JP3376417B2 - Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators - Google Patents
Calibration method for ultra-low-mass detectors using high-frequency quartz oscillatorsInfo
- Publication number
- JP3376417B2 JP3376417B2 JP2000119301A JP2000119301A JP3376417B2 JP 3376417 B2 JP3376417 B2 JP 3376417B2 JP 2000119301 A JP2000119301 A JP 2000119301A JP 2000119301 A JP2000119301 A JP 2000119301A JP 3376417 B2 JP3376417 B2 JP 3376417B2
- Authority
- JP
- Japan
- Prior art keywords
- mhz
- frequency
- change
- mass
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、超微量の物質質量
を高周波数水晶振動子を用いて検出する装置を校正する
方法に関する。
【0002】
【従来の技術】近年、水晶振動子は安定な発振素子とし
て時計、計測器など多くの機器に使用されてきた。ま
た、化学計測の分野においては、超微量天秤としての特
性を生かしたガスセンサー、免疫センサー、粘度センサ
ー、バイオセンサー、膜厚計等の各種の計測に用られて
いる。
【0003】水晶振動子に用いられる水晶薄片はその両
面に薄膜電極を取り付け、電圧を加えることによって圧
電効果により歪みを生じ、取り除くと元に戻るという性
質をもっている。この性質から、水晶振動子は厚さで決
まる固有の発振周波数で発振する。即ち、水晶振動子の
電極上に物質が吸着すると、厚さが変り発振周波数が変
化する。
【0004】この発振周波数変化Δfは水晶の厚さの変
化と比例関係にあるが、厚さの変化を質量変化Δmに置
き換えるとサーブレの式と呼ばれる次式が導かれる。
【数1】ここでfoは水晶振動子の基本周波数、ρqとμqは水
晶の密度と弾性率、Aは圧電応答している部分の面積で
ある。
【0005】質量変化Δmは、発振周波数変化Δfとの
関係からfoの2乗に比例するから、質量感度を大きく
するにはfoの大きな水晶振動子の使用が望ましい。し
かし、水晶振動子の基本周波数foがあまり大きいと水
晶薄片が薄くなり壊れやすいため、通常は5〜10MHz
の水晶振動子が用いられる。従来の水晶振動子は加工上
の問題のため基本周波数のものでは30MHzが最大であ
った。これまで溶液中で用いられた水晶振動子の最大周
波数は30MHzであるが、汎用水晶振動子の検出限界を
超える質量測定には至っていない(「最新の分離・精製
・検出法」P441、エヌ・ティー・エス出版、1997年5月2
6日発行参照)。
【0006】近年、ダイオキシン類や環境ホルモン等に
よる環境汚染が深刻な社会問題とされており、環境保全
を図るための環境モニタリング用には、pg(10
−12g)からfg(10−15g)の質量を検出対象とした
超徹量の化学物質を定量的に測定する技術が必要とされ
ている。このように超高感度を要求されるに従い、測定
に使用する水晶振動子の発振周波数を上げて高感度化に
対応せざるを得なくなってきている。
【0007】
【本発明が解決しようとする課題】しかしながら従来の
ものにおいてはその質量感度は1ng/Hzと、求められて
いる感度に比べて極端に低いため、水晶振動子によるダ
イオキシン類や環境ホルモン類等の環境モニタリングは
原理的に困難であった。
【0008】それに対応するため、高い基本周波数をも
つ水晶振動子及び同水晶振動子の倍音を用い、同水晶振
動子の基本振動数、及び高次副振動数の直列共振点の変
化をインピーダンスアナライザを用いて検出し、水晶振
動子に付加した質量に対する共振点の変化を測定するよ
うにした高周波数水晶振動子を用いた超微量質量の検出
装置を使用することが考えられる。しかしながら、この
ような検出装置を用いて正確に校正する方法が存在しな
ければ高精度の測定を行うことができない。
【0009】したがって、本発明は、高周波数水晶振動
子を用いて超微量質量を極めて正確に測定することがで
きる超微量質量の検出装置を正確に校正することができ
る校正方法を提供することを目的とする。
【0010】
