JPH0267939A - Pressure detecting apparatus - Google Patents

Pressure detecting apparatus

Info

Publication number
JPH0267939A
JPH0267939A JP63220962A JP22096288A JPH0267939A JP H0267939 A JPH0267939 A JP H0267939A JP 63220962 A JP63220962 A JP 63220962A JP 22096288 A JP22096288 A JP 22096288A JP H0267939 A JPH0267939 A JP H0267939A
Authority
JP
Japan
Prior art keywords
capacitance
pressure
detection
electrode
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63220962A
Other languages
Japanese (ja)
Other versions
JPH0823514B2 (en
Inventor
Shigeki Ueda
茂樹 植田
Makoto Mihara
誠 三原
Masanobu Inoue
正信 井上
Kenzo Ochi
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63220962A priority Critical patent/JPH0823514B2/en
Priority to US07/388,389 priority patent/US4970374A/en
Priority to EP89114758A priority patent/EP0359976B1/en
Priority to DE68915662T priority patent/DE68915662T2/en
Priority to KR1019890011860A priority patent/KR920003433B1/en
Priority to AU40847/89A priority patent/AU620435B2/en
Priority to CA000609874A priority patent/CA1323668C/en
Publication of JPH0267939A publication Critical patent/JPH0267939A/en
Publication of JPH0823514B2 publication Critical patent/JPH0823514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the constitution of a circuit and to reduce a cost by switching the capacitance of a detecting electrode and the capacitance of a reference electrode with a control part through a detecting means, performing measurement, operating the measured results with an operating means, and computing a pressure that is applied on a sensor based on the solution of the operation. CONSTITUTION:A single detecting means 9 is composed of a reference capacitor Cr, a detecting capacitor Cp and a CR oscillating circuit 9 including a resistor R. A switching means 10 is controlled with a switching gate signal control means 12 which is built in a control part 11. The reference capacitor Cr and the detecting capacitor Cp are switched. The means 10 is connected to the oscillating circuit 9. Oscillating frequencies fr and fp are inputted into a counter means 13 in the control part 11. The output of the counter means 13 is stored in the specified address in a RAM 14 and transferred into an operating means 15. Dividing operation is performed, and a ratio (r) of the frequencies is obtained. The ratio (r) becomes a ratio between the detected capacitance Cp and the reference capacitance Cr. Since the temperature characteristics of both capacitors are approximately equal, the temperature characteristics can be removed by computing the pressure (p) based on the ratio (r).

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセンサに加わる圧力を、静電容量の変化を利用
して検出する方式の圧力検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pressure detection device that detects pressure applied to a sensor using changes in capacitance.

従来の技術 電極を所定の間隙を保って対向させ、これに加えられた
圧力を静電容量の変化として取り出す静電容量型圧力セ
ンサば、すでに多数実用に供されている。
2. Description of the Related Art A large number of capacitance pressure sensors have already been put into practical use, in which electrodes are opposed to each other with a predetermined gap maintained, and the pressure applied thereto is extracted as a change in capacitance.

このようなセンサの容量値は、通常20〜502F程度
とごくわずかなため、検出回路やセンサ自身の温度特性
により、大きな誤差が生じる。そこで温度による特性の
変化を如何に解決するかがこの種のセンサにおける重要
な課題であった。
Since the capacitance value of such a sensor is usually very small, about 20 to 502 F, a large error occurs depending on the temperature characteristics of the detection circuit and the sensor itself. Therefore, how to resolve changes in characteristics due to temperature has been an important issue for this type of sensor.

このため加えられた圧力に応じて容量値が鋭敏に変化す
る検出電極を基板の中央部に設け、その外周部に加えら
れた圧力によってはあまり容量値の変化しない基準電極
を配する静電容量型圧力センサが、−Sに知られている
For this reason, a detection electrode whose capacitance value changes sharply depending on the applied pressure is provided at the center of the substrate, and a reference electrode whose capacitance value does not change much depending on the applied pressure is placed at the outer periphery of the capacitance electrode. Type pressure sensors are known in -S.

特開昭58−198739号公報に記載の静電容量型圧
力センサは、このようなセンサの一例であり、上記の二
つの容量を充放電することで、センサおよび回路の温度
特性の低減を図ろうとしている。
The capacitive pressure sensor described in Japanese Patent Application Laid-open No. 198739/1987 is an example of such a sensor, and by charging and discharging the above two capacitances, the temperature characteristics of the sensor and circuit can be reduced. I'm about to try.

