WO2019097761A1 - Sensor measurement device - Google Patents

Sensor measurement device Download PDF

Info

Publication number
WO2019097761A1
WO2019097761A1 PCT/JP2018/026578 JP2018026578W WO2019097761A1 WO 2019097761 A1 WO2019097761 A1 WO 2019097761A1 JP 2018026578 W JP2018026578 W JP 2018026578W WO 2019097761 A1 WO2019097761 A1 WO 2019097761A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
saw sensor
phase difference
sensor
signal
Prior art date
Application number
PCT/JP2018/026578
Other languages
French (fr)
Japanese (ja)
Inventor
成亘 小松
礒部 敦
優 小久保
山脇 大造
中村 洋平
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Publication of WO2019097761A1 publication Critical patent/WO2019097761A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor

Definitions

  • the present invention relates to a sensor measurement apparatus, and more particularly to a measurement apparatus using a surface acoustic wave sensor.
  • SAW sensors Surface acoustic wave sensors
  • the SAW sensor changes the delay time in which the surface acoustic wave propagates according to the change in the physical quantity to be detected, and detects the change in the delay time to detect the change in the target physical quantity.
  • a method of detecting the delay amount there is known a method of detecting a phase difference with a reference signal with a phase detector. This method can be implemented in a circuit with a smaller area than a method using TDC (Time to Digital Converter).
  • TDC Time to Digital Converter
  • Patent Document 1 does not mention a solution to the deterioration in sensitivity accompanying the extension of the detection range of the delay of the SAW sensor.
  • an object of the present invention is to provide a sensor measurement device capable of extending the delay detection range of the SAW sensor and preventing the deterioration of the sensitivity.
  • a phase difference between an output signal of the SAW sensor and a SAW sensor with respect to a reference signal is detected.
  • a phase comparator an oscillator generating an input signal of the SAW sensor and the reference signal, an oscillator having a variable oscillation frequency, a delayer capable of adjusting a delay difference between the input signal of the SAW sensor and the reference signal; Controlling the oscillation frequency of the oscillator, and controlling the delay amount of the delay device such that the phase difference between the output signal of the SAW sensor and the reference signal becomes constant, and based on the delay amount of the delay device,
  • a control unit configured to calculate a propagation delay amount and calculate a physical quantity to be detected.
  • the present invention it is possible to expand the delay detection range of the SAW sensor of the sensor measurement device and prevent the deterioration of the sensitivity.
  • FIG. 1 is a block diagram of a surface acoustic wave sensor measurement device according to a first embodiment.
  • FIG. 6 is a flowchart showing the processing operation of the surface acoustic wave sensor measurement device according to the first embodiment.
  • FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment.
  • FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment.
  • FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment.
  • FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment.
  • FIG. 6 is a diagram showing an example of a circuit of a phase comparator 21 according to a second embodiment.
  • FIG. 7 is a diagram showing an output example of the phase comparator 21 of the second embodiment.
  • FIG. 7 is a flowchart showing the processing operation of the surface acoustic wave sensor measurement device of the second embodiment.
  • FIG. 10 is a block diagram of a surface acoustic wave sensor measurement device according to a third embodiment.
  • FIG. 16 is a block diagram of a surface acoustic wave sensor measurement device according to a fourth embodiment.
  • FIG. 16 is a block diagram of a surface acoustic wave sensor measurement device according to a fifth embodiment.
  • FIG. 16 is a block diagram of a surface acoustic wave sensor measurement device according to a sixth embodiment.
  • the surface acoustic wave sensor measurement apparatus is an example using a PM sensor that measures, for example, fine particles (PM) in exhaust gas of a car.
  • FIG. 1 is a block diagram showing an example of a surface acoustic wave sensor measurement apparatus.
  • the surface acoustic wave sensor measurement apparatus is configured to include a SAW sensor 1 and a sensor control circuit 2.
  • the output of the surface acoustic wave sensor measurement device is provided to an ECU (Electronic Control Unit) 3 and used to control an engine, other electronic devices, and the like.
  • ECU Electronic Control Unit
  • the SAW sensor 1 has a SAW sensor element (hereinafter simply referred to as a sensor element) 11 in which the amount of delay of the propagation signal changes as PM adheres to the sensing portion, and the amount of delay of the propagation signal does not change due to PM adhesion.
  • a SAW reference element (hereinafter simply referred to as a reference element) 12 for canceling the influence of manufacturing variations, and a heater 40 for burning PM attached to the surface of the sensor element 11 for refreshing the sensor element 11 are provided.
  • the sensor control circuit 2 compares the phase difference between the output signal 13 of the sensor element 11 and the output signal 15 of the reference element 12, and the analog digital signal converts the output voltage signal 27 of the phase comparator 21 into a digital value.
  • ADC A converter
  • MCU Micro Control Unit
  • a desired delay amount can be set to the input signal 18 to the sensor element 11 and the input signal 19 to the reference element 12
  • a delay unit (DELAY) 25 having a voltage generation circuit (VGEN) 39 for generating a voltage applied to the heater 40 by the control signal 41 from MCU23.
  • the MCU 23 outputs a control signal 31 for setting the oscillation frequency of the oscillator 26, a control signal 32 for setting the delay amount of the delay unit 25, and a control signal 41 for controlling the voltage generation circuit 39.
  • reference numeral 14 denotes a GND (ground) output signal from the sensor element 11, 16 denotes a GND output signal from the reference element 12, and 17 denotes a GND input signal to the sensor element 11 and the reference element 12.
  • the MCU 23 controls the oscillation frequency of the oscillator 26 and controls the delay amount of the delay 25 so that the phase difference between the output signal of the sensor element 11 and the reference signal becomes constant. Then, the difference between the propagation delay amount of the sensor element 11 and the propagation delay amount of the reference element 12 is obtained from the delay amount of the delay device 25 to calculate the physical quantity (PM concentration) of the detection target.
  • the processing operation of the MCU 23 will be described later in detail with reference to the flowchart.
  • the MCU 23 realizes a predetermined function or operation by executing a microprogram, and may be referred to as an arithmetic processing unit, a processing unit, or a control unit (in the claims, a control unit It is called).
  • FIG. 2 shows the processing operation by the MCU 23.
  • the MCU 23 controls the phase difference of each frequency and the difference of the phase difference to be 0 degree.
  • the frequency of the oscillator 26 is set to f1 (S201), and the phase difference ⁇ 1 of the output signals of the sensor element 11 and the reference element 12 is measured (S202).
  • the frequency of the oscillator 26 is set to f2 (S203), and the output signal ⁇ 2 of the sensor element 11 and the reference element 12 is measured (S204).
  • a phase difference ⁇ 1 ⁇ 2 between ⁇ 1 and ⁇ 2 is calculated (S 205).
  • the MCU 23 calculates the delay amount of the sensor element 11 from the delay amount of the delay of the delay device 25, that is, the set value of the delay, and calculates the adhesion amount of PM from the delay amount of the sensor element 11 (S211).
  • the PM concentration in the exhaust gas is calculated from the time change of the adhesion amount of PM, and is output to the ECU 3.
  • the MCU 23 determines whether the delay amount of the delay unit 25 exceeds a prescribed value (S212). As a result of the determination, if the delay amount does not exceed the specified value (S212: NO), the process returns to the beginning. On the other hand, if the delay amount exceeds the specified value (S212: YES), the sensor element 11 is heated by the heater 40 to burn PM adhering to the surface of the sensor element 11 (S213) Refresh to the state that you are not doing. Thereafter, the delay amount of the delay unit 25 is reset to 0 (S214), and the process returns to the beginning.
  • S212 a prescribed value
  • FIG. 3A to 3D are waveforms showing the relationship between the delay amount and the phase difference and the difference between the phase differences when the delay difference between the sensor element 11 and the reference element 12 is 100 ns, the frequency f1 is 100 MHz, and f2 is 101 MHz.
  • FIG. The horizontal axis is a time axis, but it is a value dependent on the feedback time of control, and the absolute value is not important.
  • FIG. 3A shows the time change of the phase difference ⁇ 1 of the output signals of the sensor element 11 and the reference element 12 when the frequency is 100 MHz and the phase difference ⁇ 2 when the frequency is 101 MHz.
  • FIG. 3B shows the time change of the difference between ⁇ 1 and ⁇ 2.
  • FIG. 3C shows a correction value ⁇ 12 corrected about the phase of ⁇ 1 and ⁇ 2.
  • FIG. 3D shows the change of the delay amount of the delay unit 25.
  • the correction value of the phase difference difference in FIG. 3C becomes zero. Moreover, although the phase difference of FIG. 3A rotates many times more than 360 degrees with the increase of delay amount, the correction value of the difference of the phase difference of FIG. 3C is settled between -180 degrees to 180 degrees. . If the difference of the phase difference in FIG. 3C is positive, the delay amount of the delay is increased. If the difference is negative, the delay amount of the delay is equal to the difference of the phase difference. It becomes stable at the point which becomes 0. Further, since the difference in phase difference is zero, the delay amount of the delay unit is equal to the delay difference between the SAW sensor element and the SAW reference element.
  • the delay measurement range can be expanded. Moreover, since the feedback control is performed on the delay device to variably control the delay amount of the delay device each time to calculate the PM adhesion amount, it is possible to prevent the deterioration of the sensitivity.
  • the phase comparator 21 mainly includes a comparator 43, a comparator 44, an XOR (exclusive OR gate) 45, and a low pass filter 46.
  • the output signal 13 of the sensor element 11 and the output signal 15 of the reference element 12 are converted by the comparators 43 and 44 into digital signals that oscillate from low level to high level.
  • the comparison reference signal 47 of the comparator is set to the center value of the amplitudes of the input signals 13 and 15.
  • the signals 48 and 49 converted to digital signals by the comparators 43 and 44 are input to the XOR 45.
  • the output signal 50 of the XOR 45 outputs a pulse signal having a width proportional to the phase shift of the input signals 48 and 49 of the XOR 45.
  • the relationship between the phase difference and the output voltage of the output signal 27 of the low pass filter is shown in FIG.
  • the graph of FIG. 5 shows the case where the low level is 0V and the high level is 5V.
  • the phase shift is 0 degrees
