JP2004069661A - Chemical sensor - Google Patents

Chemical sensor Download PDF

Info

Publication number
JP2004069661A
JP2004069661A JP2002233310A JP2002233310A JP2004069661A JP 2004069661 A JP2004069661 A JP 2004069661A JP 2002233310 A JP2002233310 A JP 2002233310A JP 2002233310 A JP2002233310 A JP 2002233310A JP 2004069661 A JP2004069661 A JP 2004069661A
Authority
JP
Japan
Prior art keywords
sensitive body
chemical sensor
detection
electrodes
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233310A
Other languages
Japanese (ja)
Other versions
JP3884680B2 (en
Inventor
Shiro Yamauchi
山内 四郎
Osamu Takai
高井 治
Hiroyuki Sugimura
杉村 博之
Unei Go
呉 雲影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002233310A priority Critical patent/JP3884680B2/en
Publication of JP2004069661A publication Critical patent/JP2004069661A/en
Application granted granted Critical
Publication of JP3884680B2 publication Critical patent/JP3884680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase a deposit amount of objective gas onto a sensing element. <P>SOLUTION: In this chemical sensor, pairs of reference electrodes 8 and detecting electrodes 9 are formed respectively on a face of a quartz oscillator 7, and the porous sensing element 10 of a thin film is formed between the detecting electrodes 9 on the face of the quartz oscillator 7. Detection is allowed in a micro range of a several ppm level based on a proportional relation between a toluene gas concentration and a frequency variation fd when a difference of a reference transmission frequency fr between the reference electrodes 8 with respect to a detected transmission frequency fs between the detecting electrodes 9 is detected by a frequency detecting means 13. A surface area is increased because the sensing element 10 is porous, and the amount of the objective gas deposited on the sensing element 10 is increased thereby to enhance detection precision. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、水晶振動子を使用した化学センサに関するものである。
【0002】
【従来の技術】
現在、NOx排ガスやダイオキシンを含む環境ホルモンによる環境汚染、建材からのホルムアルデヒド等の化学物質の放出によるシックハウス症候群が深刻な社会問題となっている。しかし、対象とする化学物質は極微量であり、ppm〜pptレベルの高感度の化学計測が必要である。
このような微量成分を検出できる従来の化学センサとして、図10に示すように水晶振動子を用いたものがある。図10において、水晶振動子1の面にそれぞれ一対の参照電極2と検出電極3とを形成し、さらに水晶振動子1の面の検出電極3間に測定対象ガスの吸着性を有する物質の感応体4を形成する。水晶振動子1は表面に物質が付着すると、付着した物質の質量に応じて発信周波数が減少する。そこで、参照電極2側の参照側発信周波数frを参照側発信周波数検出手段5aで検出し、検出電極3側の検出側発信周波数fsを検出側発信周波数検出手段5bで検出する。そして、両発信周波数fr,fsの差である変動周波数fdを周波数検出手段6で算出する。この変動周波数fdは感応体4に付着した物質の量に比例するため、極微量のナノグラムレベルの質量変化を計測して、対象ガスの濃度を検出することができる。
【0003】
【発明が解決しようとする課題】
従来の化学センサは以上のように構成されているので、対象ガスが低濃度の場合には感応体にはガスの付着量が少ないため、検出精度を向上させるのが困難であるという問題点があった。
この発明は、感応体への対象ガスの付着量を多くすることができる化学センサを提供することを目的としたものである。
【0004】
【課題を解決するための手段】
この発明に係わる化学センサは、水晶振動子の面にそれぞれ一対の参照電極と検出電極とを形成し、水晶振動子の面の検出電極間に多孔性で薄膜の感応体を形成したものである。
また、感応体は塩基性を有するものである。
また、感応体は酸性を有するものである。
また、感応体は表面にアミノ基を含む層が形成され、アミノ基と最外層の抗体蛋白とをクロスリンカー分子を介して接合したものである。
さらに、感応体は撥水性を有するものである。
【0005】
【発明の実施の形態】
実施の形態1.