第5図はかかる静電容量型圧力センサの構成を表してお
り、(a)図は断面を、(b)図は2枚の基板を展開し
た状態を示している。
FIG. 5 shows the configuration of such a capacitive pressure sensor, with FIG. 5(a) showing a cross section and FIG. 5(b) showing a state in which two substrates are developed.

アルミナの基板1および2には二つの電極が印刷され、
一定の間隙を保って対向するよう周縁をガラス3によっ
て封止されている。このため中央の検出電極4は外圧に
鋭敏に変化し、一方外周の基準電極5はガラスに近接し
ているためにたわみにくり、外圧による圧力変化が前者
と比してごく少ない。
Two electrodes are printed on the alumina substrates 1 and 2,
Their peripheries are sealed with glass 3 so that they face each other with a constant gap. Therefore, the detection electrode 4 in the center changes sensitively to external pressure, while the reference electrode 5 on the outer periphery is bent because it is close to the glass, and the pressure change due to external pressure is very small compared to the former.

そして両容量とも同一の基板内に近接して配されている
ので、温度による影響はほぼ同様に受ける。従って両者
を比較すれば、温度の影響のみを取り除き、圧力情報だ
けを得ることができる。
Since both capacitors are arranged close to each other on the same substrate, they are affected by temperature in almost the same way. Therefore, by comparing the two, only the influence of temperature can be removed and only pressure information can be obtained.

第6図はかかる従来の回路構成である。検出電極4の容
量CPと基準電極5の容量C,,とは、それぞれ抵抗R
,,R,に接続され、充放電回路が構成される。両容量
はトランジスタQ、、Q、によりオンオフされ、充放電
を繰り返す、その動作および各部の波形については、引
用例に詳しいので省略するが、電源電圧をV ccとす
れば、ローパスフィルタ6の出力電圧■。uLは V、、L =Vcc(1−C,/ C,)−−−−(1
)となる。センサの温度特性はすでに述べたようにほぼ
同一であるから、温度に起因する容量の変化分ΔCr 
(ppm/ ’C)およびΔCp (ppa+/”C)
は、(1−C,/Cp)項により相殺され、出力電圧V
 ovLからセンサの温度特性を取り除ける。
FIG. 6 shows such a conventional circuit configuration. The capacitance CP of the detection electrode 4 and the capacitance C of the reference electrode 5 are each a resistance R.
,,R, to form a charging/discharging circuit. Both capacitors are turned on and off by transistors Q, ,Q, and are repeatedly charged and discharged.The operation and waveforms of each part are detailed in the cited example, so they will be omitted.If the power supply voltage is Vcc, the output of the low-pass filter 6 is Voltage ■. uL is V,, L = Vcc (1-C, / C,)---(1
). As mentioned above, the temperature characteristics of the sensors are almost the same, so the change in capacitance due to temperature ΔCr
(ppm/'C) and ΔCp (ppa+/''C)
is canceled by the term (1-C, /Cp), and the output voltage V
The temperature characteristics of the sensor can be removed from ovL.

ただしこのときR,=R,であり、比較器7と8および
トランジスタQ、とQ2とは、温度特性の揃ったものを
選別してベアにしなければならない。
However, in this case, R,=R, and the comparators 7 and 8 and the transistors Q and Q2 must be bare by selecting those having the same temperature characteristics.

発明が解決しようとする課題 ところがこのような従来の構成では、センサの温度特性
を小さく抑えることはできても、回路の温度特性を完全
に取り除くことはできない。
Problems to be Solved by the Invention However, with such a conventional configuration, although the temperature characteristics of the sensor can be kept small, the temperature characteristics of the circuit cannot be completely eliminated.

まず通常、民生レベルであれば、電源電圧V cCは温
度特性を有する。これを避けるには、温度補償された複
雑で高価な電源を使用しなければならない。
First, at a consumer level, the power supply voltage V cC usually has temperature characteristics. To avoid this, complex and expensive temperature compensated power supplies must be used.

次にR3とRzとは通常まったく一致するなどというこ
とはありえないから、そのアンバランス分だけ温度特性
が発生する。
Next, since it is impossible for R3 and Rz to be exactly the same, a temperature characteristic occurs due to the unbalance.

比較器7と8およびトランジスタQ、とQ8とを温度特
性の揃ったものを選別してベアにする、というのも実際
の量産では大変な手間であり、しかも完全に温度特性を
揃えるなどということは至難の技である。
Selecting comparators 7 and 8 and transistors Q and Q8 that have the same temperature characteristics and making them bare is a huge effort in actual mass production, and it is difficult to completely match the temperature characteristics. is an extremely difficult skill.