  • the combination of the XOR 45 input signals 48 and 49 is always low and low or high and high, and the output of XOR 45 is always low.
  • the phase difference is 180 degrees
  • the combination of input signals 48 and 49 is always high and low, or low and high
  • the output of XOR 45 is maximum at high
  • the phase difference is 360 degrees, it is also low level It becomes.
  • the slope of the voltage change with respect to the phase difference decreases near 0 degrees, 180 degrees, and 360 degrees.
  • the pulse width is shorter than the transition time when the output signal of the XOR 45 transitions from high to low or low to high, and the pulse does not reach the high level completely from the low level, and the response time of the XOR circuit 45 By seeing. If control is performed such that the phase difference is always 0 degree in the phase comparator 21 having such characteristics, the position where the sensitivity of the phase shifter is bad is always used. On the other hand, in order to avoid use of a portion with poor sensitivity of the phase comparator, the phase difference of the convergence point may be set to other than 0 degree. If it is the phase comparator 21 of the characteristic of the graph of FIG. 5, control should be performed so that the phase difference becomes constant at 90 degrees while avoiding 0 degrees and 180 degrees 360 degrees.
  • FIG. 6 shows the processing operation of the MCU 23.
  • the MCU 23 first sets the frequency of the oscillator 26 to f1 (Hz) (S601), and measures the phase difference ⁇ 1 between the sensor element 11 and the reference element 12 (S602).
  • the delay amount of the delay unit 25 is increased until the difference (that is, the absolute value of (.DELTA..phi.1-90.degree.) With respect to 90.degree. Of .DELTA..phi.1 approaches the error Pth1 'or less (S603, S621).
  • the frequency of the oscillator 26 is set to f2 (S604), and the sensor element 11 and the reference element 12 are positioned.
  • the phase difference ⁇ 2 is measured (S605).
  • the difference ⁇ 12 between ⁇ 1 and ⁇ 2 is calculated (S606).
  • a delay amount in which ⁇ 12 only changes to a range of ⁇ 90 degrees is assumed, and ⁇ 1 is adjusted to 90 degrees and then ⁇ 2 is measured. Therefore, one of the outputs of ⁇ 1 and ⁇ 2 is Since the change from 360 degrees to 0 degrees (around phase) does not occur, the correction of adding or subtracting 360 degrees to ⁇ 12 performed in the first embodiment is not performed. Therefore, it is determined whether the absolute value of ⁇ 12 is smaller than the specified value Pth12 '(S607).
  • the delay amount obtained by subtracting the delay amount corresponding to the phase 90 degrees of the frequency f1 from the delay amount of the delay device 25 The amount of deposition of PM is calculated from the difference in delay (S608).
  • the delay amount obtained by subtracting the delay amount for the phase difference 90 degrees of the frequency f1 from the delay amount of the delay unit 25 becomes the sensor element 11 and the reference element Since the delay difference of 12 is obtained, the adhesion amount of PM is calculated from this delay difference (S 608).
  • Delay adjustment amounts dp12 and dm12 when the absolute value of ⁇ 12 is larger than Pth12 ′ are points shifted by one cycle when adjusting to a phase difference of 90 degrees at the frequency of f1, that is, 90 degrees + 360 degrees or 90 degrees-360 degrees Is a delay amount that can be converged to
  • the MCU 23 determines whether the delay amount of the delay unit 25 exceeds a prescribed value (S609). As a result of the determination, if the delay amount does not exceed the specified value (S609: NO), the process returns to the beginning. On the other hand, if the delay amount exceeds the specified value (S 609: YES), the sensor element 11 is heated by the heater 40 to burn PM adhering to the surface of the sensor element 11 (S 610). Refresh to the state that you are not doing. Thereafter, the delay amount of the delay unit 25 is reset to 0 (S214), and the process returns to the beginning.
  • phase comparator 21 even when the phase comparator 21 has the sensitivity difference due to the phase difference, the change of the delay amount of the SAW sensor is accurately measured by applying feedback so as to obtain the phase difference with good sensitivity.
  • a phase comparator using XOR 45 is taken as an example of the phase comparator 21.
  • the present invention is not limited to XOR, and can be realized using other phase comparators of different systems.
  • phase difference to be adjusted as a constant value is made closer to 180 degrees, it is possible to expand the measurement range of ⁇ 12 to a range close to ⁇ 180 degrees and not perform correction about the phase of ⁇ 12.
  • FIG. 7 shows a block diagram of the surface acoustic wave sensor measurement device according to the third embodiment.
  • the third embodiment has a delay reference circuit 51 added to the first embodiment.
  • the delay unit 25 is formed by connecting a plurality of delay elements such as inverters, for example, and the delay reference circuit 51 uses a ring oscillator formed of the same delay elements as the delay elements constituting the delay unit 25.
  • the delay reference circuit 51 outputs a signal 55 which is an oscillation signal, and the output signal 55 is sent to the MCU 23.
  • the MCU 23 corrects the amount of delay of the delay reference circuit 51 when calculating the amount of propagation delay of the SAW sensor from the amount of delay of the delay device 25.
  • the MCU 23 calculates the change in the delay amount of the delay reference circuit 51 by counting the number of oscillations within the fixed time of the delay reference circuit 51, and based on the change in the delay amount, It is possible to correct the change in delay amount. This can reduce the effects of temperature and manufacturing variations. Further, the delay reference circuit 51 only needs to have the same delay change ratio with respect to the temperature of the delay device 25 and manufacturing variations, so the number of delay elements constituting the delay reference circuit 51 can be reduced compared to the delay device 25. The area overhead of the delay reference circuit 51 can be suppressed.
  • FIG. 8 is a block diagram of a surface acoustic wave sensor measurement device according to a fourth embodiment.
  • the fourth embodiment has a voltage generation circuit 52 added to the third embodiment.
  • the delay unit 25 uses a delay element whose delay amount is changed by the output voltage signal 54 of the voltage generation circuit 52.
  • Reference numeral 53 denotes a voltage control signal supplied from the MCU 23 to the voltage generation circuit 52.
  • the delay amount of the delay can be changed by voltage control. Furthermore, it is possible to change the delay amount of the delay by switching the number of stages of the delay element. By using the former and the latter, since the delay amount can be continuously changed by voltage control while the delay amount is switched over a wide range by switching the number of stages of delay elements, fine adjustment is also possible. In addition, the maximum value of the delay amount can also be increased by the smaller number of delay element stages.
  • the MCU 23 calculates the delay amount due to the change of the frequency only at the time of startup and immediately after the PM attached to the sensor by the heater 40 is burned.
  • a power on reset circuit 56 and a counter 57 for counting the number of times the phase of the phase shifter has been turned are added to the first embodiment.
  • the power on reset circuit 56 generates a power on reset signal 58 when the sensor control circuit 2 is powered on.
  • the counter 57 functions as storage means for storing how many times the phase difference of the phase comparator 21 has been turned.
  • a signal 60 is a signal for the MCU 23 to set the count number of the counter 57
  • a signal 59 is a signal for the counter 59 to read the counter number of the counter 57.
  • the MCU 23 receives the power on reset signal 58 from the power on reset circuit 56 when the power is turned on.
  • the frequencies of the oscillator 26 are set to f1 and f2 as an initial operation. Change and find the difference of the phase difference in the case of the change.
  • MCU23 calculates
  • the MCU 23 fixes the frequency to f1 (makes a constant value) and detects the phase difference between the sensor element 11 and the reference element 12. If the phase difference is a position where the sensitivity of the phase comparator 21 is poor, the delay 25 shifts the delay by 90 degrees of the period of f1 so that the range of sensitivity of the phase comparator 21 is used. Every time the phase of the phase comparator 21 rotates 360 degrees, the count number of the counter 57 is reflected.
  • the MCU 23 calculates the PM deposition amount of the sensor element 11 by obtaining the absolute value of the delay difference between the sensor element 11 and the reference element 12 based on the count number of the counter 57 and the phase difference of the phase comparator 21.
  • the MCU 23 can obtain the PM concentration from the time change of the PM adhesion amount of the sensor element 11 and can finally output it to the ECU 3.
  • the power on reset circuit 56 and the counter 57 are added as hardware circuits in the example shown in FIG. 9, these functions can also be realized as functions by execution of a program by the MCU 23.
  • the fifth embodiment it is possible to improve the response and reduce the control load of the MCU by omitting the control of the frequency change in the normal operation.
  • the reduction in control load of the MCU results in lower power.
  • when mounting an MCU with a custom IC it is possible to reduce the area, and when using discrete MCUs, it is possible to select a low-performance low-cost product, resulting in cost reduction.
  • the nonvolatile memory 61 in which the data is not erased even if the power is shut off is added to the first embodiment as a storage unit. Further, the control signal 31 (Example 1) for changing the frequency of the oscillator 26 is deleted.
  • the non-volatile memory 61 stores the number of times the phase of the phase comparator 21 rotates 360 degrees or more at the start of use or after the combustion of PM attached to the sensor element 11 by the heater 40.
  • the MCU 23 calculates the absolute value of the delay difference between the sensor element 11 and the reference element 12 from the phase difference detected by the phase comparator 21 and the value stored in the non-volatile memory 61.
  • the sensor measurement device can be realized with a small scale circuit and at low cost.
  • SAW sensor 2 sensor control circuit 3: ECU 11: SAW sensor element 12: SAW reference element 21: phase comparator 22: ADC 23: MCU 24: input / output circuit 25: delay device 26: oscillator 39: voltage generation circuit 40: heater 41: control signal 42: applied voltage

Abstract

In order to expand the delay detection range of a SAW sensor and to prevent degradation of sensitivity, the sensor measurement device is provided with: a phase comparator 21 which measures the phase difference between a reference signal and the output signal of a SAW sensor element 11; an oscillator 26 which can vary the frequency of the generated signal; a delay device 25 which can change the delay difference between the SAW sensor element and the reference signal; and a control unit 23 which controls the oscillation frequency of the oscillator, adjusts the delay amount of the delay device such that the phase difference between the reference signal and the output signal of the SAW sensor element becomes constant, and calculates the propagation delay amount of the SAW sensor from the delay amount of the delay device to calculate the physical quantity to be detected.

