜2を形威し、かつこのLOCO3酸化膜2で両底され
た領域にポリシリコンでゲート酸化膜3を形成する。そ
して、ゲート酸化膜3上にゲート電極4を形成する。そ
して、ゲーI・電極4を利用した自己整合法によりN型
不純物を注入し、低濃度N型拡散層5を形成する。
First, a LOCO8 oxide film 2 of about 1 .mu.m is formed on a P-type semiconductor substrate 1, and a gate oxide film 3 made of polysilicon is formed in the region bottomed by the LOCO3 oxide film 2. Then, a gate electrode 4 is formed on the gate oxide film 3. Then, an N-type impurity is implanted by a self-alignment method using the GaI electrode 4 to form a low concentration N-type diffusion layer 5.

その後、ゲート電極4の両側にサイドウオール6を形成
する。このサイドウオール6は、全面にサイドウオール
材を堆積した後、異方性エツチング法によりこのサイド
ウオール材をエツチングバックすることで容易に形成・
できる。そして、このサイドウオール6を利用して不純
物を注入し、ソース、ドレインとしての高濃度N型拡散
層7を形成する。
Thereafter, sidewalls 6 are formed on both sides of the gate electrode 4. This sidewall 6 can be easily formed by depositing sidewall material on the entire surface and then etching back this sidewall material using an anisotropic etching method.
can. Then, using this sidewall 6, impurities are implanted to form a heavily doped N-type diffusion layer 7 as a source and a drain.

次に、ゲート電極4上及びソース、ドレインの拡散層7
のポリシリコン及びシリコン表面を露出させた後、これ
らシリコンの表面にタングステンを選択CVD成長させ
、高融点金属層8を成長させる。この選択CVD法では
、シリコンの露呈面にのみタングステンが成長され、他
の部分にはタングステンが成長されることはない。
Next, the diffusion layer 7 on the gate electrode 4 and on the source and drain
After exposing the polysilicon and silicon surfaces, tungsten is selectively grown on the silicon surfaces by CVD to grow a high melting point metal layer 8. In this selective CVD method, tungsten is grown only on the exposed surface of silicon, and tungsten is not grown on other parts.

これにより、ゲート電極4上及びソース、ドレインの拡
散層7上にのみ、これと接した状態に高融点金属層8が
形成される。したがって、これらゲート電極4やソース
、ドレインの拡散層7を高融点金属層8によって低抵抗
化し、素子の高速化を実現する。また、この製造に際し
ては、高融点金属の全面スパッタ、シリサイド比処理9
還択エツチング等の工程が不要となり、容易に高融点金
属層8を製造することが可能となる。
As a result, the high melting point metal layer 8 is formed only on and in contact with the gate electrode 4 and the source and drain diffusion layers 7. Therefore, the gate electrode 4 and the source and drain diffusion layers 7 are made to have low resistance by the high melting point metal layer 8, thereby achieving higher speed of the device. In addition, during this manufacturing, full surface sputtering of high melting point metal, silicide ratio treatment of 9
Processes such as selective etching are not necessary, and the high melting point metal layer 8 can be easily manufactured.

なお、タングステンに代えて他の選択CVD成長の可能
な高融点金属を用いてもよい。
Note that other high melting point metals that can be selectively grown by CVD may be used instead of tungsten.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極とソース、ド
レインの拡散層の露呈された表面にのみ選択CVD法に
より高融点金属層を成長しているため、高融点金属層の
製造工程を簡略化できる効果がある。また、高融点金属
はシリサイド化合物よりも層抵抗が低いので、ゲート電
極及びソース。
As explained above, the present invention simplifies the manufacturing process of the high melting point metal layer because the high melting point metal layer is grown by selective CVD only on the exposed surfaces of the gate electrode, source, and drain diffusion layers. There is an effect that can be done. In addition, high melting point metals have lower layer resistance than silicide compounds, so they are suitable for gate electrodes and sources.