図1は実施の形態1の構成を示す斜視図である。図1において、7は水晶振動子、8は一対の参照電極で、水晶振動子7の面に形成されている。9は一対の検出電極で、水晶振動子1の面に形成されている。10は多孔性薄膜で形成された感応体で、水晶振動子7の面の検出電極9間に配置されている。なお、感応体10は次の方法で形成されている。すなわち、導入原料のトリメチルメトキシラン(TMMOS)とアルゴン(Ar)に、マイクロ波出力300W、圧力80Paで5分間マイクロ波プラズマを印加することにより、水晶振動子7の面に多孔性を有する薄膜の感応体10を形成することができた。水晶振動子7の面に形成された薄膜の感応体10は、表面が疎水性のメチル基で覆われているので、水滴接触角が150度以上あって撥水性を有する。なお、7〜10で化学センサ11が構成されている。
【0006】
次に実験結果について説明する。図2は実験装置を示す説明図である。図1及び図2において、12は密封された容積が500mlの容器で、内部に化学センサ11が収納されている。さらに、容器12には検出しようとする物質を入れる検出物質投入口12a、Nガスを入れるNガス投入口12b及び排出口12cが設けられている。13は化学センサ11の各電極8,9と接続線8a,8b,9a,9bを介して接続された周波数検出手段で、参照電極8間の参照発振周波数frと検出電極9間の検出発振周波数fsとの差である周波数変動量fdを算出する。
【0007】
ここで、図3はトルエンに対する応答を示す説明図である。容器12内に検出物質投入口12aからトルエンと水との割合を1対50にした混合溶液を投入(ON)して気化させる。すると、トルエンが感応体10に吸着されることにより検出電極9間の発振周波数が、図3の特性Aに示すように周波数変動量fdが150Hzとなり大きく低下する。そして、Nガス投入口12bからNガスを投入してトルエンガスを排出(OFF)すると、周波数変動量がトルエンを投入(ON)する前の状態に復帰した。なお、図3の特性Bは比較のために示したもので、水だけを容器12内に投入(ON)して気化させたときの応答である。この場合、感応体10が疎水性(撥水性)を有するので、相対湿度100%でも影響が抑制されている。なお、この実験に使用した化学センサ11の感応体10の膜圧は283nmである。
【0008】
図4はトルエンガスに対する化学センサ11の検出特性を示す説明図である。図4は周波数検出手段13により検出された参照電極8間の参照発信周波数frと、検出電極9間の検出発振周波数fsとの差である周波数変動量fdを示す。図4によると、トルエンガス濃度と周波数変動量fdとが比例関係にあり、数ppmレベルの微量域においても検出可能である。
次に、ホルムアルデヒドの検出について説明する。図5はホルムアルデヒドに対する応答を示す説明図である。図1、図2及び図5において、容器12内に検出物質投入口12aから、37%ホルムアルデヒド、8%メタノール、55%水の組成溶液1mlを10mlの純粋に混合した溶液を投入して気化(ON)させる。
【0009】
この気化した蒸気内での化学センサ11のホルムアルデヒドに対する応答を図5に示す。ホルムアルデヒドが感応体10に吸着されることにより、検出電極9間の発振周波数が図5の特性Aに示すように周波数変動量fdが130Hzと大きく低下する。そして、Nガス投入口12bからNガスを投入してホルムアルデヒドガスを排出(OFF)すると、ホルムアルデヒドを投入(ON)する前の状態に復帰した。図5の特性Bは比較のために示したもので、水だけを容器12内に投入(ON)して気化させたときの応答で、図3の特性Bと同様である。なお、この実験に使用した化学センサ11の感応体10の膜圧は283nmである。
図6は周波数検出手段13により検出された参照電極8間の参照発信周波数frと、検出電極9間の検出発振周波数fsとの差である周波数変動量fdを示す。図6によると、ホルムアルデヒドガス濃度と周波数変動量fdとが比例関係にあり、数ppmレベルの微量域においても検出可能である。
【0010】
以上のように、水晶振動子7の面にそれぞれ一対の参照電極8と検出電極9とを形成し、検出電極9間に多孔性で薄膜の感応体10を形成したことにより、感応体10の表面積が増大して感応体10へ付着する検出対象ガスが多くなるので、検出精度の向上を図ることができる。
さらに、感応体10は撥水性を有するので、相対湿度100%でも影響を抑制することができる。
実施の形態1において、トルエン(C7H8)、ホルムアルデヒド(HCHO)を検出するものについて説明したが、ベンゼン等の有機ガスについても同様の効果を期待することができる。
【0011】
実施の形態2.
