JPH03140838A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH03140838A
JPH03140838A JP1279382A JP27938289A JPH03140838A JP H03140838 A JPH03140838 A JP H03140838A JP 1279382 A JP1279382 A JP 1279382A JP 27938289 A JP27938289 A JP 27938289A JP H03140838 A JPH03140838 A JP H03140838A
Authority
JP
Japan
Prior art keywords
frequency
signal
gas
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1279382A
Other languages
Japanese (ja)
Inventor
Yoshinori Bessho
別所 芳則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1279382A priority Critical patent/JPH03140838A/en
Publication of JPH03140838A publication Critical patent/JPH03140838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the amount of gas with high resolving power on the basis of the frequency change of a surface elastic wave element by detecting the phase difference between the first and second synthetic signals as the change quantity of frequency of a surface elastic wave. CONSTITUTION:The resonance frequency of a surface clastic wave element 10 is changed by frequency DELTAf from reference resonance frequency fP by the adsorption of gas due to an adsorbing membrane 16 and a measuring signal changed by frequency (fP-DELTAf) is detected by a detector 10b to be outputted. The first reference signal (frequency fR) whose frequency is slightly different from the reference resonance frequency fP and the measuring signal are synthesized by the first synthesizing means 32 to fetch the first synthetic signal changed by the difference frequency (fP-fR-DELTA) of those frequencies. The second reference signal whose frequency is equal to the frequency fP and the first reference signal are synthesized by the second synthesizing means 34 to fetch the second synthetic signal changed by the difference frequency (fP-FR) thereof. Then, first and second synthetic signals is detected by a phase difference detection means 36. Next, the amount of the gas adsorbed on the adsorbing membrane can be measured on the basis of the phase difference with high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガス吸着膜が付着された表面弾性波素子の周
波数変化に基づいてガス量を測定するガスセンサの改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a gas sensor that measures the amount of gas based on the frequency change of a surface acoustic wave element to which a gas adsorption film is attached.

従来の技術 単分子膜を複数累積したL B (Langmuir−
Blodgell)膜等のガス吸着性を有する吸着膜を
利用して、エタノールガス等のガス量を測定するガスセ
ンサが考えられており、その一種に、上記吸着膜をST
カット水晶板のような表面弾性波素子に付着し、その吸
着膜に吸着されたガスによる質量変化に対応して表面弾
性波素子の発振周波数が変化することに基づいてガス量
を測定するものが提案されている。例えば、“”198
9年応用物理学会講演予稿集°”の4p−G−1に記載
されているガスセンサはその一例である。
Conventional technology LB (Langmuir-
A gas sensor that measures the amount of gas such as ethanol gas using an adsorption film having gas adsorption properties such as a J.D. Blodgell film has been considered.
A device that measures the amount of gas based on the fact that the oscillation frequency of the surface acoustic wave device changes in response to the change in mass caused by the gas adsorbed on the adsorption film attached to the surface acoustic wave device, such as a cut quartz plate. Proposed. For example, “”198
An example of this is the gas sensor described in 4p-G-1 of the 9th Japan Society of Applied Physics Conference Proceedings.

発明が解決しようとする課題 しかしながら、従来のこの種のガスセンサは、表面弾性
波素子の発振周波数そのものを検出してその周波数変化
を直接観測するようになっているため、必ずしも高分解
能でガス量を測定することができないという問題があっ
た。
Problems to be Solved by the Invention However, conventional gas sensors of this type detect the oscillation frequency of the surface acoustic wave element itself and directly observe changes in that frequency, so it is not always possible to measure the gas amount with high resolution. There was a problem that it could not be measured.

本発明は以上の事情を背景として為されたもので、その
目的とするところは、表面弾性波素子の周波数変化に基
づいてガス量を高分解能で測定できるようにすることに
ある。
The present invention has been made against the background of the above-mentioned circumstances, and its purpose is to enable gas amount to be measured with high resolution based on frequency changes of a surface acoustic wave element.