【課題を解決するための手段】本発明は上記課題を解決
するため、水晶振動子にプラズマ重合膜を所定時間被覆
し、被覆されたプラズマ重合膜の質量を検出して、前記
水晶振動子の所定量の質量付加と検出質量とを比較する
ことにより校正を行うことを特徴とする高周波数水晶振
動子を用いた超微量質量の検出装置の校正方法としたも
のである。
【0011】本発明の水晶振動子の質量感度の評価方法
には、ATカット、金電極9MHz水晶振動子より基本周波
数の高いATカット、金電極の水晶振動子50MHz(n=
1)、100MHz(n=3)、100MHz(n=5)を各3
個ずつ、50MHz(表面実装型:SMD)、155MHz(表
面実装型:SMD)を各1個ずつ使用した。各水晶振動子
の電極表面は保存している環境由来の付着物がある場合
があるためそのクリーニングには、プラズマ重合装置を
用いて放電出力:100W、ヘリウム圧力:100Paの
グロー放電条件でヘリウムプラズマによるスパッタを行
い表面処理を施した。
【0012】本発明において、水晶振動子の直列共振点
の変化を測定するには従来公知の共振特性測定装置を用
い、例えば図1に示されるようなインピーダンス測定装
置を使用する。特にインピーダンスアナライザはネット
ワークアナライザ、スペクトラムアナライザ、トラッキ
ングジェネレータに比較してその測定精度が高く、厳密
な共振特性を測定するには最適な機種である。図1に示
すインピーダンスアナライザを用いてスパッタを行った
各水晶振動子の基本波、3倍波、5倍波、7倍波、9倍
波、11倍波の各倍音モード(但し、50MHz(n=1)
は9倍波、50MHz(SMD)、155MHz(SMD)は、3倍
波までの測定である)におけるインピーダンス特性での
位相0度の直列共振点を測定し、共振特性測定によって
得られた値から水晶振動子の等価回路における各素子の
値を算出し、位相、共振点のシミュレーションを行な
い、その波形をプリンタで印刷した。等価回路の各素子
の値をパーソナルコンピュータに入力して水晶振動子の
電気的等価回路についての解析を行った。このプラズマ
スパッタによる表面処理を行った水晶振動子の測定値を
プラズマ重合0分として、以後の測定による共振特性の
変化の基点とした。
【0013】プラズマスパッタ後のインピーダンス測定
終了後、これらの水晶振動子に100W、100Paの条
件で1分間のスチレン膜付けを行ない、インピーダンス
アナライザを用いてスチレン膜重量に対する各水晶振動
子のオーバートーン毎の直列共振点の変化の測定を行っ
た(5分までは1分毎、それ以降については5分毎の膜
付けを行い合計120分の膜付けを行った)。プラズマ
重合して、水晶上に付着させる原料モノマーはスチレン
に特に制限されず、プラズマ重合時間に対して重合膜形
成速度が一定で比例していればどのような原料を用いる
ことも可能である。例えば、メタン、エタン、エチレ
ン、アセチレン、テトラクロロエチレン、プロピレン、
アリルアルコール、アリルアミン、アクロレイン、メタ
クロレイン、アクリル酸、ペンタフルオスチレン等の利
用が可能である。プラズマ重合条件も、特に100W、
100Paに制限されるものではなく、原料モノマーに適
した重合条件を用いればよい。
【0014】
【実施例】次に、本発明を実施例によりさらに詳細に説
明する。なお、これらの実施例は本発明を理解するため
のものであり、本発明を何ら限定するものではない。
【0015】実施例1
50MHz(n=1)の水晶振動子に対して0〜120分の
膜付けを行い、50MHz(基本波)、150MHz(3倍
波)、250MHz(5倍波)の各重合時間に対する共振
点変化の測定を行なった。図2には重合時間に対する周
波数変化の結果を、図3には膜重量に対する周波数変化
の結果を示す。図3の基本波、3倍波、5倍波で膜重量
に対する周波数変化の比例部分での勾配の逆数より、各
モードでの質量感度を算出し表1に示した。以下の実験
例でも同様に質量感度を算出している。表1にもあるよ
うに基本波モードでは5.144pg/Hz、3倍波モード
では0.893pg/Hz、5倍波モードでは0.755pg/
Hzの質量感度を持つことがわかる。
【0016】実施例2
実施例1において50MHz(n=1)の水晶振動子を10
0MHz(n=3)の水晶振動子に変えた以外は実施例1と
同様にして33MHz(基本波)、100/Hz(3倍波)、
167MHz(5倍波)の膜重合時間に対する共振点の変
化の測定を行なった。図4には重合時間に対する周波数
変化の結果を、図5には膜重量に対する周波数変化の結
果を示す。表1にもあるように基本波モードでは19.