Description

センサ計測装置Sensor measurement device
 本発明は、センサ計測装置に係り、更に詳しくは弾性表面波センサを使用した計測装置に関する。 The present invention relates to a sensor measurement apparatus, and more particularly to a measurement apparatus using a surface acoustic wave sensor.
 弾性表面波センサ(SAWセンサ)は液体センサや温度センサなど様々な物理量の検出センサとして知られている。SAWセンサは、検出対象の物理量の変化によって弾性表面波が伝播する遅延時間が変化し、その遅延時間の変化を検出することで対象となる物理量の変化を検出する。遅延量の検出方法として、基準信号との位相差を位相検出器で検出する方法が知られている。この方法は、TDC(Time to Digital Converter)を使用する方法に比べて小面積で回路に実装できる。しかし、位相検出器は周波数の一周期を越える遅延時間は区別ができないため、伝播信号の周波数、つまり周期で測定できる遅延時間の範囲が限定されてしまう。そこで、遅延時間の測定範囲を拡張するために、周波数を変更した時の位相差を計測する技術が提案されている(特許文献1)。 Surface acoustic wave sensors (SAW sensors) are known as detection sensors for various physical quantities, such as liquid sensors and temperature sensors. The SAW sensor changes the delay time in which the surface acoustic wave propagates according to the change in the physical quantity to be detected, and detects the change in the delay time to detect the change in the target physical quantity. As a method of detecting the delay amount, there is known a method of detecting a phase difference with a reference signal with a phase detector. This method can be implemented in a circuit with a smaller area than a method using TDC (Time to Digital Converter). However, since the phase detector can not distinguish the delay time exceeding one cycle of the frequency, the frequency of the propagation signal, that is, the range of the delay time that can be measured by the cycle is limited. Therefore, in order to expand the measurement range of the delay time, a technique for measuring a phase difference when the frequency is changed has been proposed (Patent Document 1).
特開2014-20841公報JP, 2014-20841, A
 発明者らの検討によれば、従来のSAWセンサは、遅延の検出範囲の拡張に伴い感度が悪化することがわかった。然るに、特許文献1にはSAWセンサの遅延の検出範囲の拡張に伴う感度の悪化に対する解決手段については言及されていない。 According to the study of the inventors, it has been found that the sensitivity of the conventional SAW sensor is deteriorated as the detection range of delay is extended. However, Patent Document 1 does not mention a solution to the deterioration in sensitivity accompanying the extension of the detection range of the delay of the SAW sensor.
 そこで、本発明の目的は、SAWセンサの遅延検出範囲を拡張し、かつ感度の悪化を防止できるセンサ計測装置を提供することにある。 Therefore, an object of the present invention is to provide a sensor measurement device capable of extending the delay detection range of the SAW sensor and preventing the deterioration of the sensitivity.
 上記課題を解決するために、本発明に係る好ましい例では、検出対象の物理量の変化によって信号の伝播遅延量が変化するSAWセンサと、基準信号に対する前記SAWセンサの出力信号の位相差を検出する位相比較器と、前記SAWセンサの入力信号及び前記基準信号を生成する、発振周波数が可変な発振器と、前記SAWセンサの入力信号と前記基準信号間の遅延差を調整可能な遅延器と、前記発振器の発振周波数を制御し、かつ前記SAWセンサの出力信号と前記基準信号の位相差が一定になるように前記遅延器の遅延量を制御して、前記遅延器の遅延量から前記SAWセンサの伝播遅延量を求め、検出対象の物理量を算出する制御部と、を有するセンサ計測装置、として構成される。 In order to solve the above-mentioned problems, in a preferred embodiment according to the present invention, a phase difference between an output signal of the SAW sensor and a SAW sensor with respect to a reference signal is detected. A phase comparator, an oscillator generating an input signal of the SAW sensor and the reference signal, an oscillator having a variable oscillation frequency, a delayer capable of adjusting a delay difference between the input signal of the SAW sensor and the reference signal; Controlling the oscillation frequency of the oscillator, and controlling the delay amount of the delay device such that the phase difference between the output signal of the SAW sensor and the reference signal becomes constant, and based on the delay amount of the delay device, And a control unit configured to calculate a propagation delay amount and calculate a physical quantity to be detected.
 本発明によれば、センサ計測装置のSAWセンサの遅延検出範囲を拡張し、かつ感度の悪化を防止できる。 According to the present invention, it is possible to expand the delay detection range of the SAW sensor of the sensor measurement device and prevent the deterioration of the sensitivity.
実施例1による弾性表面波センサ計測装置のブロック図。FIG. 1 is a block diagram of a surface acoustic wave sensor measurement device according to a first embodiment. 実施例1による弾性表面波センサ計測装置の処理動作を示すフローチャート図。FIG. 6 is a flowchart showing the processing operation of the surface acoustic wave sensor measurement device according to the first embodiment. 実施例1の弾性表面波センサ計測装置の波形図。FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment. 実施例1の弾性表面波センサ計測装置の波形図。FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment. 実施例1の弾性表面波センサ計測装置の波形図。FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment. 実施例1の弾性表面波センサ計測装置の波形図。FIG. 5 is a waveform chart of the surface acoustic wave sensor measurement device of the first embodiment. 実施例2による位相比較器21の回路の一例を示す図。FIG. 6 is a diagram showing an example of a circuit of a phase comparator 21 according to a second embodiment. 実施例2の位相比較器21の出力例を示す図。FIG. 7 is a diagram showing an output example of the phase comparator 21 of the second embodiment. 実施例2の弾性表面波センサ計測装置の処理動作を示すフローチャート図。FIG. 7 is a flowchart showing the processing operation of the surface acoustic wave sensor measurement device of the second embodiment. 実施例3による弾性表面波センサ計測装置のブロック図。FIG. 10 is a block diagram of a surface acoustic wave sensor measurement device according to a third embodiment. 実施例4による弾性表面波センサ計測装置のブロック図。FIG. 16 is a block diagram of a surface acoustic wave sensor measurement device according to a fourth embodiment. 実施例5による弾性表面波センサ計測装置のブロック図。FIG. 16 is a block diagram of a surface acoustic wave sensor measurement device according to a fifth embodiment. 実施例6によるによる弾性表面波センサ計測装置のブロック図。FIG. 16 is a block diagram of a surface acoustic wave sensor measurement device according to a sixth embodiment.
 以下、図面を参照して、本発明の好ましい実施例について説明する。
  以下の実施例による弾性表面波センサ計測装置は、例えば自動車の排ガス中の微粒粒子(PM)を計測するPMセンサを用いた例である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
The surface acoustic wave sensor measurement apparatus according to the following embodiment is an example using a PM sensor that measures, for example, fine particles (PM) in exhaust gas of a car.
 図1は、弾性表面波センサ計測装置の一例を示すブロック図である。
弾性表面波センサ計測装置は、SAWセンサ1と、センサ制御回路2を備えて構成される。弾性表面波センサ計測装置の出力は、ECU(Electronic Control Unit)3に提供されて、エンジンやその他電子機器などの制御に使用される。
FIG. 1 is a block diagram showing an example of a surface acoustic wave sensor measurement apparatus.
The surface acoustic wave sensor measurement apparatus is configured to include a SAW sensor 1 and a sensor control circuit 2. The output of the surface acoustic wave sensor measurement device is provided to an ECU (Electronic Control Unit) 3 and used to control an engine, other electronic devices, and the like.
 SAWセンサ1は、PMがセンシング部に付着することで伝播信号の遅延量が変化するSAWセンサ素子(以下単にセンサ素子という)11と、PMの付着によって伝播信号の遅延量が変化せず温度や製造ばらつきの影響をキャンセルするためのSAWリファレンス素子(以下単にリファレンス素子という)12と、センサ素子11をリフレッシュするためにセンサ素子11の表面に付着したPMを燃焼するヒータ40と、を備える。 The SAW sensor 1 has a SAW sensor element (hereinafter simply referred to as a sensor element) 11 in which the amount of delay of the propagation signal changes as PM adheres to the sensing portion, and the amount of delay of the propagation signal does not change due to PM adhesion. A SAW reference element (hereinafter simply referred to as a reference element) 12 for canceling the influence of manufacturing variations, and a heater 40 for burning PM attached to the surface of the sensor element 11 for refreshing the sensor element 11 are provided.
 センサ制御回路2は、センサ素子11の出力信号13とリファレンス素子12の出力信号15の位相差を比較する位相比較器21と、位相比較器21の出力電圧信号27をデジタル値に変換するアナログデジタルコンバータ(ADC)22と、ADC22の出力信号28のデータ演算や他の回路(例えば電圧生成回路39等)の制御処理を行うマイクロコントロールユニット(MCU:Micro Control Unit)23と、MCU23からの出力信号29及びその入力信号30、及びECU3への出力信号37及びその入力信号38の変換を行う入出力回路(I/O)24と、センサ素子11への入力信号18を生成する発振器(OSC)26と、センサ素子11への入力信号18とリファレンス素子12への入力信号19に所望の遅延量を設定できる遅延器(DELAY)25と、MCU23からの制御信号41によってヒータ40への印加電圧を発生させる電圧生成回路(VGEN)39を有する。MCU23は、発振器26の発振周波数を設定する制御信号31、遅延器25の遅延量を設定する制御信号32、電圧生成回39を制御する制御信号41、を出力する。また、14はセンサ素子11からのGND(接地)出力信号、16はリファレンス素子12からのGND出力信号、17はセンサ素子11及びリファレンス素子12へのGND入力信号である。 The sensor control circuit 2 compares the phase difference between the output signal 13 of the sensor element 11 and the output signal 15 of the reference element 12, and the analog digital signal converts the output voltage signal 27 of the phase comparator 21 into a digital value. A converter (ADC) 22, a micro control unit (MCU: Micro Control Unit) 23 that performs data processing of the output signal 28 of the ADC 22 and control processing of other circuits (for example, voltage generation circuit 39 etc.) 29, an input / output circuit (I / O) 24 for converting an output signal 37 to the ECU 3 and an input signal 38 to the ECU 3, and an oscillator (OSC) 26 for generating an input signal 18 to the sensor element 11. And a desired delay amount can be set to the input signal 18 to the sensor element 11 and the input signal 19 to the reference element 12 A delay unit (DELAY) 25, having a voltage generation circuit (VGEN) 39 for generating a voltage applied to the heater 40 by the control signal 41 from MCU23. The MCU 23 outputs a control signal 31 for setting the oscillation frequency of the oscillator 26, a control signal 32 for setting the delay amount of the delay unit 25, and a control signal 41 for controlling the voltage generation circuit 39. Further, reference numeral 14 denotes a GND (ground) output signal from the sensor element 11, 16 denotes a GND output signal from the reference element 12, and 17 denotes a GND input signal to the sensor element 11 and the reference element 12.