課題を解決するための手段 かかる目的を達成するために、本発明は、ガス吸着性を
有する吸着膜が表面に付着されるとともに、予め定めら
れた基準共振周波数で表面弾性波を発生する表面弾性波
素子を備え、前記吸着膜に吸着されたガスによる質量変
化に対応して前記表面弾性波の周波数が前記基準共振周
波数から変化することに基づいてガス量を測定するガス
センサであって、(a)前記表面弾性波素子の表面弾性
波を検出して、その表面弾性波と同じ周波数の計測信号
を出力する検出手段と、ら)周波数が前記基準共振周波
数と僅かに異なる第1参照信号と、前記検出手段から出
力された計測信号とを合成し、それ等の差周波数で変化
する第1合成信号を出力する第1合成手段と、(C)周
波数が前記基準共振周波数と等しい第2参照信号と前記
第1参照信号とを合成し、それ等の差周波数で変化する
第2合成信号を出力する第2合成手段と、(山前記第1
合成信号と前記第2合成信号との位相差を前記表面弾性
波の周波数変化量として検出する位相検出手段とを有す
ることを特徴とする。
Means for Solving the Problems To achieve the object, the present invention provides an adsorption film having gas adsorption properties attached to a surface, and a surface acoustic wave generating surface acoustic wave at a predetermined reference resonance frequency. A gas sensor comprising a wave element and measuring the amount of gas based on a change in the frequency of the surface acoustic wave from the reference resonance frequency in response to a change in mass due to the gas adsorbed on the adsorption film, ) a detection means for detecting a surface acoustic wave of the surface acoustic wave element and outputting a measurement signal having the same frequency as the surface acoustic wave; and d) a first reference signal having a frequency slightly different from the reference resonance frequency. (C) a second reference signal whose frequency is equal to the reference resonance frequency; and the first reference signal, and outputs a second composite signal that changes at a difference frequency therebetween;
It is characterized by comprising a phase detection means for detecting a phase difference between the composite signal and the second composite signal as an amount of change in frequency of the surface acoustic wave.

作用および発明の効果 このようなガスセンサにおいては、吸着膜によるガス吸
着により表面弾性波素子の共振周波数は基準共振周波数
fpから周波数Δfだけ変化させられ、その共振周波数
(rr−Δf)で振動させられる表面弾性波が検出手段
によって検出されるとともに、その周波数Cry−Δf
)で変化する計測信号が出力される。そして、周波数が
上記基準共振周波数f、と僅かに異なる第1参照信号(
周波数fR)と計測信号とが第1合成手段によって合成
されることにより、それ等の差周波数(rpf、−Δf
)で変化する第1合成信号が取り出される一方、周波数
が基準共振周波数f、と等しい第2参照信号と上記第1
参照信号とが第2合成手段によって合成されることによ
り、それ等の差周波数(r、−r、)で変化する第2合
成信号が取り出され、それ等の第1合成信号と第2合成
信号との位相差が位相検出手段によって検出される。
Function and Effect of the Invention In such a gas sensor, the resonant frequency of the surface acoustic wave element is changed by the frequency Δf from the reference resonant frequency fp due to gas adsorption by the adsorption film, and the surface acoustic wave element is vibrated at the resonant frequency (rr−Δf). The surface acoustic wave is detected by the detection means, and its frequency Cry-Δf
) is output. Then, a first reference signal (
Frequency fR) and measurement signal are synthesized by the first synthesizing means, so that their difference frequency (rpf, -Δf
) is taken out, while a second reference signal whose frequency is equal to the reference resonant frequency f, and the first
By combining the reference signal with the second combining means, a second combined signal varying at the difference frequency (r, -r,) is extracted, and the first combined signal and the second combined signal are The phase difference between the two is detected by the phase detection means.

上記第1合成信号と第2合成信号との位相差は前記計測
信号の位相変化量すなわち周波数変化量Δfに対応する
もので、この位相差に基づいて周波数変化量Δfが少数
点以下のオーダーで求められ、吸着膜に吸着したガスの
質量やガス濃度等のガス量が高い精度で測定される。
The phase difference between the first composite signal and the second composite signal corresponds to the phase change amount of the measurement signal, that is, the frequency change amount Δf, and based on this phase difference, the frequency change amount Δf is on the order of a decimal point or less. The amount of gas, such as the mass and gas concentration of the gas adsorbed on the adsorption membrane, can be measured with high accuracy.

このように、本発明ではガス吸着に伴う周波数変化量Δ
fが、計測信号の位相変化量すなわち前記第1合成信号
と第2合成信号との位相差から少数点以下のオーダーで
求められるため、高分解能でガス量を測定することがで
きるのである。この場合に、上記計測信号の位相変化量
を計測信号のみから求めることは、計測信号の周波数が
高いため実質的に不可能なのであり、上記のように所謂
ヘテロダイン方式で周波数の低い第1合成信号および第
2合成信号を取り出すことにより、それ等の位相差すな
わち計測信号の位相変化量が容易に且つ高い精度で求め
られるのである。
In this way, in the present invention, the amount of frequency change Δ due to gas adsorption
Since f is determined from the phase change amount of the measurement signal, that is, the phase difference between the first composite signal and the second composite signal, on the order of a decimal point or less, the gas amount can be measured with high resolution. In this case, it is virtually impossible to obtain the amount of phase change of the measurement signal only from the measurement signal because the frequency of the measurement signal is high. By extracting the second composite signal, the phase difference thereof, that is, the amount of phase change of the measurement signal can be easily determined with high accuracy.