538pgMHz、3倍波モードでは4.209pg/Hz、5倍
波モードでは2.053pg/Hzの質量感度を持つことが
わかる。
【0017】実施例3
実施例1において50MHz(n=1)の水晶振動子を10
0MHz(n=5)の水晶振動子に変えた以外は実施例1と
同様にして20MHz(基本波)、60MHz(3倍波)、1
00MHz(5倍波)の膜重合時間に対する共振点の変化
の測定を行なった。図6には重合時間に対する周波数変
化の結果を、図7には膜重量に対する周波数変化の結果
を示す。表1にもあるように基本波モードでは78.1
52pg/Hz、3倍波モードでは17.744pg/Hz、5倍
波モードでは9.674pg/Hzの質量感度を持つことが
わかる。
【0018】実施例4
実施例1において50MHz(n=1)の水晶振動子を50
MHz(表面実装型素子:SMD)の水晶振動子に変え、0〜
45分の膜付けを行い、50MHz(基本波)、150MHz
(3倍波)の膜重合時間に対する共振点の変化の測定を
行なった。図8には重合時間に対する周波数変化の結果
を、図9には膜重量に対する周波数変化の結果を示す。
表1にもあるように基本波モードでは7.050pg/H
z、3倍波モードでは1.035pg/Hzの質量感度を持つ
ことがわかる。
【0019】実施例5
実施例1において50MHz(n=1)の水晶振動子を15
5MHz(SMD)の水晶振動子に変え0〜30分の膜付けを
行い、155MHz(基本波)、465MHz(3倍波)の膜
重合時間に対する共振点の変化の測定を行なった。図1
0には重合時間に関する周波数変化の結果を、図11に
は膜重量に対する周波数変化の結果を示す。表1に示す
ように基本波モードでは0.036pg/Hz、3倍波モー
ドでは0.004pg/Hzの質量感度を持つことが明らか
である。
【0020】
【発明の効果】本発明は上記のような方法を採用するこ
とにより、水晶振動子上に付着したpg(10−12g)か
らfg(10−15g)の超微量の質量を正確に測定し校正
でき、環境ホルモンやダイオキシン類のセンシングが、
正確に且つ容易に測定し校正することが可能となる。
【0021】Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating an apparatus for detecting an extremely small amount of substance using a high-frequency crystal resonator. 2. Description of the Related Art In recent years, a quartz oscillator has been used as a stable oscillating element in many devices such as watches and measuring instruments. In the field of chemical measurement, it is used for various measurements such as a gas sensor, an immunosensor, a viscosity sensor, a biosensor, and a film thickness meter that make use of the characteristics of an ultra-micro balance. [0003] A thin quartz crystal used for a quartz oscillator has a property that thin films are attached to both surfaces thereof, distortion is generated by a piezoelectric effect when a voltage is applied, and the original shape is restored when the thin film is removed. Due to this property, the quartz oscillator oscillates at a unique oscillation frequency determined by the thickness. That is, when a substance is adsorbed on the electrode of the crystal unit, the thickness changes and the oscillation frequency changes. The change in oscillation frequency Δf is proportional to the change in the thickness of the crystal. However, if the change in the thickness is replaced with the change in mass Δm, the following equation called the Saabre's equation is derived. (Equation 1) Here f o is the fundamental frequency of the crystal oscillator, [rho q and mu q is crystal density and elastic modulus of, A is the area of the part that the piezoelectric response. [0005] mass change Δm is proportional to the square of f o from the relationship between the oscillation frequency change Delta] f, in order to increase the mass sensitivity using a large quartz oscillator f o is desired. However, because the fundamental frequency f o of the crystal oscillator is fragile becomes thin quartz flakes and too large, usually 5~10MHz
Is used. The conventional crystal resonator has a maximum of 30 MHz for the fundamental frequency due to processing problems. Until now, the maximum frequency of a crystal unit used in a solution was 30 MHz, but mass measurement has not reached the detection limit of a general-purpose crystal unit ("Latest separation, purification and detection methods", page 441, N.M. TS Publishing, May 2, 1997
(See the 6th issue). [0006] In recent years, environmental pollution by dioxins and environmental hormones has become a serious social problem, and pg (10
There is a need for a technique for quantitatively measuring an ultra-thin chemical substance with a mass of −12 g) to fg (10 −15 g) to be detected. As the ultra-high sensitivity is demanded in this way, it has become necessary to increase the oscillation frequency of a quartz oscillator used for measurement to cope with high sensitivity. [0007] However, the mass sensitivity of the conventional device is 1 ng / Hz, which is extremely low as compared with the required sensitivity. Environmental monitoring of species was difficult in principle. In order to cope with this, an impedance analyzer is used which uses a quartz oscillator having a high fundamental frequency and harmonics of the quartz oscillator to change the fundamental frequency of the quartz oscillator and the series resonance point of the higher-order sub-frequency. It is conceivable to use an ultra-low-mass detection device using a high-frequency crystal oscillator which detects the change in resonance point with respect to the mass added to the crystal oscillator by detecting the change in the resonance point. However, high-precision measurement cannot be performed unless there is a method for accurately calibrating using such a detection device. Accordingly, the present invention provides a calibration method capable of accurately calibrating an ultra-trace mass detection device capable of extremely accurately measuring a trace mass using a high-frequency crystal oscillator. Aim. [0010] In order to solve the above-mentioned problems, the present