ドレイン拡散層の低抵抗化を実現でき、動作速度の改善
を図ることができる効果もある。
This also has the effect of reducing the resistance of the drain diffusion layer and improving the operating speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は従来の
半導体装置の縦断面図である。 l、11・・・P型半導体基板、2,12・・・LOC
○S酸化膜、3.13・・・ゲート酸化膜、4.14・
・・ゲート電極、5.15・・・低濃度N型拡散層、6
.16・・・サイドウオール、7.17・・・高濃度N
型拡散層、8・・・高融点金属層、18・・・高融点金
属シリサイド層。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional semiconductor device. l, 11... P-type semiconductor substrate, 2, 12... LOC
○S oxide film, 3.13... Gate oxide film, 4.14.
...Gate electrode, 5.15...Low concentration N-type diffusion layer, 6
.. 16...Side wall, 7.17...High concentration N
Type diffusion layer, 8... High melting point metal layer, 18... High melting point metal silicide layer.

Claims (1)

【特許請求の範囲】[Claims] 1、シリコン基板に形成したゲート酸化膜上にポリシリ
コンでゲート電極を形成し、かつ前記シリコン基板にソ
ース、ドレインの各拡散層を形成した半導体装置におい
て、前記ゲート電極及びソース、ドレインの各拡散層の
表面を露呈し、この露呈された表面に接した状態で選択
CVD法により成長した高融点金属層を形成したことを
特徴とする半導体装置。
1. In a semiconductor device in which a gate electrode is formed of polysilicon on a gate oxide film formed on a silicon substrate, and source and drain diffusion layers are formed on the silicon substrate, the gate electrode and source and drain diffusion layers are formed on the silicon substrate. 1. A semiconductor device characterized in that the surface of the layer is exposed and a high melting point metal layer is formed in contact with the exposed surface by selective CVD.
JP28385289A 1989-10-31 1989-10-31 Semiconductor device Pending JPH03145162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28385289A JPH03145162A (en) 1989-10-31 1989-10-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28385289A JPH03145162A (en) 1989-10-31 1989-10-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03145162A true JPH03145162A (en) 1991-06-20

Family

ID=17671005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28385289A Pending JPH03145162A (en) 1989-10-31 1989-10-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03145162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937300A (en) * 1994-10-12 1999-08-10 Nec Corporation Semiconductor apparatus and fabrication method thereof
US9198819B2 (en) 2012-08-15 2015-12-01 Batesville Services, Inc. Cremation urn with decorative applique applied thereto

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937300A (en) * 1994-10-12 1999-08-10 Nec Corporation Semiconductor apparatus and fabrication method thereof
US9198819B2 (en) 2012-08-15 2015-12-01 Batesville Services, Inc. Cremation urn with decorative applique applied thereto

Similar Documents

Publication Publication Date Title
JPH07297400A (en) Manufacture of semiconductor integrated circuit device, and semiconductor integrated circuit device obtained thereby
US6653227B1 (en) Method of cobalt silicidation using an oxide-Titanium interlayer
JP2930042B2 (en) Method for manufacturing semiconductor device
JPS63257231A (en) Manufacture of semiconductor device
JPH03145162A (en) Semiconductor device
JPS61230373A (en) Manufacture of semiconductor device
JPH05347410A (en) Semiconductor device and its manufacture
JPS63313855A (en) Semiconductor device
JPH02122522A (en) Semiconductor device and manufacture thereof
JPH0291932A (en) Manufacture of semiconductor device
JPH07161988A (en) Manufacture of semiconductor device
JPS60124972A (en) Manufacture of semiconductor device
JPH09148568A (en) Manufacture of semiconductor device
JPS63196075A (en) Manufacture of mis type semiconductor device
JPS63275181A (en) Manufacture of semiconductor device
JPS63313818A (en) Manufacture of semiconductor device
JP2525201B2 (en) Method for manufacturing semiconductor device
JP2919333B2 (en) Method for manufacturing semiconductor device
JPH01109766A (en) Manufacture of semiconductor device
JPH08306802A (en) Manufacture of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS63127552A (en) Semiconductor device
JP2002231932A (en) Bipolar semiconductor device and method of manufacturing the same
JPH04303963A (en) Semiconductor device
JPH04321233A (en) Manufacture of semiconductor device