実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図において、10,12.14はそれぞれSTカッ
ト水晶板表面弾性波素子であり、その両端部にはそれぞ
れくし型の入力電極10a  12a、14aおよび出
力電極10b、12b、14bが設けられている。表面
弾性波素子10の表面には、ガス吸着性を有する吸着膜
としてアラキン酸の単分子膜を3層累積したLBBi1
2付着され、その状態において前記表面弾性波素子14
と同じ共振周波数fpにて表面弾性波を発生するように
なっており、表面弾性波素子12は上記共振周波数f2
と僅かに異なる共振周波数f++にて表面弾性波を発生
するようになっている。そして、上記表面弾性波素子1
0.14の入力電極10a。
In FIG. 1, reference numerals 10, 12, and 14 each indicate an ST-cut quartz plate surface acoustic wave device, and comb-shaped input electrodes 10a, 12a, and 14a and output electrodes 10b, 12b, and 14b are provided at both ends, respectively. There is. On the surface of the surface acoustic wave element 10, LBBi1 is formed by accumulating three monomolecular films of arachidic acid as an adsorption film having gas adsorption properties.
2 attached, and in that state the surface acoustic wave element 14
The surface acoustic wave element 12 generates a surface acoustic wave at the same resonant frequency f2 as the resonant frequency f2.
Surface acoustic waves are generated at a slightly different resonance frequency f++. Then, the surface acoustic wave element 1
0.14 input electrode 10a.

14aには水晶発振子18から共振周波数fpと同じ周
波数の高周波電圧が印加され、その共振周波数f、の表
面弾性波が発生させられることにより、出力電極10b
、14bから共振周波数f。
A high frequency voltage having the same frequency as the resonant frequency fp is applied from the crystal oscillator 18 to the output electrode 14a, and a surface acoustic wave having the resonant frequency f is generated, so that the output electrode 10b
, 14b to the resonant frequency f.

と同じ周波数の電気信号SM、SR2がそれぞれ出力さ
れる。また、表面弾性波素子12の入力電極12aには
水晶発振子20から共振周波数fRと同じ周波数の高周
波電圧が印加され、その共振周波数fRの表面弾性波が
発生させられることにより、出力電極12bから共振周
波数f、lと同じ周波数の電気信号SRIが出力される
。上記共振周波数f、は例えば80MHz程度に設定さ
れ、共振周波数fRは79.9MHz程度に設定される
Electric signals SM and SR2 of the same frequency are output, respectively. Furthermore, a high frequency voltage having the same frequency as the resonant frequency fR is applied from the crystal oscillator 20 to the input electrode 12a of the surface acoustic wave element 12, and a surface acoustic wave having the resonant frequency fR is generated. An electrical signal SRI having the same frequency as the resonance frequencies f and l is output. The resonance frequency f is set to, for example, about 80 MHz, and the resonance frequency fR is set to about 79.9 MHz.

上記表面弾性波素子10は、測定対象であるエタノール
ガス22が導入される測定容器24内に収容されており
、前記LB膜16にそのエタノールガス22が吸着され
ると、その質量増加分に対応して共振周波数が変化する
。したがって、前記共振周波数f、と同じ周波数の高周
波電圧が入力電極10aに印加されても、エタノールガ
ス22の吸着質量に対応してΔfだけ変化した共振周波
数(fr−Δf)の表面弾性波が発生させられ、出力電
極tabから出力される前記電気信号SMの周波数も(
fp−Δf)となる。本実施例では、上記共振周波数f
1が基準共振周波数に相当し、出力電極10bが検出手
段に相当する。また、電気信号SM、SRI、SR2は
、それぞれ計測信号、第1参照信号、第2参照信号に相
当する。
The surface acoustic wave element 10 is housed in a measurement container 24 into which ethanol gas 22 to be measured is introduced, and when the ethanol gas 22 is adsorbed to the LB film 16, the increase in mass is increased. The resonant frequency changes. Therefore, even if a high frequency voltage having the same frequency as the resonant frequency f is applied to the input electrode 10a, a surface acoustic wave having a resonant frequency (fr - Δf) that changes by Δf corresponding to the adsorbed mass of the ethanol gas 22 is generated. The frequency of the electrical signal SM output from the output electrode tab is also (
fp−Δf). In this embodiment, the resonance frequency f
1 corresponds to the reference resonance frequency, and the output electrode 10b corresponds to the detection means. Further, the electrical signals SM, SRI, and SR2 correspond to a measurement signal, a first reference signal, and a second reference signal, respectively.