invention covers a quartz-crystal vibrator with a plasma-polymerized film for a predetermined time, detects the mass of the coated plasma-polymerized film, and detects the mass of the plasma-polymerized film. The present invention provides a method for calibrating an ultra-low-mass detector using a high-frequency quartz oscillator, wherein calibration is performed by comparing a predetermined amount of added mass of the oscillator with a detected mass. The method for evaluating the mass sensitivity of the quartz resonator according to the present invention includes an AT cut, an AT cut having a fundamental frequency higher than that of a 9 MHz quartz crystal with a gold electrode, and a 50 MHz quartz crystal with a gold electrode (n =
1), 100 MHz (n = 3), 100 MHz (n = 5)
50 MHz (surface mount type: SMD) and 155 MHz (surface mount type: SMD) were used one by one. Since the electrode surface of each crystal unit may have deposits derived from the stored environment, cleaning is performed using a plasma polymerization apparatus under a glow discharge condition of a discharge output of 100 W and a helium pressure of 100 Pa. To perform a surface treatment. In the present invention, a conventionally known resonance characteristic measuring device is used to measure the change of the series resonance point of the crystal unit, for example, an impedance measuring device as shown in FIG. In particular, the impedance analyzer has a higher measurement accuracy than a network analyzer, a spectrum analyzer, and a tracking generator, and is an optimal model for measuring strict resonance characteristics. Each harmonic mode of the fundamental wave, the third harmonic, the fifth harmonic, the seventh harmonic, the ninth harmonic, and the eleventh harmonic of each crystal resonator sputtered using the impedance analyzer shown in FIG. = 1)
Is the 9th harmonic, 50 MHz (SMD), and 155 MHz (SMD) is the measurement up to the 3rd harmonic). The series resonance point of 0 degree in the impedance characteristic is measured, and from the value obtained by the resonance characteristic measurement, The value of each element in the equivalent circuit of the crystal unit was calculated, the phase and the resonance point were simulated, and the waveform was printed by a printer. The value of each element of the equivalent circuit was input to a personal computer, and the electrical equivalent circuit of the crystal unit was analyzed. The measured value of the quartz oscillator subjected to the surface treatment by the plasma sputtering was defined as 0 minutes of plasma polymerization, and was used as a base point of a change in resonance characteristics in the subsequent measurements. After completion of the impedance measurement after the plasma sputtering, a styrene film was applied to these quartz oscillators at 100 W and 100 Pa for 1 minute, and the overtone of each quartz oscillator with respect to the weight of the styrene film was measured using an impedance analyzer. Of the series resonance point (measurement was performed every minute until 5 minutes, and thereafter, every 5 minutes, and a total of 120 minutes was performed). The raw material monomer to be deposited on the quartz crystal by plasma polymerization is not particularly limited to styrene, and any raw material can be used as long as the polymerization film formation rate is constant and proportional to the plasma polymerization time. For example, methane, ethane, ethylene, acetylene, tetrachloroethylene, propylene,
Allyl alcohol, allylamine, acrolein, methacrolein, acrylic acid, pentafluorostyrene and the like can be used. Plasma polymerization conditions are also particularly 100W,
The polymerization conditions are not limited to 100 Pa, and polymerization conditions suitable for the raw material monomer may be used. Next, the present invention will be described in more detail with reference to examples. These examples are for understanding the present invention and do not limit the present invention in any way. Embodiment 1 A film is formed on a quartz oscillator of 50 MHz (n = 1) for 0 to 120 minutes, and each of 50 MHz (fundamental wave), 150 MHz (3rd harmonic) and 250 MHz (5th harmonic) is applied. The change of the resonance point with respect to the polymerization time was measured. FIG. 2 shows the result of the frequency change with respect to the polymerization time, and FIG. 3 shows the result of the frequency change with the film weight. The mass sensitivity in each mode was calculated from the reciprocal of the gradient in the proportional portion of the frequency change with respect to the film weight in the fundamental wave, the third harmonic, and the fifth harmonic in FIG. The mass sensitivity is similarly calculated in the following experimental examples. As shown in Table 1, 5.144 pg / Hz in the fundamental mode, 0.893 pg / Hz in the third harmonic mode, and 0.755 pg / Hz in the fifth harmonic mode.