さらに比較器の出力周波数は、周波数のままでは扱えず
、いったんローパスフィルタで直流電圧に変換しなけれ
ば、温度特性がキャンセルできない。ために回路構成が
煩雑かつ高価になる。
Furthermore, the output frequency of the comparator cannot be treated as a frequency; the temperature characteristics cannot be canceled unless it is converted into a DC voltage using a low-pass filter. This makes the circuit configuration complicated and expensive.

課題を解決するための手段 本発明は、上記課題を解決するために、所定の間隙を設
けて対向し、中央部に検出電極を、その外周部に基準電
極を有する一対の平板より形成した静電容量型圧力セン
サと、この検出電極および基準電極の容量を読み出す検
出手段と、演算手段を有し、前記検出手段を用いて検出
電極および基準電極の容量を検出する制御部とを備えて
いる。
Means for Solving the Problems In order to solve the above problems, the present invention provides a static static plate formed of a pair of flat plates facing each other with a predetermined gap and having a detection electrode in the center and a reference electrode on the outer periphery. The pressure sensor includes a capacitance type pressure sensor, a detection means for reading the capacitance of the detection electrode and the reference electrode, and a control section that has an arithmetic means and detects the capacitance of the detection electrode and the reference electrode using the detection means. .

作  用 本発明の圧力検出装置は、制’<8部が検出手段を介し
て検出電極および基準電極の容量を切り換えながら測定
し、演算手段を用いてその測定結果を演算処理し、その
解をもとにセンサに加わる圧力を算出する。
In the pressure detection device of the present invention, the control section measures the capacitance of the detection electrode and the reference electrode while switching through the detection means, processes the measurement results using the calculation means, and calculates the solution. Calculate the pressure applied to the sensor.

実施例 以下、本発明に係わる圧力検出装置を図面を参照して説
明する。
Embodiments Hereinafter, a pressure detection device according to the present invention will be explained with reference to the drawings.

センサの構成は、第2図に示した従来のものと同一であ
り、すでに記述したのでここでは重複を避けて説明は割
愛する。
The configuration of the sensor is the same as the conventional one shown in FIG. 2, and since it has already been described, the explanation will be omitted here to avoid duplication.

第1図は本発明に係わる圧力検出装置のシステム構成を
示すブロック図の一実施例である。
FIG. 1 is an embodiment of a block diagram showing the system configuration of a pressure detection device according to the present invention.

単一の検出手段は基準容量C1と検出容量C2および抵
抗Rを含むCR発振回路9により構成される。スイチッ
ング手段10は制御部11に内蔵された切換ゲート信号
制御手段12によって制御され、基準容量と検出容量と
を切り換えて発振回路9に接続し、発振周波数f、およ
び「、とじて制御部11内のカウンタ手段13に入力す
る。そしてカウンタ手段13の出力は、それぞれRAM
14の所定のアドレスに格納され、演算手段15に転送
されて演算処理として除算を施され、比rが求められる
The single detection means is constituted by a CR oscillation circuit 9 including a reference capacitor C1, a detection capacitor C2, and a resistor R. The switching means 10 is controlled by a switching gate signal control means 12 built in the control section 11, switches between the reference capacitance and the detection capacitance, connects it to the oscillation circuit 9, and controls the oscillation frequency f and . The outputs of the counter means 13 are input to the counter means 13 of the RAM.
14 is stored at a predetermined address, and transferred to the arithmetic means 15 where it is subjected to division as an arithmetic process to obtain the ratio r.

r=L/fp    −・・−(2) 第2図はかかる各周波数および比の関係を示す線図であ
る。圧力Pが高まるほど、基板のたわみは大きくなり、
電極間の距離が小さくなるので、容量値は次式から逆に
大きくなる。
r=L/fp (2) FIG. 2 is a diagram showing the relationship between each frequency and ratio. As the pressure P increases, the deflection of the substrate increases,
Since the distance between the electrodes becomes smaller, the capacitance value becomes larger according to the following equation.