図7は実施の形態2の構成を示す斜視図である。図7において、7〜9は実施の形態1のものと同様のものである。14は多孔性薄膜で形成された感応体で、水晶振動子7の面の検出電極9間に配置されている。ここで、感応体14は次の方法で形成されている。すなわち、導入原料のアルミニウム(III)アミノn−ブトキサイドとアルゴン(Ar)に、マイクロ波出力300W、圧力80Paで5分間マイクロ波プラズマを印加することにより、水晶振動子7の面に多孔性で撥水性を有する薄膜の塩基性の感応体14を形成することができた。なお、7〜9,14で化学センサ15が構成されている。水晶振動子7の面に形成された感応体14は塩基性を示すので、酸性ガスの検出に適している。そして、図2の実験装置で実験した結果ではppmレベルの微量のNOの検出に有効であることが判明した。
【0012】
以上のように、検出電極9間に多孔性で薄膜の感応体14を形成したことにより、感応体14の表面積が増大して感応体14へ付着する検出対象ガスが多くなるので、検出精度の向上を図ることができる。さらに、塩基性を有する感応体14を形成することにより、酸性ガスの検出を行うことができる。
さらに、感応体14は撥水性を有するので、相対湿度100パーセントでも影響を抑制することができる。
実施の形態2において、NO2 (二酸化窒素)の検出について説明したが、SO(二酸化硫黄)、HS(硫化水素)等の酸性ガスについても同様の効果を期待することができる。
【0013】
実施の形態3.
図8は実施の形態3の構成を示す斜視図である。図8において、7〜9は実施の形態1のものと同様のものである。16は多孔性薄膜で形成された感応体で、水晶振動子7の面の検出電極9間に配置されている。ここで、感応体16は次の方法で形成されている。すなわち、導入原料のアルミニウム(III)n−プトキサイドとアルゴン(Ar)に、マイクロ波出力300W、圧力80Paで5分間マイクロ波プラズマを印加することにより、水晶振動子7の面に多孔性で撥水性を有する塩基性の薄膜を形成し、薄膜の表面に硝酸蒸気を暴露して硝酸を化学吸着させた感応体16とした。これにより、感応体16は酸性状態に形成したので、塩基性ガスの吸着に適している。なお、7〜9,16で化学センサ17が構成されている。
化学センサ17を図2の実験装置で実験した結果では、ppmレベルの微量のトリメチルアミン(CHN、アンモニアNH、アニリンCN等の有機性ガスの検出に有効であることが判明した。
以上のように、感応体16を多孔性を有するものに形成したことにより、感応体16へ検出対象ガスの付着量が多くなるため検出精度の向上を図ることができる。さらに、感応体16を酸性状態に形成したことにより、塩基性ガスの検出を行うことができる。
さらに、感応体16は撥水性を有するので、相対湿度100パーセントでも影響を抑制することができる。
【0014】
実施の形態4.
図9は実施の形態4の構成を示す斜視図である。図9において、7〜9は実施の形態1のものと同様のものである。18は多孔性薄膜で形成された感応体で、水晶振動子7の面の検出電極9間に配置されている。ここで、感応体18は次の方法で形成されている。すなわち、導入原料のトリメチルメトキシラン(TMMOS)とアルゴン(Ar)に、マイクロ波出力300W、圧力80Paで5分間マイクロ波プラズマを印加することにより、水晶振動子7の面に多孔性を有する薄膜を形成する。続いて、プラズマ印加により形成された薄膜の表面にアミノ基を含む層を形成し、アミノ基と最外層のダイオキシン(抗原)に対する抗体蛋白とをクロスリンカー分子を介して接合することにより感応体18が得られる。なお、7〜9,18で化学センサ19が構成されている。
化学センサ19を図2の実験装置で実験した結果では、微量のダイオキシンの検出に有効であることが判明した。
【0015】
以上のように、感応体18に抗体蛋白を接合させたことにより、抗体蛋白に対応した抗原を検出することができる。
さらに、感応体18は撥水性を有するので、相対湿度100パーセントでも影響を抑制することができる。
実施の形態4において、感応体18の最外層にダイオキシン(抗原)に対する抗体蛋白を配置したものについて説明したが、環境ホルモンであるポリ塩化ダイオキシン、ポリ塩化ジベンゾフラン、ベンゾフェノン、n−ブチルベンゼン、エチルパラチオン等の抗原に対応した抗体蛋白を配置することにより、それぞれの対象物質を検出することができる。
【0016】
【発明の効果】
この発明によれば、水晶振動子の面にそれぞれ一対の参照電極と検出電極とを形成し、検出電極間に多孔性で薄膜の感応体を形成したことにより、感応体の表面積が増大して感応体へ付着する検出対象ガスが多くなるので、検出精度の向上を図ることができる。
また、塩基性を有する感応体を形成したことにより、酸性ガスの検出を行うことができる。
また、感応体を酸性状態に形成したことにより、塩基性ガスの検出を行うことができる。
また、感応体に抗体蛋白を接合させたことにより、抗体蛋白に対応した抗原を検出することができる。
さらに、感応体が撥水性を有するので、相対湿度100パーセントでも影響を抑制することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の構成を示す斜視図である。
【図2】化学センサの実験装置を示す説明図である。
【図3】実施の形態1のトルエンに対する応答を示す説明図である。
【図4】実施の形態1のトルエンガスに対する化学センサの検出特性を示す説明図である。
【図5】実施の形態1の化学センサのホルムアルデヒドに対する応答を示す説明図である。
【図6】実施の形態1のホルムアルデヒドガスに対する化学センサの検出特性を示す説明図である。
【図7】この発明の実施の形態2の構成を示す斜視図である。
【図8】この発明の実施の形態3の構成を示す斜視図である。
【図9】この発明の実施の形態4の構成を示す斜視図である。
【図10】従来の化学センサの構成を示す斜視図である。
【符号の説明】
7 水晶振動子、8 参照電極、9 検出電極、