It has a mass sensitivity of Hz. Embodiment 2 In the first embodiment, a 50 MHz (n = 1)
33 MHz (fundamental wave), 100 / Hz (third harmonic), in the same manner as in Example 1 except that the crystal oscillator was changed to 0 MHz (n = 3).
The change of the resonance point with respect to the film polymerization time of 167 MHz (5th harmonic) was measured. FIG. 4 shows the result of the frequency change with respect to the polymerization time, and FIG. 5 shows the result of the frequency change with the film weight. As shown in Table 1, in the fundamental mode, 19.
It can be seen that it has a mass sensitivity of 538 pgMHz, 4.209 pg / Hz in the third harmonic mode, and 2.053 pg / Hz in the fifth harmonic mode. Embodiment 3 In the embodiment 1, a 50 MHz (n = 1) crystal oscillator
20 MHz (fundamental wave), 60 MHz (third harmonic), 1 MHz in the same manner as in Example 1 except that the crystal oscillator was changed to 0 MHz (n = 5).
The change in the resonance point with respect to the film polymerization time of 00 MHz (5th harmonic) was measured. FIG. 6 shows the result of the frequency change with respect to the polymerization time, and FIG. 7 shows the result of the frequency change with the film weight. As shown in Table 1, 78.1 in the fundamental mode.
It can be seen that the mass sensitivity is 17.744 pg / Hz in 52 pg / Hz, third harmonic mode, and 9.674 pg / Hz in fifth harmonic mode. Embodiment 4 In Embodiment 1, a 50 MHz (n = 1) quartz oscillator was used.
MHz (Surface mount device: SMD)
Perform filming for 45 minutes, 50MHz (fundamental wave), 150MHz
The change of the resonance point with respect to the (third harmonic) film polymerization time was measured. FIG. 8 shows the result of the frequency change with respect to the polymerization time, and FIG. 9 shows the result of the frequency change with the film weight.
7.050 pg / H in the fundamental mode as shown in Table 1.
z It can be seen that in the third harmonic mode, the mass sensitivity is 1.035 pg / Hz. Fifth Embodiment In the first embodiment, a 50 MHz (n = 1)
Instead of using a 5 MHz (SMD) crystal oscillator, a film was attached for 0 to 30 minutes, and the change in resonance point with respect to the film polymerization time of 155 MHz (fundamental wave) and 465 MHz (third harmonic) was measured. FIG.