C=εS/d     −・−(3) ただし C;電極間容量 S:電極面積 d:電橋間距離 周波数fは次式から求められるので、圧力pが高まると
周波数rは逆に低くなっていく。
C=εS/d −・−(3) However, C: Capacity between electrodes S: Electrode area d: Distance between electric bridges The frequency f can be found from the following formula, so as the pressure p increases, the frequency r decreases. .

r = K/RC・−・・・・(4) ただし K:回路定数 ごの比rと圧力ρの関係から、圧力pは高次の近似式、
例えば下記のような二次式を演算すれば得られることが
わかる。
r = K/RC・-・・・・(4) However, K: From the relationship between the ratio r of each circuit constant and the pressure ρ, the pressure p is a high-order approximation formula,
For example, it can be seen that it can be obtained by calculating the following quadratic expression.

p=a r” +b r十c   −・山−(5)ただ
し a、b、c :定数 ここで(2)式によりなぜ比rを求めたかについて説明
する。(2)式を展開すると次式の通りである。
p=a r" + b r 0 c -・yama - (5) However, a, b, c: constants Here, we will explain why the ratio r was calculated using equation (2). Expanding equation (2), we get the following equation It is as follows.

検出回路として単一の発振回路を用いているため、回路
定数にはf、、f、ともに同一であり、また抵抗Rも共
通なので、(6)式に示されるように周波数の比rは検
出容量C,と基準容量C,,の比となる。
Since a single oscillation circuit is used as the detection circuit, the circuit constants f and f are the same, and the resistance R is also common, so the frequency ratio r is detected as shown in equation (6). It is the ratio of the capacitance C, and the reference capacitance C, .

両者の温度特性は、すでに述べたようにほぼ同一である
から、比rをもとに圧力pを算出すれば温度特性を取り
除くことができる。
Since the temperature characteristics of the two are almost the same as described above, the temperature characteristics can be removed by calculating the pressure p based on the ratio r.

第3図はかかるシステムの具体的な回路構成の一実施例
を示す。制御部11はマイコンにより形成され、切換ゲ
ート信号制御手段として出力巳。
FIG. 3 shows an example of a specific circuit configuration of such a system. The control unit 11 is formed by a microcomputer and outputs an output signal as a switching gate signal control means.

が、内蔵カウンタ手段の入力端子としてTCが設けられ
ている。
However, TC is provided as an input terminal of the built-in counter means.

検出手段9はオペアンプののこぎり波発生回路と波形整
形回路の組み合わせで形成されている。
The detection means 9 is formed by a combination of a sawtooth wave generation circuit and a waveform shaping circuit of an operational amplifier.

スイッチング手段10はアナログスイッチによって構成
されているが、これは他の半導体スイッチング手段でも
、またリレーでも実現できる。
Although the switching means 10 is constituted by an analog switch, it can also be realized by other semiconductor switching means or by a relay.

16は電圧変換および波形整形をするレベルシフト回路
であり、必要に応じて適宜付加すればよい。
Reference numeral 16 denotes a level shift circuit for voltage conversion and waveform shaping, which may be added as appropriate.

例えば、アナログスイッチはμPC4066、オペアン
プはTLO82、マイコンはM888515で実現でき
るが、これに相当する機能を有するものであれば利用で
きるのは言うまでもない。
For example, the analog switch can be implemented with a μPC4066, the operational amplifier can be implemented with a TLO82, and the microcontroller can be implemented with an M888515, but it goes without saying that any device with equivalent functions can be used.

第4図はかかるマイコンの制御プログラムを示すフロー
チャートである。
FIG. 4 is a flowchart showing a control program for such a microcomputer.

圧力の測定がスタートされると、まずゲート信号E、が
Hレベルに転じられる(a)、そして若干のデイレイ時
間が適宜挿入された(b)後、TC端子に接続される内
蔵カウンタが起動され(C)、基準周波数f、の測定が
開始される。
When pressure measurement is started, the gate signal E is first changed to H level (a), and after some delay time is appropriately inserted (b), the built-in counter connected to the TC terminal is activated. (C) Measurement of the reference frequency f is started.

そしてカウンタのゲート時間、例えば1秒、がタイマ割
り込みなどを用いて管理され(d)、この所定時間が経
過すると、カウンタが停止される(e)。
The gate time of the counter, for example 1 second, is managed using a timer interrupt (d), and when this predetermined time has elapsed, the counter is stopped (e).

かかる計数結果r1はRAMの所定アドレスに転送され
、記憶されるげ)。
The counting result r1 is transferred to a predetermined address in the RAM and stored).

次いでゲート信号E0がLレベルに転じられ(員、以下
f、とまったく同様の手順でr、の測定が行われる(ハ
)〜(1)。
Next, the gate signal E0 is changed to the L level (hereinafter referred to as f), and r is measured in exactly the same manner as (c) to (1).