10,14,16,18 感応体、11,15,17,19 化学センサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chemical sensor using a quartz oscillator.
[0002]
[Prior art]
At present, environmental pollution by environmental hormones including NOx exhaust gas and dioxin, and sick house syndrome due to release of chemical substances such as formaldehyde from building materials have become serious social problems. However, the target chemical substance is very small, and high-sensitivity chemical measurement at the ppm to ppt level is required.
As a conventional chemical sensor capable of detecting such a trace component, there is a sensor using a quartz oscillator as shown in FIG. In FIG. 10, a pair of reference electrodes 2 and detection electrodes 3 are formed on the surface of the crystal unit 1, respectively. The body 4 is formed. When a substance adheres to the surface of the crystal unit 1, the transmission frequency decreases in accordance with the mass of the adhered substance. Therefore, the reference-side transmission frequency fr on the reference electrode 2 side is detected by the reference-side transmission frequency detection unit 5a, and the detection-side transmission frequency fs on the detection electrode 3 side is detected by the detection-side transmission frequency detection unit 5b. Then, the fluctuating frequency fd, which is the difference between the two transmitting frequencies fr and fs, is calculated by the frequency detecting means 6. Since the fluctuation frequency fd is proportional to the amount of the substance adhering to the sensitive body 4, it is possible to detect the concentration of the target gas by measuring a very small nanogram-level change in mass.
[0003]
[Problems to be solved by the invention]
Since the conventional chemical sensor is configured as described above, when the target gas has a low concentration, there is a problem that it is difficult to improve the detection accuracy because the amount of gas adhering to the sensitive body is small. there were.
An object of the present invention is to provide a chemical sensor that can increase the amount of target gas adhering to a sensitive body.
[0004]
[Means for Solving the Problems]
The chemical sensor according to the present invention is such that a pair of reference electrodes and a detection electrode are formed on the surface of a quartz oscillator, and a porous thin-film sensitive body is formed between the detection electrodes on the surface of the quartz oscillator. .
Further, the sensitizer has basicity.
Further, the sensitive body has acidity.
The sensitizer has an amino group-containing layer formed on the surface, and the amino group and the outermost antibody protein are bonded via a crosslinker molecule.