上記電気信号SM、SRI、SR2はそれぞれ増幅器2
6.28.30によって増幅され、電気信号SMおよび
SRIは第1合成手段32に供給されるとともに、電気
信号SRIおよびSR2は第2合成手段34に供給され
る。これ等の合成手段32.34は、それぞれ供給され
た信号を合成してその差周波数で変化する合成信号を出
力するもので、第1合成手段32からは差周波数f0 
(−f P   f *−Δf)で変化する第1合成信
号SDが出力され、第2合成手段34からは差周波数f
++(=fr  fR)で変化する第2合成信号SBが
出力される。
The electric signals SM, SRI, and SR2 are each sent to an amplifier 2.
6.28.30, the electrical signals SM and SRI are supplied to the first combining means 32, and the electrical signals SRI and SR2 are supplied to the second combining means 34. These combining means 32 and 34 combine the respective supplied signals and output a combined signal that changes at the difference frequency, and the first combining means 32 outputs a combined signal with a difference frequency f0
The first composite signal SD varying by (-f P f *-Δf) is output, and the second composite signal 34 outputs the difference frequency f
A second composite signal SB varying at ++ (=fr fR) is output.

上記合成信号SDおよびSBはそれぞれ位相検出手段3
6に供給され、それ等の位相差ΔΦが検出される。位相
検出手段36は、例えば第2図に示されているように構
成され、上記合成信号SD。
The composite signals SD and SB are each output from the phase detection means 3.
6, and their phase difference ΔΦ is detected. The phase detection means 36 is configured, for example, as shown in FIG. 2, and detects the composite signal SD.

SBはそれぞれコンパレータ回路38.40によって矩
形波に整形され、カウンタ回路42.44に供給される
。カウンタ回路42.44は上記矩形波に整形された合
成信号SD、SBの波数を予め定められた一定時間、例
えば1m秒毎に計数してラッチ回路46.48に出力す
るもので、その計数値はラッチ回路46.48で一時記
憶された後減算器50によって減算される。そして、そ
の減算値C1はラッチ回路52に一時記憶される。
SB is shaped into a rectangular wave by comparator circuits 38 and 40, respectively, and is supplied to counter circuits 42 and 44. The counter circuits 42.44 count the wave numbers of the composite signals SD and SB shaped into rectangular waves at predetermined intervals, for example, every 1 msec, and output the counted values to the latch circuits 46.48. is temporarily stored in latch circuits 46 and 48, and then subtracted by subtracter 50. Then, the subtracted value C1 is temporarily stored in the latch circuit 52.

減算値C1は、位相差ΔΦのうち1位相2πを1単位と
するものである。
The subtraction value C1 has one phase 2π of the phase difference ΔΦ as one unit.

また、上記コンパレータ回路38.40から出力される
矩形の合成信号SD、SBは、水晶発振子54から出力
される周波数fcのパルス信号SPと共にAND回路5
6に供給される。第1合成信号SDはNOT回路58を
経てAND回路56に供給されるようになっており、A
ND回路56を通過したパルス信号SP“のパルス数C
2がカウンタ回路60により予め定められたタイミング
、で計数され、ラッチ回路62に一時記憶される。
Further, the rectangular composite signals SD and SB outputted from the comparator circuits 38 and 40 are combined with the pulse signal SP of frequency fc outputted from the crystal oscillator 54 to an AND circuit 5.
6. The first composite signal SD is supplied to the AND circuit 56 via the NOT circuit 58, and
The number of pulses C of the pulse signal SP" that has passed through the ND circuit 56
2 is counted by the counter circuit 60 at a predetermined timing and temporarily stored in the latch circuit 62.