 MCU23は、発振器26の発振周波数を制御し、かつセンサ素子11の出力信号と基準信号の位相差が一定になるように遅延器25の遅延量を制御する。そして、遅延器25の遅延量からセンサ素子11の伝播遅延量とリファレンス素子12の伝播遅延量の差分を求め、検出対象の物理量(PM濃度)を算出する。なお、MCU23の処理動作については、フローチャートを参照して詳細に後述する。ここで、MCU23は、マイクロプログラムを実行することで所定の機能や動作を実現するものであり、演算処理部或いは単に処理部、或いは制御部と称してもよい(特許請求の範囲では制御部と称している)。 The MCU 23 controls the oscillation frequency of the oscillator 26 and controls the delay amount of the delay 25 so that the phase difference between the output signal of the sensor element 11 and the reference signal becomes constant. Then, the difference between the propagation delay amount of the sensor element 11 and the propagation delay amount of the reference element 12 is obtained from the delay amount of the delay device 25 to calculate the physical quantity (PM concentration) of the detection target. The processing operation of the MCU 23 will be described later in detail with reference to the flowchart. Here, the MCU 23 realizes a predetermined function or operation by executing a microprogram, and may be referred to as an arithmetic processing unit, a processing unit, or a control unit (in the claims, a control unit It is called).
 図2は、MCU23による処理動作を示す。
  MCU23は各周波数の位相差及び、位相差の差分が0度になるように制御する。
  まず、発振器26の周波数をf1に設定し(S201)、センサ素子11とリファレンス素子12の出力信号の位相差Δφ1を計測する(S202)。次に発振器26の周波数をf2に設定して(S203)、センサ素子11とリファレンス素子12の出力信号Δφ2を計測する(S204)。次に、Δφ1とΔφ2の位相差Δφ1-Δφ2を計算する(S205)。
FIG. 2 shows the processing operation by the MCU 23.
The MCU 23 controls the phase difference of each frequency and the difference of the phase difference to be 0 degree.
First, the frequency of the oscillator 26 is set to f1 (S201), and the phase difference Δφ1 of the output signals of the sensor element 11 and the reference element 12 is measured (S202). Next, the frequency of the oscillator 26 is set to f2 (S203), and the output signal Δφ2 of the sensor element 11 and the reference element 12 is measured (S204). Next, a phase difference Δφ 1 −Δφ 2 between Δφ 1 and Δφ 2 is calculated (S 205).
 ここで、Δφ1とΔφ2の出力のどちらかが360度から0度に変化すると、360度のずれが生じるので、Δφ1-Δφ2の値を補正する必要がある。SAWセンサの遅延量がΔφ1-Δφ2が-180度から180度の範囲までで使用すると決めていれば(S206)、Δφ1-Δφ2>180度の場合は360度を引き(S221,S222)、Δφ1-Δφ2<180度の場合は360度を足せば(S223)、所望の補正が可能になる。位相差の差分Δφ1-Δφ2を補正した値Δφ12を求めて(S207、S222、S223)、Δφ12が0以上の場合(S208:YES)、遅延器25の遅延量を増加させ(S209)、Δφ12が0より小さい場合は(S208:NO)、遅延器25の遅延量を削減する(S231)。 Here, when one of the outputs of Δφ 1 and Δφ 2 changes from 360 degrees to 0 degrees, a shift of 360 degrees occurs, so it is necessary to correct the value of Δφ 1 −Δφ 2. If the delay amount of the SAW sensor is determined to be used within the range of -180 degrees to -180 degrees (S206), then if 360 degrees is subtracted if -φ1-Δφ2> 180 degrees (S221, S222), Δφ1 If -.DELTA..phi.2 <180.degree., Adding 360.degree. (S223) enables desired correction. A value Δφ12 obtained by correcting the phase difference difference Δφ1-Δφ2 is determined (S207, S222, S223). If Δφ12 is 0 or more (S208: YES), the delay amount of the delay unit 25 is increased (S209), Δφ12 is If smaller than 0 (S208: NO), the delay amount of the delay unit 25 is reduced (S231).
 上記の、遅延器25の遅延量の増減により、Δφ12及び、Δφ1、Δφ2が閾値Pth12、Pth1、Pth2以下の範囲に収まれば(S210:YES)、フィードバックが安定したと判断する。そして、MCU23は、遅延器25の遅延の遅延量つまり遅延の設定値からセンサ素子11の遅延量を計算し、センサ素子11の遅延量からPMの付着量を計算する(S211)。PMの付着量の時間変化から排気ガス中のPM濃度を計算しECU3に出力する。 If .DELTA..phi.12 and .DELTA..phi.1 and .DELTA..phi.2 fall within the range below the threshold values Pth12, Pth1 and Pth2 due to the increase and decrease of the delay amount of the delay unit 25 (S210: YES), it is determined that the feedback is stable. Then, the MCU 23 calculates the delay amount of the sensor element 11 from the delay amount of the delay of the delay device 25, that is, the set value of the delay, and calculates the adhesion amount of PM from the delay amount of the sensor element 11 (S211). The PM concentration in the exhaust gas is calculated from the time change of the adhesion amount of PM, and is output to the ECU 3.
 その後、MCU23は、遅延器25の遅延量が規定値を超えているかを判断する(S212)。判断の結果、遅延量が規定値を超えていなければ(S212:NO)、最初に戻る。一方、遅延量が規定値を超えていれば(S212:YES)、ヒータ40でセンサ素子11を加熱してセンサ素子11の表面に付着しているPMを燃焼させて(S213)、PMの付着していない状態にリフレッシュする。その後、遅延器25の遅延量を0にリセットして(S214)、最初に戻る。 Thereafter, the MCU 23 determines whether the delay amount of the delay unit 25 exceeds a prescribed value (S212). As a result of the determination, if the delay amount does not exceed the specified value (S212: NO), the process returns to the beginning. On the other hand, if the delay amount exceeds the specified value (S212: YES), the sensor element 11 is heated by the heater 40 to burn PM adhering to the surface of the sensor element 11 (S213) Refresh to the state that you are not doing. Thereafter, the delay amount of the delay unit 25 is reset to 0 (S214), and the process returns to the beginning.
 図3A~3Dは、センサ素子11とリファレンス素子12の遅延差を100ns、周波数f1を100MHz、f2を101MHzとした場合の遅延器の遅延量と位相差と位相差の差分の関係を示した波形図である。横軸は時間軸であるが、制御のフィードバック時間に依存する値であり、絶対値は重要でない。図3Aは周波数が100MHzの場合のセンサ素子11とリファレンス素子12の出力信号の位相差Δφ1と101MHzの場合の位相差Δφ2の時間変化を示す。図3BはΔφ1とΔφ2の差分の時間変化を示す。図3CはΔφ1とΔφ2の位相周りを補正した補正値Δφ12を示す。図3Dは遅延器25の遅延量の変化を示す。 3A to 3D are waveforms showing the relationship between the delay amount and the phase difference and the difference between the phase differences when the delay difference between the sensor element 11 and the reference element 12 is 100 ns, the frequency f1 is 100 MHz, and f2 is 101 MHz. FIG. The horizontal axis is a time axis, but it is a value dependent on the feedback time of control, and the absolute value is not important. FIG. 3A shows the time change of the phase difference Δφ 1 of the output signals of the sensor element 11 and the reference element 12 when the frequency is 100 MHz and the phase difference Δφ 2 when the frequency is 101 MHz. FIG. 3B shows the time change of the difference between Δφ1 and Δφ2. FIG. 3C shows a correction value Δφ12 corrected about the phase of Δφ1 and Δφ2. FIG. 3D shows the change of the delay amount of the delay unit 25.
 遅延器の遅延量がセンサ素子11とリファレンス素子12の遅延差100nsと等しくなった時に図3Cの位相差の差分の補正値は0になる。また、遅延量の増加に伴い、図3Aの位相差は360度以上何度も回転しているが、図3Cの位相差の差分の補正値は-180度から180度の間に収まっている。図3Cの位相差の差分が正の場合は遅延器の遅延量を増加、負の場合は遅延器の遅延量を減少するようにフィードバックをかければ、遅延器の遅延量は位相差の差分が0になる点に安定する。また、位相差の差分が0なので、遅延器の遅延量がSAWセンサ素子とSAWリファレンス素子の遅延差に等しい。
このように周波数を変更したときの位相差の差分を計測することで、遅延の測定範囲の拡張ができる。また、遅延器にフィードバック制御をかけてその度に遅延器の遅延量を可変制御してPM付着量を算出するので、感度の悪化を防ぐことができる。
When the delay amount of the delay device becomes equal to the delay difference 100 ns between the sensor element 11 and the reference element 12, the correction value of the phase difference difference in FIG. 3C becomes zero. Moreover, although the phase difference of FIG. 3A rotates many times more than 360 degrees with the increase of delay amount, the correction value of the difference of the phase difference of FIG. 3C is settled between -180 degrees to 180 degrees. . If the difference of the phase difference in FIG. 3C is positive, the delay amount of the delay is increased. If the difference is negative, the delay amount of the delay is equal to the difference of the phase difference. It becomes stable at the point which becomes 0. Further, since the difference in phase difference is zero, the delay amount of the delay unit is equal to the delay difference between the SAW sensor element and the SAW reference element.
By measuring the difference of the phase difference when the frequency is changed in this way, the delay measurement range can be expanded. Moreover, since the feedback control is performed on the delay device to variably control the delay amount of the delay device each time to calculate the PM adhesion amount, it is possible to prevent the deterioration of the sensitivity.
 実施例2に係る位相比較器21の回路構成の一例を図4に示す。
  位相比較器21は主に、コンパレータ43と、コンパレータ44と、XOR(排他的ORゲート)45と、ローパスフィルタ46により構成される。
An example of the circuit configuration of the phase comparator 21 according to the second embodiment is shown in FIG.
The phase comparator 21 mainly includes a comparator 43, a comparator 44, an XOR (exclusive OR gate) 45, and a low pass filter 46.
 位相比較器21の動作を説明する。まず、センサ素子11の出力信号13とリファレンス素子12の出力信号15をコンパレータ43、44でロウレベルからハイレベルまで振幅するデジタル信号に変換する。コンパレータの比較基準信号47は入力信号13及び15の振幅の中心値に設定される。コンパレータ43、44でデジタル信号に変換された信号48と49はXOR45に入力される。XOR45の出力信号50は、XOR45の入力信号48と49の位相のずれに比例した幅のパルス信号を出力する。このパルス信号をローパスフィルタ46でDC電圧に変換すれば、1周期に対するパルス幅の比が、電圧比に換算される。 The operation of the phase comparator 21 will be described. First, the output signal 13 of the sensor element 11 and the output signal 15 of the reference element 12 are converted by the comparators 43 and 44 into digital signals that oscillate from low level to high level. The comparison reference signal 47 of the comparator is set to the center value of the amplitudes of the input signals 13 and 15. The signals 48 and 49 converted to digital signals by the comparators 43 and 44 are input to the XOR 45. The output signal 50 of the XOR 45 outputs a pulse signal having a width proportional to the phase shift of the input signals 48 and 49 of the XOR 45. When this pulse signal is converted to a DC voltage by the low pass filter 46, the ratio of the pulse width to one cycle is converted to a voltage ratio.