かかる処理を経て、RAMに記憶されたrlとr、は次
に除算処理をされてrがまず算出され(ホ)、ついで比
「を゛もとに圧力pが二次近似式で算出される(n)。
Through such processing, rl and r stored in the RAM are then subjected to division processing to first calculate r (e), and then pressure p is calculated using a quadratic approximation formula based on the ratio. (n).

以上の手順により求められた圧力pは、既述したように
温度の影響をまったく受けない。
The pressure p determined by the above procedure is not affected by temperature at all, as described above.

発明の効果 以上のように本発明の圧力検出装置は、従来のように電
源電圧■。の影響を受けず、温度補償された複雑で高価
な電源を使用する必要がない。
Effects of the Invention As described above, the pressure detection device of the present invention does not require a power supply voltage of 1, as compared to the conventional one. temperature-compensated power supplies, eliminating the need for complex and expensive power supplies.

また検出容量C9と基準電8iC,の検出に用いられる
抵抗Rおよび発振回路9は、まったく同じものであ茗か
ら、従来のように温度特性の揃ったものをベアにする手
間もなく、原理上、温度特性は現れない。
In addition, the resistor R and oscillation circuit 9 used for detecting the detection capacitor C9 and the reference voltage 8iC are exactly the same, so in principle, there is no need to use components with uniform temperature characteristics as in the past. No temperature characteristics appear.

さらに発振回路の出力周波数は、そのままカウンタに人
力でき、従来のようにローパスフィルタで直流電圧に変
換する必要がな(、ために回路構成が簡素かつ低廉です
む。
Furthermore, the output frequency of the oscillation circuit can be directly input to the counter, and there is no need to convert it to a DC voltage using a low-pass filter as in the past (this makes the circuit configuration simple and inexpensive).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる圧力検出装置の構成の一実施例
を示すブロック図、第2図は本発明に係わる圧力と各周
波数およびその比を示す線図、第3図は本発明の一具体
例を示す回路図、第4図は制御プログラムの構造を示す
フローチャート、第5図(a)は静電容量型センサの断
面図、第5図(b)は同展開図、第6図は従来例の回路
図である。 4・・・検出電極、5・・・基準電極、9・・・検出手
段、10・・・スイッチング手段、11・・・制御部、
13・・・カウンタ手段、15・・・演算手段。 代理人の氏名弁理士 粟 野重孝 ほか1名9 ・・・
・・・・単一の検出手段 10 ・・・・・・・スイッチング手段11 ・−・・
・制71部 13 ・・・・・−・カウンタ手段 15−・−・・・・演算手段 第2図 M3図 丘力P 第4図 第5図 (d)
FIG. 1 is a block diagram showing an embodiment of the configuration of a pressure detection device according to the present invention, FIG. 2 is a diagram showing pressure, each frequency, and their ratio according to the present invention, and FIG. 3 is a diagram showing one embodiment of the configuration of a pressure detection device according to the present invention. A circuit diagram showing a specific example, FIG. 4 is a flowchart showing the structure of a control program, FIG. 5(a) is a cross-sectional view of a capacitance type sensor, FIG. FIG. 2 is a circuit diagram of a conventional example. 4... Detection electrode, 5... Reference electrode, 9... Detection means, 10... Switching means, 11... Control unit,
13...Counter means, 15...Calculation means. Name of agent: Patent attorney Shigetaka Awano and 1 other person9...
...Single detection means 10 ...Switching means 11 ...
・Control 71 part 13 ・・・・・ Counter means 15 −・・・・ Calculating means Fig. 2 M3 Fig. Hill power P Fig. 4 Fig. 5 (d)

Claims (1)