Further, the sensitive body has water repellency.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a perspective view showing the configuration of the first embodiment. In FIG. 1, reference numeral 7 denotes a quartz oscillator, and 8 denotes a pair of reference electrodes, which are formed on the surface of the quartz oscillator 7. Reference numeral 9 denotes a pair of detection electrodes formed on the surface of the crystal unit 1. Reference numeral 10 denotes a sensitive body formed of a porous thin film, which is disposed between the detection electrodes 9 on the surface of the crystal unit 7. The sensitive body 10 is formed by the following method. That is, by applying microwave plasma at a microwave output of 300 W and a pressure of 80 Pa for 5 minutes to trimethylmethoxylane (TMMOS) and argon (Ar) as the introduced raw materials, a porous thin film is formed on the surface of the quartz vibrator 7. The sensitive body 10 was able to be formed. Since the surface of the thin film sensitive body 10 formed on the surface of the crystal unit 7 is covered with a hydrophobic methyl group, the water sensitive body has a water droplet contact angle of 150 degrees or more and has water repellency. The chemical sensor 11 is composed of 7 to 10.
[0006]
Next, experimental results will be described. FIG. 2 is an explanatory view showing the experimental apparatus. 1 and 2, reference numeral 12 denotes a sealed container having a capacity of 500 ml, in which a chemical sensor 11 is housed. Furthermore, the detection material input port 12a to put the substance to be detected, N 2 gas inlet 12b and outlet 12c add N 2 gas is provided in the container 12. Reference numeral 13 denotes frequency detecting means connected to the electrodes 8 and 9 of the chemical sensor 11 via connection lines 8a, 8b, 9a and 9b. The reference oscillation frequency fr between the reference electrodes 8 and the detection oscillation frequency between the detection electrodes 9 are provided. The frequency variation fd, which is the difference from fs, is calculated.
[0007]
Here, FIG. 3 is an explanatory diagram showing a response to toluene. A mixed solution in which the ratio of toluene and water is 1:50 is charged (ON) into the container 12 from the detection substance charging port 12a and vaporized. Then, as the toluene is adsorbed on the sensitive body 10, the oscillation frequency between the detection electrodes 9 becomes significantly lower as the frequency variation fd becomes 150 Hz as shown by the characteristic A in FIG. Then, when N 2 gas was introduced from the N 2 gas inlet 12b and toluene gas was discharged (OFF), the frequency fluctuation amount returned to the state before the toluene was supplied (ON). The characteristic B in FIG. 3 is shown for comparison and is a response when only water is charged (ON) into the container 12 and vaporized. In this case, since the sensitive body 10 has hydrophobicity (water repellency), the influence is suppressed even when the relative humidity is 100%. The film pressure of the sensitive body 10 of the chemical sensor 11 used in this experiment is 283 nm.
[0008]
FIG. 4 is an explanatory diagram showing detection characteristics of the chemical sensor 11 with respect to toluene gas. FIG. 4 shows a frequency fluctuation amount fd which is a difference between the reference oscillation frequency fr between the reference electrodes 8 detected by the frequency detection means 13 and the detected oscillation frequency fs between the detection electrodes 9. According to FIG. 4, the toluene gas concentration and the frequency fluctuation amount fd are in a proportional relationship, and can be detected even in a trace range of several ppm level.
Next, detection of formaldehyde will be described. FIG. 5 is an explanatory diagram showing a response to formaldehyde. 1, 2 and 5, 10 ml of a purely mixed solution of 1 ml of a 37% formaldehyde, 8% methanol, and 55% water composition solution is introduced into the container 12 from the detection substance introduction port 12a and vaporized ( ON).
[0009]
FIG. 5 shows the response of the chemical sensor 11 to formaldehyde in the vaporized vapor. As the formaldehyde is adsorbed on the sensitive body 10, the oscillation frequency between the detection electrodes 9 greatly decreases as the frequency variation fd becomes 130 Hz as shown by the characteristic A in FIG. Then, when N 2 gas was introduced from the N 2 gas inlet 12b and formaldehyde gas was discharged (OFF), the state returned to the state before the formaldehyde was supplied (ON). The characteristic B in FIG. 5 is shown for comparison, and is a response when only water is charged (ON) into the container 12 and vaporized, and is similar to the characteristic B in FIG. The film pressure of the sensitive body 10 of the chemical sensor 11 used in this experiment is 283 nm.