 位相差とローパスフィルタの出力信号27の出力電圧の関係を図5に示す。図5のグラフでは、ロウレベルが0V,ハイレベルが5Vの場合を示している。位相のずれが0度の時、XOR45の入力信号48と49の組み合わせは常にロウとロウ、もしくはハイとハイになり、XOR45の出力は常にロウになる。位相差が180度の時は、入力信号48と49の組み合わせは常にハイとロウ、もしくはロウとハイになり、XOR45の出力はハイで最大となり、位相差が360度になると0度と同じくロウレベルとなる。図5のグラフにおいて、0度と、180度と、360度の付近で位相差に対する電圧変化の傾きが減少していることが分かる。 The relationship between the phase difference and the output voltage of the output signal 27 of the low pass filter is shown in FIG. The graph of FIG. 5 shows the case where the low level is 0V and the high level is 5V. When the phase shift is 0 degrees, the combination of the XOR 45 input signals 48 and 49 is always low and low or high and high, and the output of XOR 45 is always low. When the phase difference is 180 degrees, the combination of input signals 48 and 49 is always high and low, or low and high, the output of XOR 45 is maximum at high, and when the phase difference is 360 degrees, it is also low level It becomes. In the graph of FIG. 5, it can be seen that the slope of the voltage change with respect to the phase difference decreases near 0 degrees, 180 degrees, and 360 degrees.
 これは、XOR45の出力信号がハイからロウもしくはロウからハイに遷移する遷移時間よりパルス幅が短くなり、パルスがロウレベルからハイレベルに完全に達さなくなること、XOR回路45の応答時間の影響が見えることによる。このような特性を持つ位相比較器21で位相差が常に0度になる制御をかけると、位相器の感度が悪い箇所を常に使用することになる。一方、位相比較器の感度の悪い箇所の使用を避けるのであれば、収束点の位相差を0度以外に設定すればよい。図5のグラフの特性の位相比較器21であれば、0度や180度360度を避けて、位相差が90度で一定になるように制御をかければよい。 This is because the pulse width is shorter than the transition time when the output signal of the XOR 45 transitions from high to low or low to high, and the pulse does not reach the high level completely from the low level, and the response time of the XOR circuit 45 By seeing. If control is performed such that the phase difference is always 0 degree in the phase comparator 21 having such characteristics, the position where the sensitivity of the phase shifter is bad is always used. On the other hand, in order to avoid use of a portion with poor sensitivity of the phase comparator, the phase difference of the convergence point may be set to other than 0 degree. If it is the phase comparator 21 of the characteristic of the graph of FIG. 5, control should be performed so that the phase difference becomes constant at 90 degrees while avoiding 0 degrees and 180 degrees 360 degrees.
 図6は、MCU23による処理動作を示す。
  MCU23は、まず、発振器26の周波数をf1(Hz)に設定し(S601)、センサ素子11とリファレンス素子12の位相差Δφ1を測定する(S602)。次に、Δφ1の90度に対する差分(即ち(Δφ1-90度)の絶対値)が誤差Pth1'以下に近づくまで遅延器25の遅延量を増加する(S603,S621)。
FIG. 6 shows the processing operation of the MCU 23.
The MCU 23 first sets the frequency of the oscillator 26 to f1 (Hz) (S601), and measures the phase difference Δφ1 between the sensor element 11 and the reference element 12 (S602). Next, the delay amount of the delay unit 25 is increased until the difference (that is, the absolute value of (.DELTA..phi.1-90.degree.) With respect to 90.degree. Of .DELTA..phi.1 approaches the error Pth1 'or less (S603, S621).
 そして、MCU23は、Δφ1の90度に対する差分が誤差Pth1'以下になったと判断したら(S603:YES)、発振器26の周波数をf2に設定して(S604)、センサ素子11とリファレンス素子12の位相差Δφ2を計測する(S605)。そして、Δφ1とΔφ2の差分Δφ12を計算する(S606)。 When the MCU 23 determines that the difference with respect to 90 degrees of .DELTA..phi.1 becomes equal to or less than the error Pth1 '(S603: YES), the frequency of the oscillator 26 is set to f2 (S604), and the sensor element 11 and the reference element 12 are positioned. The phase difference Δφ2 is measured (S605). Then, the difference Δφ12 between Δφ1 and Δφ2 is calculated (S606).
 実施例2では、Δφ12が±90度の範囲までしか変化しない遅延量を想定しており、Δφ1を90度に調整してからΔφ2を測定しているので、Δφ1とΔφ2の出力のどちらかが360度から0度に変化すること(位相回り)は起きないので、実施例1で行ったΔφ12に360度を足したり引いたりする補正は行っていない。そこで、Δφ12の絶対値が規定値Pth12’より小さいかを判断する(S607)。その判断の結果、Δφ12の絶対値が規定値Pth12’より小さい場合は、遅延器25の遅延量から周波数f1の位相90度に相当する遅延量を引いた遅延量がセンサ素子11とリファレンス素子12の遅延差となり、この遅延差からPMの付着量を計算する(S608)。 In the second embodiment, a delay amount in which Δφ12 only changes to a range of ± 90 degrees is assumed, and Δφ1 is adjusted to 90 degrees and then Δφ2 is measured. Therefore, one of the outputs of Δφ1 and Δφ2 is Since the change from 360 degrees to 0 degrees (around phase) does not occur, the correction of adding or subtracting 360 degrees to Δφ 12 performed in the first embodiment is not performed. Therefore, it is determined whether the absolute value of Δφ12 is smaller than the specified value Pth12 '(S607). As a result of the judgment, when the absolute value of Δφ12 is smaller than the prescribed value Pth12 ′, the delay amount obtained by subtracting the delay amount corresponding to the phase 90 degrees of the frequency f1 from the delay amount of the delay device 25 The amount of deposition of PM is calculated from the difference in delay (S608).
 一方、Δφ12が規定値Pth12’より大きい場合は(S607:NO)、Δφ12が正の場合(S622:NO)は遅延器25の遅延量を削減し(S624)、負の場合(S622:YES)は増加させる(S623)。規定値Pth12’はセンサ素子11とリファレンス素子12の遅延差が周波数f1の一周期分以下となる値である。その後S602に戻り、周波数を変更した位相差の差分Δφ12が規定値Pth12’より小さくなるまで遅延器の調整を繰り返す。そして、Δφ12の絶対値が規定値Pth12’より小さくなると(S607:YES)、遅延器25の遅延量から周波数f1の位相差90度分の遅延量を引いた遅延量がセンサ素子11とリファレンス素子12の遅延差となるので、この遅延差からPMの付着量を計算する(S608)。Δφ12の絶対値がPth12’より大きい時の遅延の調整量dp12とdm12は、f1の周波数で90度の位相差に調整する時に一周期ずれた点、つまり90度+360度もしくは90度-360度に収束可能な遅延量である。 On the other hand, if Δφ12 is larger than the prescribed value Pth12 ′ (S607: NO), if Δφ12 is positive (S622: NO), the delay amount of the delay unit 25 is reduced (S624), and if negative (S622: YES) Is increased (S623). The specified value Pth12 'is a value such that the delay difference between the sensor element 11 and the reference element 12 is equal to or less than one cycle of the frequency f1. Thereafter, the process returns to S602, and adjustment of the delay is repeated until the difference Δφ12 of the phase difference whose frequency is changed becomes smaller than the specified value Pth12 '. Then, when the absolute value of Δφ12 becomes smaller than the prescribed value Pth12 '(S607: YES), the delay amount obtained by subtracting the delay amount for the phase difference 90 degrees of the frequency f1 from the delay amount of the delay unit 25 becomes the sensor element 11 and the reference element Since the delay difference of 12 is obtained, the adhesion amount of PM is calculated from this delay difference (S 608). Delay adjustment amounts dp12 and dm12 when the absolute value of Δφ12 is larger than Pth12 ′ are points shifted by one cycle when adjusting to a phase difference of 90 degrees at the frequency of f1, that is, 90 degrees + 360 degrees or 90 degrees-360 degrees Is a delay amount that can be converged to
 その後、MCU23は、遅延器25の遅延量が規定値を超えているかを判断する(S609)。判断の結果、遅延量が規定値を超えていなければ(S609:NO)、最初に戻る。一方、遅延量が規定値を超えていれば(S609:YES)、ヒータ40でセンサ素子11を加熱してセンサ素子11の表面に付着しているPMを燃焼させて(S610)、PMの付着していない状態にリフレッシュする。その後、遅延器25の遅延量を0にリセットして(S214)、最初に戻る。 Thereafter, the MCU 23 determines whether the delay amount of the delay unit 25 exceeds a prescribed value (S609). As a result of the determination, if the delay amount does not exceed the specified value (S609: NO), the process returns to the beginning. On the other hand, if the delay amount exceeds the specified value (S 609: YES), the sensor element 11 is heated by the heater 40 to burn PM adhering to the surface of the sensor element 11 (S 610). Refresh to the state that you are not doing. Thereafter, the delay amount of the delay unit 25 is reset to 0 (S214), and the process returns to the beginning.
 実施例2によれば、位相比較器21が位相差による感度差を持っている場合でも、感度の良い位相差になるようにフィードバックをかけて精度良くSAWセンサの遅延量の変化を測定することができる。なお、実施例2では位相比較器21としてXOR45を使用した位相比較器を例として挙げたが、XORに限らず、方式の異なる他の位相比較器を用いても実現可能である。 According to the second embodiment, even when the phase comparator 21 has the sensitivity difference due to the phase difference, the change of the delay amount of the SAW sensor is accurately measured by applying feedback so as to obtain the phase difference with good sensitivity. Can. In the second embodiment, a phase comparator using XOR 45 is taken as an example of the phase comparator 21. However, the present invention is not limited to XOR, and can be realized using other phase comparators of different systems.
 もし、一定値として調整する位相差をより180度に近づければ、Δφ12の測定範囲を±180度近くの範囲まで広げて、かつΔφ12の位相回りの補正は行わないことも可能である。 If the phase difference to be adjusted as a constant value is made closer to 180 degrees, it is possible to expand the measurement range of Δφ12 to a range close to ± 180 degrees and not perform correction about the phase of Δφ12.
 図7に、実施例3に係る弾性表面波センサ計測装置のブロック図を示す。
  実施例3は実施例1に対して遅延リファレンス回路51が追加されている。遅延器25は例えばインバータなどの遅延素子を複数繋げて構成されるが、遅延リファレンス回路51は遅延器25を構成する遅延素子と同じ遅延素子で構成されたリングオシレータが用いられる。遅延リファレンス回路51は発振信号である信号55を出力して、その出力信号55はMCU23に送られる。MCU23は、遅延器25の遅延量からSAWセンサの伝播遅延量を計算するときに、遅延リファレンス回路51の遅延量で補正する。すなわち、MCU23は、遅延リファレンス回路51の一定時間内の発振数をカウントすることで、遅延リファレンス回路51の遅延量の変化を計算し、その遅延量の変化から遅延器25の温度や製造ばらつきによる遅延量の変化を補正することができる。これにより、温度や製造ばらつきの影響を低減できる。また、遅延リファレンス回路51は遅延器25の温度や製造ばらつきに対する遅延変化の比率が同じであれば良いので、遅延リファレンス回路51を構成する遅延素子の数は、遅延器25より減らすことができ、遅延リファレンス回路51の面積オーバヘッドを抑制できる。
FIG. 7 shows a block diagram of the surface acoustic wave sensor measurement device according to the third embodiment.