【特許請求の範囲】[Claims] 所定の間隙を設けて対向し、中央部に検出電極を、その
外周部に基準電極を有する一対の平板より形成した静電
容量型圧力センサと、前記検出電極および基準電極の容
量を読み出す検出手段と、前記検出手段を介して前記検
出電極および基準電極の容量を切り換えて測定する制御
部とより成り、前記制御部は演算手段を有し、測定した
前記検出電極および前記基準電極の容量値を前記演算手
段を用いて演算処理し、その演算結果から前記静電容量
型圧力センサに印加される圧力を算出するよう構成した
圧力検出装置。
A capacitive pressure sensor formed of a pair of flat plates facing each other with a predetermined gap and having a detection electrode in the center and a reference electrode on the outer periphery thereof, and a detection means for reading the capacitance of the detection electrode and the reference electrode. and a control section that switches and measures the capacitance of the detection electrode and the reference electrode via the detection means, and the control section has a calculation means and calculates the measured capacitance values of the detection electrode and the reference electrode. A pressure detection device configured to perform calculation processing using the calculation means and calculate the pressure applied to the capacitance type pressure sensor from the calculation result.
JP63220962A 1988-09-02 1988-09-02 Pressure detector Expired - Lifetime JPH0823514B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63220962A JPH0823514B2 (en) 1988-09-02 1988-09-02 Pressure detector
US07/388,389 US4970374A (en) 1988-09-02 1989-08-02 Automatic heating appliance with weight sensor
EP89114758A EP0359976B1 (en) 1988-09-02 1989-08-09 Automatic heating appliance with weight sensor
DE68915662T DE68915662T2 (en) 1988-09-02 1989-08-09 Automatic heater with weight sensor.
KR1019890011860A KR920003433B1 (en) 1988-09-02 1989-08-21 Automatic heating appliance
AU40847/89A AU620435B2 (en) 1988-09-02 1989-08-28 Automatic heating appliance with weight sensor
CA000609874A CA1323668C (en) 1988-09-02 1989-08-30 Automatic heating appliance with weight sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220962A JPH0823514B2 (en) 1988-09-02 1988-09-02 Pressure detector

Publications (2)

Publication Number Publication Date
JPH0267939A true JPH0267939A (en) 1990-03-07
JPH0823514B2 JPH0823514B2 (en) 1996-03-06

Family

ID=16759285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220962A Expired - Lifetime JPH0823514B2 (en) 1988-09-02 1988-09-02 Pressure detector

Country Status (1)

Country Link
JP (1) JPH0823514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012528A1 (en) * 1996-09-19 1998-03-26 Hokuriku Electric Industry Co., Ltd. Electrostatic capacity type pressure sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168398A (en) * 1981-04-09 1982-10-16 Hokushin Electric Works Capacity type displacement converting device
JPS58198739A (en) * 1982-05-14 1983-11-18 Matsushita Electric Ind Co Ltd Electrostatic capacity type pressure sensor
JPS5910014U (en) * 1982-07-12 1984-01-21 横河電機株式会社 capacitive converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168398A (en) * 1981-04-09 1982-10-16 Hokushin Electric Works Capacity type displacement converting device
JPS58198739A (en) * 1982-05-14 1983-11-18 Matsushita Electric Ind Co Ltd Electrostatic capacity type pressure sensor
JPS5910014U (en) * 1982-07-12 1984-01-21 横河電機株式会社 capacitive converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012528A1 (en) * 1996-09-19 1998-03-26 Hokuriku Electric Industry Co., Ltd. Electrostatic capacity type pressure sensor

Also Published As

Publication number Publication date
JPH0823514B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
US8816704B1 (en) Automatically balanced sensing device and method for multiple capacitive sensors
KR101398151B1 (en) Method and device for measuring the capacitance of a capacitive component
JP3233791B2 (en) Differential capacitance inverting integrator and capacitance change amount detecting device using the same
JPH06242159A (en) Electrostatic capacity measuring device
US20230275583A1 (en) Touch or proximity sensing system and method
JPH0267939A (en) Pressure detecting apparatus
JPH0634307A (en) Capacitance type displacement sensor
Osadchuk et al. Numerical method for processing frequency measuring signals from microelectronic sensors based on transistor structures with negative resistance
JPH0267926A (en) Weight detecting apparatus
JPH0267925A (en) Weight detecting apparatus
CN111474412A (en) Capacitance detection circuit and capacitance detection method
SU1061030A1 (en) Device for measuring concentration of various subtances
JP3119386B2 (en) measuring device
JP3352793B2 (en) Temperature measuring device
JPS61292731A (en) Coordinate detector
JP2646415B2 (en) Gas concentration detector
RU2008690C1 (en) Method for measuring of electric capacitance and inductance
JPH01285867A (en) Voltage measuring circuit
JPH0346332Y2 (en)
SU993156A1 (en) Device for measuring volt-farad characteristics
SU1377704A1 (en) Grain capacitance moisture meter
SU1149447A1 (en) Device for measuring significant values of harmonics of arc current of three-phase electric-arc furnace
SU735927A1 (en) Level meter
SU1190299A1 (en) Digital resistance meter
JPH0245747A (en) Electronic thermo-hygrometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13