0 shows the result of the frequency change with respect to the polymerization time, and FIG. 11 shows the result of the frequency change with respect to the film weight. As shown in Table 1, it is clear that the fundamental mode has a mass sensitivity of 0.036 pg / Hz and the third harmonic mode has a mass sensitivity of 0.004 pg / Hz. [0020] According to the present invention by adopting the method as described above, the ultra-trace of the mass of fg (10 -15 g) from pg (10 -12 g) deposited on quartz oscillator It can measure and calibrate accurately, and sensing of environmental hormones and dioxins,
It is possible to measure and calibrate accurately and easily. [0021]
【図面の簡単な説明】
【図1】本発明において、の直列共振点の変化をインピ
ーダンス測定装置により測定する際のブロック図である
【図2】本発明において、50MHz(n=1)水晶振動子
のプラズマ重合スチレン膜の重合時間に対する周波数変
化を示すグラフである。
【図3】同、50MHz(n=1)水晶振動子のプラズマ重
合スチレン膜重量に対する周波数変化を示すグラフであ
る。
【図4】同、100MHz(n=3)水晶振動子のプラズマ
重合スチレン膜の重合時間に対する周波数変化を示すグ
ラフである。
【図5】同、100MHz(n=3)水晶振動子のプラズマ
重合スチレン膜重量に対する周波数変化を示すグラフで
ある。
【図6】同、100MHz(n=5)水晶振動子のプラズマ
重合スチレン膜の重合時間に対する周波数変化を示すグ
ラフである。
【図7】同、100MHz(n=5)水晶振動子のプラズマ
重合スチレン膜重量に対する周波数変化を示すグラフで
ある。
【図8】同、50MHz(SMD)水晶振動子のプラズマ重合
スチレン膜の重合時間に対する周波数変化を示すグラフ
である。
【図9】同、50MHz(SMD)水晶振動子のプラズマ重合
スチレン膜重量に対する周波数変化を示すグラフであ
る。
【図10】同、155MHz(SMD)水晶振動子のプラズマ
重合スチレン膜の重合時間に対する周波数変化を示すグ
ラフである。
【図11】同、155MHz(SMD)水晶振動子のプラズマ
重合スチレン膜重量に対する周波数変化を示すグラフで
ある。
【表1】
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram when a change in a series resonance point is measured by an impedance measuring device in the present invention. FIG. 2 In the present invention, a 50 MHz (n = 1) crystal vibration 5 is a graph showing a change in frequency with respect to a polymerization time of a plasma-polymerized styrene film of a polymer. FIG. 3 is a graph showing a change in frequency with respect to the weight of a plasma-polymerized styrene film of a 50 MHz (n = 1) crystal unit. FIG. 4 is a graph showing a change in frequency with respect to a polymerization time of a plasma-polymerized styrene film of a 100 MHz (n = 3) crystal resonator. FIG. 5 is a graph showing a change in frequency with respect to the weight of a plasma-polymerized styrene film of a 100 MHz (n = 3) crystal unit. FIG. 6 is a graph showing a change in frequency with respect to a polymerization time of a plasma-polymerized styrene film of a 100 MHz (n = 5) crystal unit. FIG. 7 is a graph showing a change in frequency with respect to the weight of a plasma-polymerized styrene film of a 100 MHz (n = 5) crystal unit. FIG. 8 is a graph showing a change in frequency with respect to a polymerization time of a plasma-polymerized styrene film of a 50 MHz (SMD) crystal resonator. FIG. 9 is a graph showing a change in frequency with respect to the weight of a plasma-polymerized styrene film of a 50 MHz (SMD) crystal resonator. FIG. 10 is a graph showing a change in frequency with respect to the polymerization time of the plasma-polymerized styrene film of the 155 MHz (SMD) crystal resonator. FIG. 11 is a graph showing a change in frequency with respect to the weight of a plasma-polymerized styrene film of the 155 MHz (SMD) crystal resonator. 【table 1】
フロントページの続き (56)参考文献 特開 平9−250979(JP,A) 特開2000−338022(JP,A) 特開2000−283905(JP,A) 特開2000−131122(JP,A) 特開2001−289765(JP,A) 特開2001−221732(JP,A) 特開 昭61−30734(JP,A) 特開 昭61−231419(JP,A) 特開 平10−132646(JP,A) 特開 平10−281966(JP,A) 特公 平5−79929(JP,B2) 特公 平4−218(JP,B2) 特公 昭50−2824(JP,B1) 実公 平3−20762(JP,Y2) 特許2811315(JP,B2) 特許3298897(JP,B2) 特許3298898(JP,B2) 特表2001−526392(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01G 3/16 G01N 5/02 Continuation of front page (56) References JP-A-9-250979 (JP, A) JP-A-2000-338022 (JP, A) JP-A-2000-283905 (JP, A) JP-A-2000-131122 (JP, A) JP-A-2001-289765 (JP, A) JP-A-2001-221732 (JP, A) JP-A-61-30734 (JP, A) JP-A-61-231419 (JP, A) JP-A-10-132646 (JP) JP-A-10-281966 (JP, A) JP-B 5-79929 (JP, B2) JP-B 4-218 (JP, B2) JP-B 50-2824 (JP, B1) 3-20762 (JP, Y2) Patent 2811315 (JP, B2) Patent 3298897 (JP, B2) Patent 3298898 (JP, B2) Table 2001-526392 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01G 3/16 G01N 5/02
Claims (1)
被覆し、被覆されたプラズマ重合膜の質量を検出して、
前記水晶振動子への所定量の質量付加と検出質量とを比
較することにより校正を行うことを特徴とする高周波数
水晶振動子を用いた超微量質量の検出装置の校正方法。(57) [Claim 1] A quartz crystal resonator is coated with a plasma polymerized film for a predetermined time, and the mass of the coated plasma polymerized film is detected.