The third embodiment has a delay reference circuit 51 added to the first embodiment. The delay unit 25 is formed by connecting a plurality of delay elements such as inverters, for example, and the delay reference circuit 51 uses a ring oscillator formed of the same delay elements as the delay elements constituting the delay unit 25. The delay reference circuit 51 outputs a signal 55 which is an oscillation signal, and the output signal 55 is sent to the MCU 23. The MCU 23 corrects the amount of delay of the delay reference circuit 51 when calculating the amount of propagation delay of the SAW sensor from the amount of delay of the delay device 25. That is, the MCU 23 calculates the change in the delay amount of the delay reference circuit 51 by counting the number of oscillations within the fixed time of the delay reference circuit 51, and based on the change in the delay amount, It is possible to correct the change in delay amount. This can reduce the effects of temperature and manufacturing variations. Further, the delay reference circuit 51 only needs to have the same delay change ratio with respect to the temperature of the delay device 25 and manufacturing variations, so the number of delay elements constituting the delay reference circuit 51 can be reduced compared to the delay device 25. The area overhead of the delay reference circuit 51 can be suppressed.
 図8に、実施例4に係る弾性表面波センサ計測装置のブロック図を示す。
  実施例4は実施例3に対して電圧生成回路52が追加されている。また、実施例4では、遅延器25は電圧生成回路52の出力電圧信号54によって遅延量が変化する遅延素子を使用している。53はMCU23から電圧生成回路52へ与えられる電圧制御信号である。遅延器の遅延量は電圧制御により変更することが可能である。さらに、遅延素子の段数の切り替えにより遅延器の遅延量の変更が可能である。前者と後者を用いることで、遅延素子の段数の切り替えにより広範囲に遅延量を切り替えつつ、電圧制御によって遅延量を連続的に変化させることができるため微調整も可能になる。また、遅延量の最大値も、より少ない遅延素子の段数で増やすことができる。
FIG. 8 is a block diagram of a surface acoustic wave sensor measurement device according to a fourth embodiment.
The fourth embodiment has a voltage generation circuit 52 added to the third embodiment. Further, in the fourth embodiment, the delay unit 25 uses a delay element whose delay amount is changed by the output voltage signal 54 of the voltage generation circuit 52. Reference numeral 53 denotes a voltage control signal supplied from the MCU 23 to the voltage generation circuit 52. The delay amount of the delay can be changed by voltage control. Furthermore, it is possible to change the delay amount of the delay by switching the number of stages of the delay element. By using the former and the latter, since the delay amount can be continuously changed by voltage control while the delay amount is switched over a wide range by switching the number of stages of delay elements, fine adjustment is also possible. In addition, the maximum value of the delay amount can also be increased by the smaller number of delay element stages.
 実施例5は、MCU23が周波数の変更による遅延量の演算を、起動時とヒータ40によってセンサに付着したPMを燃焼した直後にのみ行う。図9に示すように、実施例5は、実施例1に対して、パワーオンリセット回路56と、位相器の位相が回った回数をカウントするためのカウンタ57が追加される。パワーオンリセット回路56は、センサ制御回路2の電源投入時に、パワーオンリセット信号58を生成する。カウンタ57は、位相比較器21の位相差が何度回ったかを記憶する記憶手段として機能する。信号60はMCU23がカウンタ57のカウント数を設定するための信号、信号59はカウンタ59がカウンタ57のカウンタ数を読み出すための信号である。 In the fifth embodiment, the MCU 23 calculates the delay amount due to the change of the frequency only at the time of startup and immediately after the PM attached to the sensor by the heater 40 is burned. As shown in FIG. 9, in the fifth embodiment, a power on reset circuit 56 and a counter 57 for counting the number of times the phase of the phase shifter has been turned are added to the first embodiment. The power on reset circuit 56 generates a power on reset signal 58 when the sensor control circuit 2 is powered on. The counter 57 functions as storage means for storing how many times the phase difference of the phase comparator 21 has been turned. A signal 60 is a signal for the MCU 23 to set the count number of the counter 57, and a signal 59 is a signal for the counter 59 to read the counter number of the counter 57.
 次にMCU23による処理動作について説明する。
  MCU23は、電源投入時にパワーオンリセット回路56からパワーオンリセット信号58を受け取る。MCU23は、パワーオンリセット信号58を受け取った時、もしくはヒータ40によりセンサ素子11に付着したPMを燃焼させた後に(このときを状態1という)、初期動作として発振器26の周波数をf1とf2に変更し、その変更した場合の位相差の差分を求める。そして、MCU23は、その位相差の差分からセンサ素子11とリファレンス素子12の遅延差を求め、その遅延差をf1の周期の何倍かを計算する。計算された倍数はカウント数としてカウンタ57に設定される。例えば、遅延差が、f1の周期に換算して770度であれば、770度=2×360度+50度なので、カウント数は“2”になる。
Next, the processing operation of the MCU 23 will be described.
The MCU 23 receives the power on reset signal 58 from the power on reset circuit 56 when the power is turned on. When the MCU 23 receives the power-on reset signal 58 or after burning PM attached to the sensor element 11 by the heater 40 (this state is referred to as state 1), the frequencies of the oscillator 26 are set to f1 and f2 as an initial operation. Change and find the difference of the phase difference in the case of the change. And MCU23 calculates | requires the delay difference of the sensor element 11 and the reference element 12 from the difference of the phase difference, and calculates the delay difference the multiple of the period of f1. The calculated multiple is set in the counter 57 as the count number. For example, if the delay difference is 770 degrees converted to the period of f1, since 770 degrees = 2 × 360 degrees + 50 degrees, the count number is “2”.
 初期動作の完了後(このときを状態2という)、MCU23は、周波数をf1に固定(一定値に)して、センサ素子11とリファレンス素子12の位相差を検出する。位相差が、位相比較器21の感度の悪い箇所であれば遅延器25でf1の周期の90度分だけ遅延をずらし、位相比較器21の感度のよい範囲を使用するようにする。位相比較器21の位相が360度回るたびに、カウンタ57のカウント数に反映させていく。MCU23は、カウンタ57のカウント数と位相比較器21の位相差を基にセンサ素子11とリファレンス素子12の遅延差の絶対値を求めて、センサ素子11のPM付着量を計算する。MCU23はセンサ素子11のPM付着量の時間変化からPM濃度を求めて、最終的にECU3に出力することができる。 After the completion of the initial operation (this time is referred to as state 2), the MCU 23 fixes the frequency to f1 (makes a constant value) and detects the phase difference between the sensor element 11 and the reference element 12. If the phase difference is a position where the sensitivity of the phase comparator 21 is poor, the delay 25 shifts the delay by 90 degrees of the period of f1 so that the range of sensitivity of the phase comparator 21 is used. Every time the phase of the phase comparator 21 rotates 360 degrees, the count number of the counter 57 is reflected. The MCU 23 calculates the PM deposition amount of the sensor element 11 by obtaining the absolute value of the delay difference between the sensor element 11 and the reference element 12 based on the count number of the counter 57 and the phase difference of the phase comparator 21. The MCU 23 can obtain the PM concentration from the time change of the PM adhesion amount of the sensor element 11 and can finally output it to the ECU 3.
 なお、図9に示す例では、ハードウェア回路としてパワーオンリセット回路56とカウンタ57が追加されているが、これらの機能はMCU23によるプログラムの実行による機能として実現することも可能である。 Although the power on reset circuit 56 and the counter 57 are added as hardware circuits in the example shown in FIG. 9, these functions can also be realized as functions by execution of a program by the MCU 23.
 実施例5によれば、通常動作時の周波数変更の制御を省くことで、応答性の向上及びMCUの制御負荷の低減が可能になる。MCUの制御負荷の低減は低電力化になる。また、MCUをカスタムICで実装する場合には小面積化、ディスクリートのMCUを使用する場合はより低性能な低価格の製品を選択することができ、低コスト化になる。 According to the fifth embodiment, it is possible to improve the response and reduce the control load of the MCU by omitting the control of the frequency change in the normal operation. The reduction in control load of the MCU results in lower power. In addition, when mounting an MCU with a custom IC, it is possible to reduce the area, and when using discrete MCUs, it is possible to select a low-performance low-cost product, resulting in cost reduction.
 図10に示すように、実施例6は、実施例1に対して電源を遮断してもデータが消えない不揮発性メモリ61が記憶手段として追加される。また、発振器26の周波数を変更するための制御信号31(実施例1)が削除されている。不揮発性メモリ61は、使用開始時もしくはヒータ40によるセンサ素子11に付着したPMの燃焼後からの位相比較器21の位相が360度以上回った回数を記憶する。MCU23は、位相比較器21が検出する位相差と不揮発メモリ61に記憶された値からセンサ素子11とリファレンス素子12の遅延差の絶対値を計算する。これにより、周波数変更の制御が不要になり、センサの応答性の高速化及び、回路の簡単化による低コスト化が可能になる。また、ヒータ40によるセンサ素子11に付着したPMを燃焼した直後の位相差を記録しておき、その後の遅延差を求める際にオフセットとして差し引くことで、ヒータ40によるPMの燃焼が不完全だった場合やPM燃焼後の付着物による誤差の増加を防止できる。 As shown in FIG. 10, in the sixth embodiment, the nonvolatile memory 61 in which the data is not erased even if the power is shut off is added to the first embodiment as a storage unit. Further, the control signal 31 (Example 1) for changing the frequency of the oscillator 26 is deleted. The non-volatile memory 61 stores the number of times the phase of the phase comparator 21 rotates 360 degrees or more at the start of use or after the combustion of PM attached to the sensor element 11 by the heater 40. The MCU 23 calculates the absolute value of the delay difference between the sensor element 11 and the reference element 12 from the phase difference detected by the phase comparator 21 and the value stored in the non-volatile memory 61. This eliminates the need for control of frequency change, and enables speeding up of the response of the sensor and cost reduction by simplification of the circuit. Moreover, the phase difference immediately after burning PM attached to the sensor element 11 by the heater 40 is recorded, and the combustion of PM by the heater 40 is incomplete by subtracting it as an offset when obtaining the delay difference thereafter. It is possible to prevent an increase in errors due to deposits or deposits after PM combustion.
 以上のように、本発明の幾つかの好ましい実施例によれば、SAWセンサの遅延検出範囲の拡張を図りつつ高感度にPM計測することが可能となる。これにより、センサ計測装置を小規模な回路、低コストで実現することができる。 As described above, according to some preferred embodiments of the present invention, it is possible to perform PM measurement with high sensitivity while extending the delay detection range of the SAW sensor. As a result, the sensor measurement device can be realized with a small scale circuit and at low cost.
1:SAWセンサ
2:センサ制御回路
3:ECU
11:SAWセンサ素子
12:SAWリファレンス素子
21:位相比較器
22:ADC
23:MCU
24:入出力回路
25:遅延器
26:発振器
39:電圧生成回路
40:ヒータ
41:制御信号
42:印加電圧
1: SAW sensor 2: sensor control circuit 3: ECU
11: SAW sensor element 12: SAW reference element 21: phase comparator 22: ADC
23: MCU
24: input / output circuit 25: delay device 26: oscillator 39: voltage generation circuit 40: heater 41: control signal 42: applied voltage

Claims (12)

  1.  検出対象の物理量の変化によって信号の伝播遅延量が変化するSAWセンサと、
     基準信号に対する前記SAWセンサの出力信号の位相差を検出する位相比較器と、
     前記SAWセンサの入力信号及び前記基準信号を生成する、発振周波数が可変な発振器と、
     前記SAWセンサの入力信号と前記基準信号間の遅延差を調整可能な遅延器と、
    前記発振器の発振周波数を制御し、かつ前記SAWセンサの出力信号と前記基準信号の位相差が一定になるように前記遅延器の遅延量を制御して、前記遅延器の遅延量から前記SAWセンサの伝播遅延量を求め、検出対象の物理量を算出する制御部と、
     を有することを特徴とするセンサ計測装置。
    A SAW sensor in which the amount of propagation delay of a signal is changed due to a change in physical quantity to be detected;
    A phase comparator for detecting a phase difference of an output signal of the SAW sensor with respect to a reference signal;
    An oscillator having a variable oscillation frequency that generates an input signal of the SAW sensor and the reference signal;
    A delay capable of adjusting a delay difference between an input signal of the SAW sensor and the reference signal;
    It controls the oscillation frequency of the oscillator and controls the delay amount of the delay unit so that the phase difference between the output signal of the SAW sensor and the reference signal becomes constant, and the SAW sensor can be determined from the delay amount of the delay unit. A control unit that calculates the amount of propagation delay of the
    A sensor measurement device characterized by having.
  2.  前記SAWセンサは、検出対象の物理量の変化によって信号の伝播遅延量が変化するSAWセンサ素子と、前記SAWセンサ素子と同じ特性を有し、検出対象の物理量を検知しないSAWリファレンス素子を有し、
     前記遅延器の出力は前記SAWリファレンス素子に与えられ、
     前記SAWリファレンス素子の出力は前記位相記比較器に与えられて、前記位相比較器において前記SAWセンサ素子の出力信号との位相差を検出する前記基準信号として使用される、請求項1のセンサ計測装置。
    The SAW sensor has a SAW sensor element whose propagation delay amount of a signal changes according to a change in a physical quantity to be detected, and a SAW reference element having the same characteristics as the SAW sensor element and not detecting a physical quantity to be detected.
    The output of the delay is provided to the SAW reference element,
    The sensor measurement according to claim 1, wherein an output of said SAW reference element is given to said phase note comparator and is used as said reference signal for detecting a phase difference from an output signal of said SAW sensor element in said phase comparator. apparatus.
  3.  前記SAWセンサは、気体中に含まれる固体微粒子(PM)がセンシング部に付着することで信号の伝播遅延量が変化するSAWセンサ素子を有する、請求項1のセンサ計測装置。 The sensor measurement device according to claim 1, wherein the SAW sensor has a SAW sensor element in which an amount of propagation delay of a signal is changed when solid fine particles (PM) contained in gas adhere to a sensing unit.
  4.  前記SAWセンサ素子のセンシング部に付着するPMを燃焼させるためのヒータと、
     前記ヒータの印加電圧を生成する電圧生成回路を更に有し、
     前記制御部は、前記SAWセンサ素子の信号の遅延量を基にPMの付着量が規定値に達した場合、前記ヒータを加熱して前記SAWセンサ素子のセンシング部に付着したPMを燃焼するように前記電圧生成回路を制御する、請求項3のセンサ計測装置。
    A heater for burning PM attached to the sensing portion of the SAW sensor element;
    It further comprises a voltage generation circuit that generates an applied voltage to the heater,
    The control unit heats the heater to burn the PM attached to the sensing unit of the SAW sensor element when the adhesion amount of PM reaches a specified value based on the delay amount of the signal of the SAW sensor element. The sensor measurement device according to claim 3, wherein the voltage generation circuit is controlled.
  5.  前記制御部は、前記位相差を0度として、前記一定となるように制御する、請求項1のセンサ計測装置。 The sensor measurement device according to claim 1, wherein the control unit performs control such that the phase difference is 0 degree so as to be constant.
  6.  前記制御部は、前記位相比較器の感度が位相差によって一定でない場合に、前記位相比較器の感度が良い位相差で一定となるように制御する、請求項1のセンサ計測装置。 The sensor measurement device according to claim 1, wherein the control unit controls the sensitivity of the phase comparator to be constant at a good phase difference when the sensitivity of the phase comparator is not constant due to the phase difference.
  7.  前記遅延器と遅延量の絶対値が異なり特性が同じである遅延リファレンス回路を有し、
     前記制御部は、前記遅延器の遅延量から前記SAWセンサの伝播遅延量を計算するときに、前記遅延リファレンス回路の遅延量を用いて補正する、請求項1のセンサ計測装置。
    A delay reference circuit having different delay units and absolute values of delay amounts and having the same characteristics;
    The sensor measurement device according to claim 1, wherein the control unit corrects the amount of delay of the delay reference circuit when calculating the amount of propagation delay of the SAW sensor from the amount of delay of the delay device.
  8.  前記遅延器の遅延量は、遅延段の段数の変更及び印加電圧によって変更可能であり、該遅延量を連続的に変化させて微調整を可能とする、請求項7のセンサ計測装置。 The sensor measurement device according to claim 7, wherein the delay amount of the delay unit can be changed by changing the number of delay stages and the applied voltage, and the delay amount can be continuously changed to enable fine adjustment.
  9.  前記遅延リファレンス回路はリングオシレータであり、
     前記制御部は、前記リングオシレータの一定時間内のカウント数をカウントすることで、前記遅延器の遅延量の絶対値を把握し、前記SAWセンサの伝播遅延量の計算に用いる、請求項7のセンサ計測装置。
    The delay reference circuit is a ring oscillator,
    8. The control unit according to claim 7, wherein the control unit counts an absolute value of the delay amount of the delay unit by counting the number of counts within a predetermined time of the ring oscillator, and uses it for calculating the propagation delay amount of the SAW sensor. Sensor measuring device.
  10.  前記SAWセンサに付着したPMを燃焼させるヒータと、
     センサ計測装置の電源が投入された時に制御信号を生成するパワーオンリセット回路と、
     前記位相比較器の位相差が回った回数を記憶する記憶手段と、を有し、
     前記制御部は、
     電源投入時もしくは前記ヒータによる前記SAWセンサに付着したPMの燃焼後に(状態1)、前記発振器の周波数を変更し、周波数を変更したときの位相差の差分から前記SAWセンサの信号伝播遅延を初期遅延として計算し、前記状態1以外の時(状態2)に周波数を一定にして、前記位相比較器を用いて前記SAWセンサと前記基準信号の位相差を計測し、位相差が360度回った回数を前記記憶手段に記憶しておき、前記初期遅延と前記位相差が360度回った回数と現在の位相差から、前記SAWセンサの信号伝播遅延を計算する、
     ことを特徴とする請求項1のセンサ計測装置。
    A heater for burning PM attached to the SAW sensor;
    A power on reset circuit that generates a control signal when the sensor measurement device is powered on;
    Storage means for storing the number of times the phase difference of the phase comparator has been turned;
    The control unit
    At power on or after combustion of PM attached to the SAW sensor by the heater (state 1), the frequency of the oscillator is changed, and the signal propagation delay of the SAW sensor is initialized from the difference in phase difference when the frequency is changed. Calculated as a delay, keeping the frequency constant at other than the state 1 (state 2), the phase difference between the SAW sensor and the reference signal was measured using the phase comparator, and the phase difference was 360 degrees. The number of times is stored in the storage means, and the signal propagation delay of the SAW sensor is calculated from the initial delay, the number of times the phase difference has been 360 degrees, and the current phase difference.
    The sensor measurement device according to claim 1, characterized in that:
  11.  前記SAWセンサに付着したPMを燃焼させるヒータと、
     前記位相比較器の位相差が回った回数を記憶する記憶手段と、を有し、
     前記ヒータによる前記SAWセンサに付着したPMの燃焼後の前記SAWセンサの位相差を前記記憶手段に初期値として記憶しておき、および位相差が360度回った回数を前記記憶手段に記憶しておき、
     前記制御部は、現在の位相差と、前記記憶手段に記憶された前記初期値および位相差が360度回った回数を基に、前記SAWセンサの信号伝播遅延を計算し、
     前記記憶手段は電源が供給されなくても記憶を失わない記憶手段である、
     ことを特徴とする請求項1のセンサ計測装置。
    A heater for burning PM attached to the SAW sensor;
    Storage means for storing the number of times the phase difference of the phase comparator has been turned;
    The phase difference of the SAW sensor after combustion of PM attached to the SAW sensor by the heater is stored in the storage means as an initial value, and the number of times the phase difference is rotated 360 degrees is stored in the storage means Remember,
    The control unit calculates the signal propagation delay of the SAW sensor based on the current phase difference and the initial value stored in the storage means and the number of times the phase difference has been rotated 360 degrees;
    The storage means is a storage means that does not lose memory even if power is not supplied.
    The sensor measurement device according to claim 1, characterized in that:
  12.  検出対象の物理量の変化によって信号の伝播遅延量が変化するSAWセンサと、
     基準信号に対する前記SAWセンサの出力信号の位相差を検出する位相比較器と、
     前記SAWセンサの入力信号及び前記基準信号を生成する、発振周波数が可変な発振器と、
     前記SAWセンサの入力信号と前記基準信号間の遅延差を調整可能な遅延器と、
    該SAWセンサの入力信号の周波数の変更の前後での位相差が所望の値になるように遅延器の遅延量にフィードバック制御を行う制御部と、
     を有することを特徴とするセンサ計測装置。
    A SAW sensor in which the amount of propagation delay of a signal is changed due to a change in physical quantity to be detected;
    A phase comparator for detecting a phase difference of an output signal of the SAW sensor with respect to a reference signal;
    An oscillator having a variable oscillation frequency that generates an input signal of the SAW sensor and the reference signal;
    A delay capable of adjusting a delay difference between an input signal of the SAW sensor and the reference signal;
    A control unit that performs feedback control on the delay amount of the delay device such that the phase difference before and after the change of the frequency of the input signal of the SAW sensor becomes a desired value;
    A sensor measurement device characterized by having.
PCT/JP2018/026578 2017-11-15 2018-07-13 Sensor measurement device WO2019097761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219583 2017-11-15
JP2017219583A JP2019090691A (en) 2017-11-15 2017-11-15 Sensor measuring device

Publications (1)

Publication Number Publication Date
WO2019097761A1 true WO2019097761A1 (en) 2019-05-23

Family

ID=66540103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026578 WO2019097761A1 (en) 2017-11-15 2018-07-13 Sensor measurement device

Country Status (2)

Country Link
JP (1) JP2019090691A (en)
WO (1) WO2019097761A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024007815A (en) * 2022-07-06 2024-01-19 スタンレー電気株式会社 Mirror drive device, light source device, optical scanner, and correction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140838A (en) * 1989-10-26 1991-06-14 Brother Ind Ltd Gas sensor
JPH09153754A (en) * 1995-09-27 1997-06-10 Canon Inc Saw(surface accoustic wave) converter, saw convolver receiver and communication system using the converter
JP2007517228A (en) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Estimation of propagation velocity through surface acoustic wave sensor
JP2011232231A (en) * 2010-04-28 2011-11-17 Japan Radio Co Ltd Surface acoustic wave sensor device
JP2012021946A (en) * 2010-07-16 2012-02-02 Japan Radio Co Ltd Surface acoustic wave sensor
JP2014020841A (en) * 2012-07-13 2014-02-03 Denso Corp Surface acoustic wave sensor
JP2016038241A (en) * 2014-08-06 2016-03-22 株式会社デンソー Sensing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140838A (en) * 1989-10-26 1991-06-14 Brother Ind Ltd Gas sensor
JPH09153754A (en) * 1995-09-27 1997-06-10 Canon Inc Saw(surface accoustic wave) converter, saw convolver receiver and communication system using the converter
JP2007517228A (en) * 2003-12-30 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー Estimation of propagation velocity through surface acoustic wave sensor
JP2011232231A (en) * 2010-04-28 2011-11-17 Japan Radio Co Ltd Surface acoustic wave sensor device
JP2012021946A (en) * 2010-07-16 2012-02-02 Japan Radio Co Ltd Surface acoustic wave sensor
JP2014020841A (en) * 2012-07-13 2014-02-03 Denso Corp Surface acoustic wave sensor
JP2016038241A (en) * 2014-08-06 2016-03-22 株式会社デンソー Sensing system

Also Published As

Publication number Publication date
JP2019090691A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US9435647B2 (en) Angular velocity sensor
US20160241248A1 (en) Single insertion trimming of highly accurate reference oscillators
US8456434B2 (en) Touch sensor and operating method thereof
JP6381656B2 (en) Signal generation circuit
US8604809B2 (en) Current sensor capacity measuring system
US8729978B2 (en) Quartz-crystal controlled oscillator
US10075604B2 (en) Rotation-angle detection device and method, and image processing apparatus
JPH03205921A (en) Digitizer circuit
US11181373B2 (en) Vibration type gyroscope
JP2006186998A (en) Method and apparatus for restoration of timing
WO2019097761A1 (en) Sensor measurement device
US10141887B2 (en) Oscillator for detecting temperature of atmosphere
US8537955B1 (en) System and method for compensating for loop filter delay
JP5027265B2 (en) PLL device
US8773293B2 (en) Measurement signal correction apparatus and method for correcting a measurement signal
US11528019B2 (en) Frequency generator and method of calibrating frequency thereof
JP3883411B2 (en) Oscillator circuit
US9270283B2 (en) Frequency generation device
RU2691291C1 (en) Method of measuring resonant frequency
JP2001255948A (en) Adjustment device for comparator reference voltage
JPH1144761A (en) Optical distance measuring device
JP5320087B2 (en) Physical quantity detection device, physical quantity detection system, and zero point voltage adjustment method for physical quantity detection device
JP2005061921A (en) Signal voltage-time conversion circuit and sensor device using the same
RU2307329C2 (en) Method of compensating multiplicative temperature error of pickup with vibration member
JP2009282047A (en) Phase difference detection circuit and inclination angle measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877840

Country of ref document: EP

Kind code of ref document: A1