第3図は、上記NOT回路58によって反転された第1
合成信号SD”、第2合成信号SB、およびAND回路
56を通過したパルス信号SP’の一例を示すタイムチ
ャートである。なお、第1合成信号SDが反転してAN
D回路56に供給されるところから、合成信号SDとS
Bとの間に位相差ΔΦがない場合、すなわち前記LB膜
16によるガス吸着がなくて電気信号SMの周波数がf
rの場合には、上記パルス数02は零となる。
FIG. 3 shows the first signal inverted by the NOT circuit 58.
5 is a time chart showing an example of a composite signal SD'', a second composite signal SB, and a pulse signal SP' that has passed through an AND circuit 56. Note that the first composite signal SD is inverted and
The composite signals SD and S are supplied to the D circuit 56.
When there is no phase difference ΔΦ between the LB film 16 and the LB film 16, the frequency of the electric signal SM is f.
In the case of r, the pulse number 02 becomes zero.

ここで、上記パルス数02は、前記位相差ΔΦ0 のうち1位相2πよりも小さい部分に対応するもので、
例えば上記周波数f、が100MHzで前記共振周波数
frとf、との周波数差すなわち第2合成信号SBの周
波数を100kHzとすると、1位相2πが1/100
0のオーダーで検出されることとなる。すなわち、かか
る位相検出手段36は、減算値CIおよびパルス数02
により合成信号SDとSBとの位相差ΔΦを2π/10
00のオーダーで検出するのである。また、かかる位相
差ΔΦは、ガス吸着に伴う表面弾性波素子10の表面弾
性波の位相変化量に相当し、その表面弾性波の周波数変
化量Δfが1/1000のオーダーで求められることを
意味する。したがって、例えば50%濃度のエタノール
ガス22がLBBi12付着することによる表面弾性波
素子10の周波数変化量Δfが150H2とすると、約
3ppmの分解能でエタノールガス22の濃度が測定さ
れることとなる。
Here, the number of pulses 02 corresponds to a portion of the phase difference ΔΦ0 that is smaller than one phase 2π,
For example, if the frequency f is 100 MHz and the frequency difference between the resonance frequencies fr and f, that is, the frequency of the second composite signal SB is 100 kHz, then one phase 2π is 1/100.
It will be detected on the order of 0. That is, the phase detection means 36 detects the subtraction value CI and the number of pulses 02.
The phase difference ΔΦ between the composite signal SD and SB is 2π/10.
It is detected on the order of 00. Further, this phase difference ΔΦ corresponds to the amount of phase change of the surface acoustic wave of the surface acoustic wave element 10 due to gas adsorption, and means that the amount of frequency change Δf of the surface acoustic wave is determined on the order of 1/1000. do. Therefore, for example, if the frequency change Δf of the surface acoustic wave element 10 due to the adhesion of 50% concentration ethanol gas 22 to LBBi 12 is 150H2, the concentration of ethanol gas 22 will be measured with a resolution of about 3 ppm.

そして、上記減算値CIおよびパルス数02は、それぞ
れデータバスライン64を介して演算手段66に読み込
まれる。演算手段66は、CPLI6B、RAM70.
ROM72を備えており、RAM70の一時記憶機能を
利用しつつROM72に予め記憶されたプログラムに従
って信号処理を行い、減算値C1およびパルス数Ctか
ら周波数変化量Δfを例えば1/1000のオーダーで
算出するとともに、予め定められたガス吸着量と周波数
変化量Δfとの関係式若しくはデータマツプ等により、
LBBi12吸着されたエタノールガス22の質量を求
め、その質量を%濃度に換算してデイスプレィボード7
4に表示する。
The subtraction value CI and the number of pulses 02 are read into the calculation means 66 via the data bus line 64, respectively. The calculation means 66 includes a CPLI6B, a RAM70.
It is equipped with a ROM 72, performs signal processing according to a program stored in the ROM 72 in advance while utilizing the temporary storage function of the RAM 70, and calculates the frequency change amount Δf on the order of 1/1000, for example, from the subtraction value C1 and the number of pulses Ct. In addition, based on a predetermined relational expression or data map between the gas adsorption amount and the frequency change amount Δf,
The mass of the ethanol gas 22 adsorbed by LBBi12 is determined, and the mass is converted into a % concentration and displayed on the display board 7.
Display on 4.

このように、本実施例のガスセンサにおいては、ガス吸
着に伴う周波数変化量Δfが合成信号SDとSBとの位
相差ΔΦに基づいて例えば1/1000のオーダーで求
められるため、エタノールガス22のガス濃度をppm
のオーダーで高分解能測定することができる。
In this way, in the gas sensor of this embodiment, the amount of frequency change Δf due to gas adsorption is determined on the order of 1/1000, for example, based on the phase difference ΔΦ between the composite signals SD and SB. Concentration in ppm
It is possible to perform high resolution measurements on the order of .