A method for calibrating an ultra-low-mass detection device using a high-frequency quartz oscillator, wherein calibration is performed by comparing a predetermined amount of mass added to the quartz oscillator with a detected mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000119301A JP3376417B2 (en) | 2000-04-20 | 2000-04-20 | Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000119301A JP3376417B2 (en) | 2000-04-20 | 2000-04-20 | Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001304945A JP2001304945A (en) | 2001-10-31 |
JP3376417B2 true JP3376417B2 (en) | 2003-02-10 |
Family
ID=18630305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000119301A Expired - Lifetime JP3376417B2 (en) | 2000-04-20 | 2000-04-20 | Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3376417B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3911191B2 (en) * | 2002-04-26 | 2007-05-09 | 株式会社アルバック | Analysis method |
US7331232B2 (en) | 2003-09-25 | 2008-02-19 | Ulvac, Inc. | Measurement method and biosensor apparatus using resonator |
JP4358048B2 (en) * | 2004-06-29 | 2009-11-04 | 株式会社アルバック | Calibration unit and analyzer |
JP2008502911A (en) * | 2004-06-12 | 2008-01-31 | アクバイオ・リミテッド | Analytical instrument with an array of sensors and calibration elements |
JP4669749B2 (en) * | 2005-06-30 | 2011-04-13 | 株式会社アルバック | Measuring method and measuring apparatus using crystal resonator |
JP4376258B2 (en) | 2006-09-29 | 2009-12-02 | 日本電波工業株式会社 | Sensing device |
-
2000
- 2000-04-20 JP JP2000119301A patent/JP3376417B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001304945A (en) | 2001-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7140255B2 (en) | Devices and method of measuring a mass | |
JP2010271091A (en) | Frequency measuring device | |
WO2004085976A1 (en) | Mass measuring method, circuit for exciting piezoelectric vibratory piece for mass measurement, and mass measuring instrument | |
CN100430711C (en) | Measuring method, measuring signal output circuit, and measuring apparatus | |
JP2018048930A (en) | Gas sensor and gas detection method | |
JP4476496B2 (en) | High-frequency measurement circuit with intrinsic noise reduction for resonant chemical sensors | |
JP3376417B2 (en) | Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators | |
Bruno et al. | High relative humidity range sensor based on polymer-coated STW resonant device | |
Matsiev et al. | Application of low frequency mechanical resonators to liquid property measurements | |
JP2004184256A (en) | Qcm sensor apparatus and substance measuring method | |
JP4773656B2 (en) | Frequency warping to improve the S / N ratio of the resonator | |
JP2004294356A (en) | Qcm sensor unit | |
JP2811315B2 (en) | Piezoelectric gas sensor system | |
JP2003324319A (en) | Electronic circuit | |
JP2008309779A (en) | Dielectric constant/electric conductivity measuring method and its measuring method | |
Zhang et al. | Vapor and liquid mass sensing by micromachined acoustic resonator | |
JP2004286476A (en) | Method for measuring detection/detuning of vibrator, its adjustment method, and vibrator | |
CN117347571B (en) | Multi-parameter self-calibration method, device and system of mixed gas measuring device | |
Senturk et al. | A quartz crystal microbalance (QCM)-based easy setup device for real-time mass change detection under high-power RF plasma | |
US20090056452A1 (en) | Acoustic wave sensor system | |
JPH1123245A (en) | Instrument for measuring thickness of vapor-deposited film using crystal resonator | |
JPH02228538A (en) | Gas identification sensor system | |
Kshetrimayum | Effects of the set phase position on the response of a SAW resonator oscillator based chemical sensor | |
JP2004333148A (en) | Analyzer | |
Sell et al. | Digital phase-locked loop circuit for driving resonant sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3376417 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |