JPH0823514B2 - Pressure detector - Google Patents

Pressure detector

Info

Publication number
JPH0823514B2
JPH0823514B2 JP63220962A JP22096288A JPH0823514B2 JP H0823514 B2 JPH0823514 B2 JP H0823514B2 JP 63220962 A JP63220962 A JP 63220962A JP 22096288 A JP22096288 A JP 22096288A JP H0823514 B2 JPH0823514 B2 JP H0823514B2
Authority
JP
Japan
Prior art keywords
capacitance
pressure
circuit
reference electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63220962A
Other languages
Japanese (ja)
Other versions
JPH0267939A (en
Inventor
茂樹 植田
誠 三原
正信 井上
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63220962A priority Critical patent/JPH0823514B2/en
Priority to US07/388,389 priority patent/US4970374A/en
Priority to DE68915662T priority patent/DE68915662T2/en
Priority to EP89114758A priority patent/EP0359976B1/en
Priority to KR1019890011860A priority patent/KR920003433B1/en
Priority to AU40847/89A priority patent/AU620435B2/en
Priority to CA000609874A priority patent/CA1323668C/en
Publication of JPH0267939A publication Critical patent/JPH0267939A/en
Publication of JPH0823514B2 publication Critical patent/JPH0823514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセンサに加わる圧力を、静電容量の変化を利
用して検出する方式の圧力検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure detection device of a type that detects a pressure applied to a sensor by utilizing a change in capacitance.

従来の技術 電極を所定の間隙を保って対向させ、これに加えられ
た圧力を静電容量の変化として取り出す静電容量型圧力
センサは、すでに多数実用に供されている。
2. Description of the Related Art A large number of capacitance-type pressure sensors have been put to practical use, in which electrodes are opposed to each other with a predetermined gap therebetween and the pressure applied to the electrodes is taken out as a change in capacitance.

このようなセンサの容量値は、通常20〜50pF程度とご
くわずかなため、検出回路やセンサ自身の温度特性によ
り、大きな誤差が生じる。そこで温度による特性の変化
を如何に解決するかがこの種のセンサにおける重要な課
題であった。
Since the capacitance value of such a sensor is usually as small as about 20 to 50 pF, a large error occurs due to the temperature characteristics of the detection circuit and the sensor itself. Therefore, how to solve the change in characteristics due to temperature was an important issue in this type of sensor.

このため加えられた圧力に応じて容量値が鋭敏に変化
する検出電極を基板の中央部に設け、その外周部に加え
られた圧力によってはあまり容量値の変化しない基準電
極を配する静電容量型圧力センサが、一般に知られてい
る。
For this reason, a capacitance is provided in the center of the substrate where the capacitance value changes sharply according to the applied pressure, and a reference electrode whose capacitance value does not change much depending on the pressure applied to the outer periphery Mold pressure sensors are generally known.

特開昭58−198739号公報に記載の静電容量型圧力セン
サは、このようなセンサの一例であり、上記の二つの容
量を充放電することで、センサおよび回路の温度特性の
低減を図ろうとしている。
The capacitance type pressure sensor disclosed in Japanese Patent Laid-Open No. 58-198739 is an example of such a sensor. By charging and discharging the above two capacitances, it is possible to reduce the temperature characteristics of the sensor and the circuit. I'm trying.

第5図はかかる静電容量型圧力センサの構成を表して
おり、(a)図は断面を、(b)図は2枚の基板を展開
した状態を示している。
FIG. 5 shows the configuration of such a capacitance type pressure sensor, FIG. 5 (a) shows a cross section, and FIG. 5 (b) shows a state in which two substrates are developed.

アルミナの基板1および2には二つの電極が印刷さ
れ、一定の間隙を保って対向するよう周縁をガラス3に
よって封止されている。このため中央の検出電極4は外
圧に鋭敏に変化し、一方外周の基準電極5はガラスに近
接しているためにたわみにくく、外圧による圧力変化が
前者と比してごく少ない。
Two electrodes are printed on the substrates 1 and 2 made of alumina, and the peripheral edges thereof are sealed with glass 3 so as to face each other with a constant gap. For this reason, the detection electrode 4 at the center changes sensitively to the external pressure, while the reference electrode 5 at the outer periphery is close to the glass and is not easily bent, and the pressure change due to the external pressure is very small compared to the former.

そして両容量とも同一の基板内に近接して配されてい
るので、温度による影響はほぼ同様に受ける。従って両
者を比較すれば、温度の影響のみを取り除き、圧力情報
だけを得ることができる。
Since both capacitors are arranged close to each other on the same substrate, they are affected by temperature almost in the same manner. Therefore, by comparing the two, it is possible to remove only the influence of temperature and obtain only pressure information.

第6図はかかる従来の回路構成である。検出電極4の
容量Cpと基準電極5の容量Crとは、それぞれ抵抗R1,R2
に接続され、充放電回路が構成される。両容量はトラン
ジスタQ1,Q2によりオンオフされ、充放電を繰り返す。
その動作および各部の波形については、引用例に詳しい
ので省略するが、電源電圧をVCCとすれば、ローパスフ
ィルタ6の出力電圧Voutは Vout=VCC(1−Cr/Cp) ……(1) となる。センサの温度特性はすでに述べたようにほぼ同
一であるから、温度に起因する容量の変化分ΔCr(ppm/
℃)およびΔCp(ppm/℃)は、(1−Cr/Cp)項により
相殺され、出力電圧Voutからセンサの温度特性を取り除
ける。
FIG. 6 shows such a conventional circuit configuration. The capacitance C p of the detection electrode 4 and the capacitance C r of the reference electrode 5 are the resistances R 1 and R 2 respectively.
And a charge / discharge circuit is configured. Both capacitors are turned on and off by the transistors Q 1 and Q 2 , and charging and discharging are repeated.
The operation and the waveform of each part are omitted because they are detailed in the reference example, but if the power supply voltage is V CC , the output voltage V out of the low-pass filter 6 is V out = V CC (1-C r / C p ). … (1). Since the temperature characteristics of the sensor are almost the same as already described, the change in capacitance due to temperature ΔC r (ppm /
C) and ΔC p (ppm / ° C.) are canceled by the (1-C r / C p ) term to remove the temperature characteristic of the sensor from the output voltage V out .

ただしこのときR1=R2であり、比較器7との8および
トランジスタQ1とQ2とは、温度特性の揃ったものを選別
してペアにしなければならない。
At this time, however, R 1 = R 2 , and it is necessary to select those having the same temperature characteristics as the pair 8 with the comparator 7 and the transistors Q 1 and Q 2 to form a pair.

発明が解決しようとする課題 ところがこのような従来の構成では、センサの温度特
性を小さく抑えることはできても、回路の温度特性を完
全に取り除くことはできない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional configuration, the temperature characteristic of the sensor can be suppressed to a small value, but the temperature characteristic of the circuit cannot be completely removed.

まず通常、民生レベルであれば、電源電圧VCCは温度
特性を有する。これを避けるには、温度補償された複雑
で高価な電源を使用しなければならない。
First, normally, at the consumer level, the power supply voltage V CC has a temperature characteristic. To avoid this, temperature compensated complex and expensive power supplies must be used.

次にR1とR2とは通常まったく一致するなどということ
はありえないから、そのアンバランス分だけ温度特性が
発生する。
Next, since R 1 and R 2 cannot usually be completely coincident with each other, the temperature characteristic is generated by the unbalanced amount.

比較器7と8およびトランジスタQ1とQ2とを温度特性
の揃ったものを選別してペアにする、というのも実際の
量産では大変な手間であり、しかも完全に温度特性を揃
えるなどということは至難の技である。
It is very troublesome in actual mass production to select the comparators 7 and 8 and the transistors Q 1 and Q 2 that have the same temperature characteristics to form a pair, and to make the temperature characteristics completely the same. That is a difficult technique.

さらに比較器の出力周波数は、周波数のままでは扱え
ず、いったんローパスフィルタで直流電圧に変換しなけ
れば、温度特性がキャンセルできない。ために回路構成
が煩雑かつ高価になる。
Further, the output frequency of the comparator cannot be handled as it is, and the temperature characteristic cannot be canceled unless it is once converted into a DC voltage by a low pass filter. Therefore, the circuit configuration becomes complicated and expensive.

課題を解決するための手段 本発明は、上記課題を解決するために、所定の間隙を
設けて対向し、中央部に検出電極を、その外周部に基準
電極を有する一対の平板より形成した静電容量型圧力セ
ンサと、この検出電極および基準電極の容量を検出する
単一の発振回路と、検出電極および基準電極の容量を切
り換えて発振回路に接続するスイッチング手段と、発振
回路を介して測定する制御部とを備えている 作用 本発明の圧力検出装置は、制御部が検出電極および基
準電極の容量に対応する発振回路の出力周波数をカウン
タ手段により計数し、その比を演算手段により算出する
とともに、その解をもとにセンサに加わる圧力を算出す
る。
Means for Solving the Problems In order to solve the above problems, the present invention is formed by a pair of flat plates facing each other with a predetermined gap, a detection electrode in the central part, and a flat plate having a reference electrode in its outer peripheral part. Capacitance type pressure sensor, single oscillation circuit that detects the capacitance of the detection electrode and reference electrode, switching means that switches the capacitance of the detection electrode and reference electrode to connect to the oscillation circuit, and measurement through the oscillation circuit In the pressure detection device of the present invention, the control unit counts the output frequency of the oscillation circuit corresponding to the capacitances of the detection electrode and the reference electrode by the counter unit and calculates the ratio by the calculation unit. At the same time, the pressure applied to the sensor is calculated based on the solution.

実 施 例 以下、本発明に係わる圧力検出装置を図面を参照して
説明する。
Example Hereinafter, a pressure detecting device according to the present invention will be described with reference to the drawings.

センサの構成は、第2図に示した従来のものと同一で
あり、すでに記述したのでここでは重複を避けて説明は
割愛する。
The configuration of the sensor is the same as that of the conventional one shown in FIG. 2 and has already been described. Therefore, the description is omitted here by avoiding duplication.

第1図は本発明に係わる圧力検出装置のシステム構成
を示すブロック図の一実施例である。
FIG. 1 is an embodiment of a block diagram showing a system configuration of a pressure detecting device according to the present invention.

単一の検出手段は基準容量Crと検出容量Cpおよび抵抗
Rを含むCR発振回路9により構成される。スイッチング
手段10は制御部11に内蔵された切換ゲート信号制御手段
12によって制御され、基準容量と検出容量とを切り換え
て発振回路9に接続し、発振周波数frおよびfpとして制
御部11内のカウンタ手段13に入力する。そしてカウンタ
手段13の出力は、それぞれRAM14の所定のアドレスに格
納され、演算手段15に転送されて演算処理として除算を
施され、比rが求められる。
The single detecting means is composed of a CR oscillation circuit 9 including a reference capacitance C r , a detection capacitance C p and a resistor R. The switching means 10 is a switching gate signal control means built in the control unit 11.
Controlled by 12, the reference capacitance and the detection capacitance are switched and connected to the oscillation circuit 9, and the oscillation frequencies f r and f p are input to the counter means 13 in the control unit 11. Then, the output of the counter means 13 is stored in a predetermined address of the RAM 14 respectively, transferred to the arithmetic means 15 and subjected to division as arithmetic processing to obtain the ratio r.

r=fr/fp ……(2) 第2図はかかる各周波数および比の関係を示す線図で
ある。圧力pが高まるほど、基板のたわみは大きくな
り、電極間の距離が小さくなるので、容量値は次式から
逆に大きくなる。
r = f r / f p ...... (2) FIG. 2 is a graph showing the relationship between the frequencies and ratios such. As the pressure p increases, the deflection of the substrate increases and the distance between the electrodes decreases, so that the capacitance value increases from the following equation.

C=ε S/D ……(3) ただし C:電極間容量 S:電極面積 d:電極間距離 周波数fは次式から求められるので、圧力pが高まる
と周波数fは逆に低くなっていく。
C = ε S / D (3) However, C: capacitance between electrodes S: electrode area d: distance between electrodes Since frequency f is obtained from the following equation, frequency f decreases conversely as pressure p increases. .

f=K/RC ……(4) ただし K:回路定数 この比rと圧力pの関係から、圧力pは高次の近似
式、例えば下記のような二次式を演算すれば得られるこ
とがわかる。
f = K / RC (4) where K: Circuit constant From the relationship between the ratio r and the pressure p, the pressure p can be obtained by calculating a high-order approximation formula, for example, the following quadratic formula. Recognize.

p=ar2+br+c ……(5) ただし、 a、b、c:定数 ここで(2)式によりなぜ比rを求めたかについて説
明する。(2)式を展開すると次式の通りである。
p = ar 2 + br + c (5) However, a, b, c: constants Here, the reason why the ratio r is obtained by the equation (2) will be described. When the formula (2) is expanded, it is as follows.

検出回路として単一の発振回路を用いているため、回
路定数Kはfr,fpとともに同一であり、また抵抗Rも共
通なので、(6)式に示されるように周波数の比rは検
出容量Cpと基準容量Crの比となる。
Since a single oscillation circuit is used as the detection circuit, the circuit constant K is the same as f r and f p , and the resistor R is also common, so the frequency ratio r is detected as shown in equation (6). It is the ratio of the capacitance C p and the reference capacitance C r .

両者の温度特性は、すでに述べたようにほぼ同一であ
るから、比rをもとに圧力pを算出すれば温度特性を取
り除くことができる。
Since the temperature characteristics of both are almost the same as described above, the temperature characteristics can be removed by calculating the pressure p based on the ratio r.

第3図はかかるシステムの具体的な回路構成の一実施
例を示す。制御部11はマイコンにより形成され、切換ゲ
ート信号制御手段として出力Eoが、内蔵カウンタ手段の
入力端子としてTCが設けられている。
FIG. 3 shows an example of a concrete circuit configuration of such a system. The control unit 11 is formed by a microcomputer, and is provided with an output E o as a switching gate signal control means and a TC as an input terminal of a built-in counter means.

検出手段9はオペアンプののこぎり波発生回路と波形
整形回路の組み合わせで形成されている。スイッチング
手段10はアナログスイッチによって構成されているが、
これは他の半導体スイッチング手段でも、またリレーで
も実現できる。
The detection means 9 is formed by a combination of a sawtooth wave generation circuit of an operational amplifier and a waveform shaping circuit. The switching means 10 is composed of an analog switch,
This can be achieved with other semiconductor switching means as well as with relays.

16は電圧変換および波形整形をするレベルシフト回路
であり、必要に応じて適宜付加すればよい。
Reference numeral 16 is a level shift circuit that performs voltage conversion and waveform shaping, and may be appropriately added as necessary.

例えば、アナログスイッチはμPC4066、オペアンプは
TL082、マイコンはMB88515で実現できるが、これに相当
する機能を有するものであれば利用できるのは言うまで
もない。
For example, analog switch is μPC4066, operational amplifier is
The TL082 and the microcomputer can be realized by MB88515, but it goes without saying that they can be used as long as they have a function equivalent to this.

第4図はかかるマイコンの制御プログラムを示すフロ
ーチャートである。
FIG. 4 is a flow chart showing a control program of such a microcomputer.

圧力の測定がスタートされると、まずゲート信号Eo
Hレベルに転じられる(a)。そして若干のディレイ時
間が適宜挿入された(b)後、TC端子に接続される内蔵
カウンタが起動され(c)、基準周波数frの測定が開始
される。
When the pressure measurement is started, the gate signal E o is first changed to the H level (a). And after a slight delay time is appropriately inserted (b), built-in counter which is connected to the TC terminal is started (c), the measurement of the reference frequency f r is started.

そしてカウンタのゲート時間、例えば1秒、がタイマ
割り込みなどを用いて管理され(d)、この所定時間が
経過すると、カウンタが停止される(e)。かかる計数
結果frはRAMの所定アドレスに転送され、記憶される
(f)。
Then, the gate time of the counter, for example, 1 second, is managed using a timer interrupt or the like (d), and when this predetermined time has elapsed, the counter is stopped (e). The counting result fr is transferred to a predetermined address of the RAM and stored (f).

次いでゲート信号EoがLレベルに転じられ(g)、以
下frとまったく同様の手順でfpの測定が行われる(h)
〜(l)。
Then the gate signal E o is turned to L level (g), the measurement of the f p is carried out in exactly the same procedure as below f r (h)
~ (L).

かかる処理を経て、RAMに記憶されたfrとfpは次に除
算処理をされてrがまず算出され(m)、ついで比rを
もとに圧力pが二次近似式で算出される(n)。
Through such processing, f r and f p stored in the RAM are then subjected to division processing to calculate r first (m), and then the pressure p is calculated by the quadratic approximation formula based on the ratio r. (N).

以上の手順により求められた圧力pは、既述したよう
に温度の影響をまったく受けない。
The pressure p obtained by the above procedure is not affected by temperature as described above.

発明の効果 以上のように本発明の圧力検出装置は、従来のように
電源電圧VCCの影響を受けず、温度補償された複雑で高
価な電源を使用する必要がない。
EFFECTS OF THE INVENTION As described above, the pressure detection device of the present invention is not affected by the power supply voltage V CC as in the conventional case, and it is not necessary to use a temperature-compensated complex and expensive power supply.

また検出容量Cpと基準電極Crの検出に用いられる抵抗
Rおよび発振回路9は、まったく同じものであるから、
従来のように温度特性の揃ったものをペアにする手間も
なく、原理上、温度特性は現れない。
Further, since the detection capacitance C p , the resistance R and the oscillation circuit 9 used for detecting the reference electrode C r are exactly the same,
As in the past, there is no trouble of pairing those having the same temperature characteristics, and in principle, the temperature characteristics do not appear.

さらに発振回路の出力周波数は、そのままカウンタに
入力でき、従来のようにローパスフィルタで直流電圧に
変換する必要がなく、ために回路構成が簡素かつ低廉で
すむ。
Furthermore, the output frequency of the oscillator circuit can be input to the counter as it is, and it is not necessary to convert it to DC voltage with a low-pass filter as in the past, so the circuit configuration is simple and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わる圧力検出装置の構成の一実施例
を示すブロック図、第2図は本発明に係わる圧力と各周
波数およびその比を示す線図、第3図は本発明の一具体
例を示す回路図、第4図は制御プログラムの構造を示す
フローチャート、第5図(a)は静電容量型センサの断
面図、第5図(b)は同展開図、第6図は従来例の回路
図である。 4……検出電極、5……基準電極、9……検出手段、10
……スイッチング手段、11……制御部、13……カウンタ
手段、15……演算手段。
FIG. 1 is a block diagram showing an embodiment of the configuration of a pressure detecting device according to the present invention, FIG. 2 is a diagram showing pressure and respective frequencies and ratios thereof according to the present invention, and FIG. A circuit diagram showing a specific example, FIG. 4 is a flowchart showing the structure of a control program, FIG. 5 (a) is a sectional view of a capacitance type sensor, FIG. 5 (b) is the same developed view, and FIG. It is a circuit diagram of a prior art example. 4 ... Detection electrode, 5 ... Reference electrode, 9 ... Detection means, 10
...... Switching means, 11 ...... Control section, 13 ...... Counter means, 15 ...... Computing means.

フロントページの続き (72)発明者 黄地 謙三 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭58−198739(JP,A) 特開 昭57−168398(JP,A) 実開 昭59−10014(JP,U) 実開 昭63−99217(JP,U)Continuation of front page (72) Inventor Kenzo Ochi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-58-198739 (JP, A) JP-A-57-168398 (JP) , A) Actually open 59-10014 (JP, U) Actually open 63-99217 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の間隙を設けて対向し、中央部に検出
電極を、その外周部に基準電極を有する一対の平板より
形成した静電容量型圧力センサと、前記検出電極および
基準電極の容量を検出する単一の発振回路と、前記検出
電極および基準電極の容量を切り換えて前記発振回路に
接続するスイッチング手段と、前記発振回路を介して測
定する制御部とより成り、前記制御部は前記発振回路の
出力を計数するカウンタ手段を備え、前記検出電極およ
び基準電極の容量に対応する周波数を計数し、その比を
演算手段により算出するとともにその比に基づいて前記
静電容量型圧力センサに印加される圧力を算出するよう
構成した圧力検出装置。
1. A capacitance type pressure sensor comprising a pair of flat plates facing each other with a predetermined gap and having a detection electrode at a central portion and a reference electrode on an outer peripheral portion thereof, and the detection electrode and the reference electrode. The control unit includes a single oscillating circuit that detects a capacitance, a switching unit that switches the capacitances of the detection electrode and the reference electrode to connect to the oscillating circuit, and a control unit that measures through the oscillating circuit. A counter means for counting the output of the oscillation circuit is provided, the frequencies corresponding to the capacitances of the detection electrode and the reference electrode are counted, the ratio thereof is calculated by the arithmetic means, and the capacitance type pressure sensor is based on the ratio. A pressure sensing device configured to calculate the pressure applied to the.
JP63220962A 1988-09-02 1988-09-02 Pressure detector Expired - Lifetime JPH0823514B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63220962A JPH0823514B2 (en) 1988-09-02 1988-09-02 Pressure detector
US07/388,389 US4970374A (en) 1988-09-02 1989-08-02 Automatic heating appliance with weight sensor
DE68915662T DE68915662T2 (en) 1988-09-02 1989-08-09 Automatic heater with weight sensor.
EP89114758A EP0359976B1 (en) 1988-09-02 1989-08-09 Automatic heating appliance with weight sensor
KR1019890011860A KR920003433B1 (en) 1988-09-02 1989-08-21 Automatic heating appliance
AU40847/89A AU620435B2 (en) 1988-09-02 1989-08-28 Automatic heating appliance with weight sensor
CA000609874A CA1323668C (en) 1988-09-02 1989-08-30 Automatic heating appliance with weight sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220962A JPH0823514B2 (en) 1988-09-02 1988-09-02 Pressure detector

Publications (2)

Publication Number Publication Date
JPH0267939A JPH0267939A (en) 1990-03-07
JPH0823514B2 true JPH0823514B2 (en) 1996-03-06

Family

ID=16759285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220962A Expired - Lifetime JPH0823514B2 (en) 1988-09-02 1988-09-02 Pressure detector

Country Status (1)

Country Link
JP (1) JPH0823514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998012528A1 (en) * 1996-09-19 1998-03-26 Hokuriku Electric Industry Co., Ltd. Electrostatic capacity type pressure sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168398A (en) * 1981-04-09 1982-10-16 Hokushin Electric Works Capacity type displacement converting device
JPS58198739A (en) * 1982-05-14 1983-11-18 Matsushita Electric Ind Co Ltd Electrostatic capacity type pressure sensor
JPS5910014U (en) * 1982-07-12 1984-01-21 横河電機株式会社 capacitive converter

Also Published As

Publication number Publication date
JPH0267939A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US4091683A (en) Single channel electrical comparative measuring system
JPH0823514B2 (en) Pressure detector
US5621399A (en) Circuit for a transducer
JP3044938B2 (en) Capacitive displacement sensor
JPH0943078A (en) Capacitance detection circuit of capacitance-type sensor
JPH08201537A (en) Hand-position detection device of wristwatch
JPH0810156B2 (en) Weight detector
JPH0810155B2 (en) Weight detector
JP2705128B2 (en) Electronic thermo-hygrometer and electronic hygrometer
JP3114816B2 (en) Capacitive sensor with digital output
JPH05332867A (en) Capacitance type sensor
JPS60203864A (en) Detector
JPS61292731A (en) Coordinate detector
JPH0367209B2 (en)
JPH0678913B2 (en) Variable capacitance type sensor system
JPH02171613A (en) Variable capacitance type sensor system
JP3346026B2 (en) Capacitive sensor
JPS59142418A (en) Physical quantity detecting device
JP2646415B2 (en) Gas concentration detector
JPH0296425A (en) Oscillating circuit for touch switch
JP3356888B2 (en) Signal processing circuit of capacitance type sensor
SU735927A1 (en) Level meter
JPS6337225A (en) Temperature detection circuit
JPS63255624A (en) Weight detector
JPS5846686B2 (en) displacement meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13