ここで、上記合成信号SD、SBは100kHz程度で
あるため、100MHzのパルス信号SPを用いてその
位相差ΔΦを2π/1000のオー1 2 ダーで検出することができ、これにより、周波数変化量
Δfを1/1000のオーダーで求めることができるの
である。すなわち、80MHzの電気信号SMから直接
その位相変化を2π/1000のオーダーで検出しよう
とすると、80GHzのパルス信号を計数する必要があ
り、これは実質的に不可能なのである。
Here, since the composite signals SD and SB are approximately 100 kHz, the phase difference ΔΦ can be detected on the order of 1 2 of 2π/1000 using the 100 MHz pulse signal SP. Δf can be determined on the order of 1/1000. That is, in order to directly detect the phase change of the 80 MHz electric signal SM on the order of 2π/1000, it is necessary to count 80 GHz pulse signals, which is virtually impossible.

また、上記位相差ΔΦは例えば1m秒程度の時間で測定
されるため、ガス濃度を高速度測定することが可能とな
る。
Further, since the phase difference ΔΦ is measured in a time of about 1 msec, for example, it becomes possible to measure the gas concentration at high speed.

また、本実施例では参照信号としての電気信号SRIお
よびSR2が表面弾性波素子12.14を用いて取り出
されるようになっているため、計測信号である電気信号
SMとの合成等の信号処理が容易であるとともに、表面
弾性波素子10,12.14は水晶発振子18.20に
より高い精度で共振させられるため、位相差ΔΦ更には
ガス濃度についても高い測定精度が得られる利点がある
In addition, in this embodiment, since the electrical signals SRI and SR2 as reference signals are extracted using the surface acoustic wave elements 12 and 14, signal processing such as synthesis with the electrical signal SM, which is the measurement signal, is performed. In addition to being simple, since the surface acoustic wave elements 10, 12.14 are caused to resonate with high accuracy by the crystal oscillator 18.20, there is an advantage that high measurement accuracy can be obtained for the phase difference ΔΦ and also the gas concentration.

なお、このようなガス濃度の測定後においては、測定容
器24内にN2ガスを導入してLBBi12吸着された
エタノールガス22を除去し、LBBi12浄化するこ
とにより、新たなガス濃度測定を行うことができる。
Note that after such a gas concentration measurement, a new gas concentration measurement can be performed by introducing N2 gas into the measurement container 24 to remove the ethanol gas 22 adsorbed on the LBBi12 and purify the LBBi12. can.

以上、本発明の一実施例を図面に基づいて詳細に説明し
たが、本発明は他の態様で実施することもできる。
Although one embodiment of the present invention has been described above in detail based on the drawings, the present invention can also be implemented in other embodiments.

例えば、前記実施例では表面弾性波素子10゜12.1
4としてSTカット水晶板が用いられているが、LiN
bO3やLi2840.等の表面弾性波素子を利用する
ことも可能である。
For example, in the above embodiment, the surface acoustic wave element 10°12.1
4, an ST cut crystal plate is used, but LiN
bO3 and Li2840. It is also possible to use surface acoustic wave elements such as .

また、前記実施例では吸着膜としてアラキン酸膜を3層
累積したLBBi12用いられているが、この吸着膜の
材質や層数等は測定対象であるガスの種類等によって適
宜変更される。
Further, in the above embodiment, LBBi12, which is a stack of three layers of arachidic acid films, is used as the adsorption film, but the material, number of layers, etc. of this adsorption film may be changed as appropriate depending on the type of gas to be measured.

また、前記実施例では参照信号としての電気信号SRI
、SR2が表面弾性波素子1214から取り出されるよ
うになっているが、水晶発振子18.20から出力され
る電気信号をそのまま利用することも可能である。
Further, in the embodiment, the electric signal SRI as a reference signal is
, SR2 are taken out from the surface acoustic wave element 1214, but it is also possible to use the electrical signals output from the crystal oscillators 18 and 20 as they are.

また、上記水晶発振子18.20の替わりに他3 4 の振動子を用いて表面弾性波素子10,12.14を共
振させることもできる。
Furthermore, instead of the crystal oscillator 18.20, other 3 4 oscillators may be used to cause the surface acoustic wave elements 10, 12.14 to resonate.

また、前記実施例の位相検出手段36は位相差ΔΦを例
えば2π/1000のオーダーで検出するように構成さ
れるが、これは水晶発振子54の周波数fcにより要求
される分解能に応じて適宜設定される。
Further, the phase detection means 36 of the above embodiment is configured to detect the phase difference ΔΦ on the order of, for example, 2π/1000, but this is set as appropriate depending on the resolution required by the frequency fc of the crystal oscillator 54. be done.

その他−々例示はしないが、本発明は当業者の知識に基
づいて種々の変更、改良を加えた態様で実施することが
できる。
Although other examples are not provided, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるガスセンサの構成を説
明する図である。第2図は第1図における位相検出手段
および演算手段の構成を説明する図である。第3図は第
2図における信号SD’SB、およびSP’を説明する
タイムチャートである。 16:LB膜(吸着膜)22:エタノールガス32:第
1合成手段  34:第2合成手段36:位相検出手段 SM:計測信号    SRI:第1参照信号SR2:
第2参照信号 SD:第1合成信号SB:第2合成信号
FIG. 1 is a diagram illustrating the configuration of a gas sensor that is an embodiment of the present invention. FIG. 2 is a diagram illustrating the configuration of the phase detection means and calculation means in FIG. 1. FIG. 3 is a time chart illustrating the signals SD'SB and SP' in FIG. 2. 16: LB film (adsorption film) 22: Ethanol gas 32: First synthesis means 34: Second synthesis means 36: Phase detection means SM: Measurement signal SRI: First reference signal SR2:
2nd reference signal SD: 1st composite signal SB: 2nd composite signal

Claims (1)

【特許請求の範囲】 ガス吸着性を有する吸着膜が表面に付着されるとともに
、予め定められた基準共振周波数で表面弾性波を発生す
る表面弾性波素子を備え、前記吸着膜に吸着されたガス
による質量変化に対応して前記表面弾性波の周波数が前
記基準共振周波数から変化することに基づいてガス量を
測定するガスセンサであって、 前記表面弾性波素子の表面弾性波を検出して、該表面弾
性波と同じ周波数の計測信号を出力する検出手段と、 周波数が前記基準共振周波数と僅かに異なる第1参照信
号と、前記検出手段から出力された計測信号とを合成し
、それ等の差周波数で変化する第1合成信号を出力する
第1合成手段と、 周波数が前記基準共振周波数と等しい第2参照信号と前
記第1参照信号とを合成し、それ等の差周波数で変化す
る第2合成信号を出力する第2合成手段と、 前記第1合成信号と前記第2合成信号との位相差を前記
表面弾性波の周波数変化量として検出する位相検出手段
と を有することを特徴とするガスセンサ。
[Scope of Claims] An adsorption film having gas adsorption properties is attached to the surface, and a surface acoustic wave element that generates a surface acoustic wave at a predetermined reference resonance frequency is provided, and the gas adsorbed on the adsorption film is A gas sensor that measures the amount of gas based on a change in the frequency of the surface acoustic wave from the reference resonance frequency in response to a change in mass due to A detection means that outputs a measurement signal of the same frequency as the surface acoustic wave, a first reference signal whose frequency is slightly different from the reference resonance frequency, and the measurement signal output from the detection means are combined, and the difference between them is detected. a first synthesizing means that outputs a first synthesized signal that varies with frequency; and a second synthesizer that synthesizes a second reference signal whose frequency is equal to the reference resonant frequency and the first reference signal, and that outputs a second synthesized signal that varies at a difference frequency between them. A gas sensor comprising: a second combining means for outputting a combined signal; and a phase detecting means for detecting a phase difference between the first combined signal and the second combined signal as an amount of change in frequency of the surface acoustic wave. .
JP1279382A 1989-10-26 1989-10-26 Gas sensor Pending JPH03140838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279382A JPH03140838A (en) 1989-10-26 1989-10-26 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279382A JPH03140838A (en) 1989-10-26 1989-10-26 Gas sensor

Publications (1)

Publication Number Publication Date
JPH03140838A true JPH03140838A (en) 1991-06-14

Family

ID=17610365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279382A Pending JPH03140838A (en) 1989-10-26 1989-10-26 Gas sensor

Country Status (1)

Country Link
JP (1) JPH03140838A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868781A (en) * 1994-08-31 1996-03-12 Ricoh Co Ltd Gas sensor system
US5571944A (en) * 1994-12-20 1996-11-05 Sandia Corporation Acoustic wave (AW) based moisture sensor for use with corrosive gases
JP2004069661A (en) * 2002-08-09 2004-03-04 Mitsubishi Electric Corp Chemical sensor
WO2006016721A1 (en) * 2004-08-11 2006-02-16 Nihon Dempa Kogyo Co., Ltd Sensing apparatus
WO2007145108A1 (en) * 2006-06-16 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP2010249728A (en) * 2009-04-17 2010-11-04 Toppan Printing Co Ltd Spherical surface acoustic wave element holding device
JP2017090472A (en) * 2012-01-30 2017-05-25 京セラ株式会社 Sample sensor and sample sensing method
EP3006933A4 (en) * 2013-05-30 2017-08-09 Kyocera Corporation Specimen sensor and specimen sensing method
WO2019097761A1 (en) * 2017-11-15 2019-05-23 日立金属株式会社 Sensor measurement device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868781A (en) * 1994-08-31 1996-03-12 Ricoh Co Ltd Gas sensor system
US5571944A (en) * 1994-12-20 1996-11-05 Sandia Corporation Acoustic wave (AW) based moisture sensor for use with corrosive gases
JP2004069661A (en) * 2002-08-09 2004-03-04 Mitsubishi Electric Corp Chemical sensor
US7899633B2 (en) 2004-08-11 2011-03-01 Nihon Dempa Kogyo Co., Ltd. Sensing apparatus
WO2006016721A1 (en) * 2004-08-11 2006-02-16 Nihon Dempa Kogyo Co., Ltd Sensing apparatus
US7398163B2 (en) 2004-08-11 2008-07-08 Nihon Dempa Kogyo Co., Ltd. Sensing apparatus
WO2007145108A1 (en) * 2006-06-16 2007-12-21 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JPWO2007145108A1 (en) * 2006-06-16 2009-10-29 株式会社村田製作所 Submerged substance detection sensor
JP4900387B2 (en) * 2006-06-16 2012-03-21 株式会社村田製作所 Submerged substance detection sensor
US8658097B2 (en) 2006-06-16 2014-02-25 Murata Manufacturing Co., Ltd. Sensor for detecting substance in liquid
JP2010249728A (en) * 2009-04-17 2010-11-04 Toppan Printing Co Ltd Spherical surface acoustic wave element holding device
JP2017090472A (en) * 2012-01-30 2017-05-25 京セラ株式会社 Sample sensor and sample sensing method
JP2019184621A (en) * 2012-01-30 2019-10-24 京セラ株式会社 Sample sensor and sample sensing method
EP3006933A4 (en) * 2013-05-30 2017-08-09 Kyocera Corporation Specimen sensor and specimen sensing method
CN107655968A (en) * 2013-05-30 2018-02-02 京瓷株式会社 Corpse or other object for laboratory examination and chemical testing sensor and corpse or other object for laboratory examination and chemical testing method for sensing
EP3376218A1 (en) * 2013-05-30 2018-09-19 Kyocera Corporation Analyte sensor and analyte sensing method
US10241082B2 (en) 2013-05-30 2019-03-26 Kyocera Corporation Analyte sensor and analyte sensing method
WO2019097761A1 (en) * 2017-11-15 2019-05-23 日立金属株式会社 Sensor measurement device

Similar Documents

Publication Publication Date Title
US6161420A (en) High frequency measuring circuit
JPH03140838A (en) Gas sensor
KR20060129930A (en) Detection circuits, detection method and systems for measuring physical quantities
CN100430711C (en) Measuring method, measuring signal output circuit, and measuring apparatus
JP2001292030A (en) Crystal oscillation circuit and crystal resonator
JP3139659B2 (en) Frequency change measuring device
JP4476496B2 (en) High-frequency measurement circuit with intrinsic noise reduction for resonant chemical sensors
JP2675733B2 (en) Chemical sensing equipment
JPH0582537B2 (en)
JPS63154915A (en) Drive-detection circuit of vibrator
JP3376417B2 (en) Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators
JPS584474B2 (en) Method of controlling passive masers and passive masers
JPS62190905A (en) Surface acoustic wave device
SU1061030A1 (en) Device for measuring concentration of various subtances
CN102269727A (en) Method for measuring capacitive humidity sensor
SU935811A1 (en) Device for automatic measuring of piezoelement resonance and anti-resonance frequency
JPH03243840A (en) Temperature compensation system for piezoelectric vibrator type pressure sensor
JP3352793B2 (en) Temperature measuring device
JPH02263128A (en) Physical quantity measuring apparatus
JPS60131434A (en) Temperature sensor
JPS6110707A (en) Optical-beat type length-measuring apparatus
JP2000136991A (en) Odor detecting device
SU866493A1 (en) Device for measuring coefficient of harmonics
SU890263A2 (en) Phase difference meter
JPH0267939A (en) Pressure detecting apparatus