FIG. 6 shows a frequency fluctuation amount fd which is a difference between the reference oscillation frequency fr between the reference electrodes 8 detected by the frequency detection means 13 and the detection oscillation frequency fs between the detection electrodes 9. According to FIG. 6, there is a proportional relationship between the formaldehyde gas concentration and the frequency variation fd, and detection is possible even in a trace range of several ppm level.
[0010]
As described above, the pair of reference electrodes 8 and the detection electrodes 9 are formed on the surface of the crystal resonator 7, and the porous thin-film sensitizer 10 is formed between the detection electrodes 9. Since the surface area increases and the detection target gas attached to the sensitive body 10 increases, the detection accuracy can be improved.
Further, since the sensitive body 10 has water repellency, the influence can be suppressed even when the relative humidity is 100%.
In the first embodiment, the case where toluene (C7H8) and formaldehyde (HCHO) are detected has been described. However, the same effect can be expected for an organic gas such as benzene.
[0011]
Embodiment 2 FIG.
FIG. 7 is a perspective view showing the configuration of the second embodiment. In FIG. 7, 7 to 9 are the same as those in the first embodiment. Reference numeral 14 denotes a sensitive body formed of a porous thin film, which is arranged between the detection electrodes 9 on the surface of the crystal unit 7. Here, the sensitive body 14 is formed by the following method. That is, by applying microwave plasma at a microwave output of 300 W and a pressure of 80 Pa for 5 minutes to aluminum (III) amino n-butoxide and argon (Ar) as the raw materials to be introduced, the surface of the crystal unit 7 is porous and repelled. An aqueous thin-film basic sensitizer 14 could be formed. The chemical sensor 15 is composed of 7 to 9, 14. Since the sensitive body 14 formed on the surface of the crystal resonator 7 exhibits basicity, it is suitable for detecting an acidic gas. Then, the result of the experiment using the experimental apparatus shown in FIG. 2 proved to be effective in detecting a trace amount of NO 2 at a ppm level.
[0012]
As described above, by forming the porous thin-film sensitive body 14 between the detection electrodes 9, the surface area of the sensitive body 14 increases, and the detection target gas attached to the sensitive body 14 increases. Improvement can be achieved. Further, by forming the sensitive body 14 having basicity, the detection of an acidic gas can be performed.
Further, since the sensitive body 14 has water repellency, the influence can be suppressed even when the relative humidity is 100%.
In the second embodiment, detection of NO 2 (nitrogen dioxide) has been described. However, similar effects can be expected for acidic gases such as SO 2 (sulfur dioxide) and H 2 S (hydrogen sulfide).
[0013]
Embodiment 3 FIG.
FIG. 8 is a perspective view showing the configuration of the third embodiment. In FIG. 8, reference numerals 7 to 9 are the same as those in the first embodiment. Reference numeral 16 denotes a sensitive body formed of a porous thin film, which is arranged between the detection electrodes 9 on the surface of the crystal unit 7. Here, the sensitive body 16 is formed by the following method. That is, by applying microwave plasma at a microwave output of 300 W and a pressure of 80 Pa for 5 minutes to aluminum (III) n-butoxide and argon (Ar) as the introduced raw materials, the surface of the crystal unit 7 is porous and water-repellent. Was formed, and the surface of the thin film was exposed to a nitric acid vapor to obtain a sensitizer 16 in which nitric acid was chemically adsorbed. As a result, the sensitive body 16 is formed in an acidic state, and thus is suitable for adsorption of a basic gas. In addition, the chemical sensor 17 is comprised by 7-9,16.
The chemical sensor 17 in the results of an experiment in the experimental apparatus of FIG. 2, the ppm level of trace trimethylamine (CH 3) 3 N, ammonia NH 3, it is effective for the detection of organic gases such as aniline C 6 H 7 N There was found.
As described above, by forming the sensitive body 16 to be porous, the amount of gas to be detected attached to the sensitive body 16 increases, so that the detection accuracy can be improved. Further, since the sensitive body 16 is formed in an acidic state, a basic gas can be detected.
Further, since the sensitive body 16 has water repellency, the influence can be suppressed even when the relative humidity is 100%.
[0014]
Embodiment 4 FIG.
FIG. 9 is a perspective view showing the configuration of the fourth embodiment. In FIG. 9, reference numerals 7 to 9 are the same as those in the first embodiment. Reference numeral 18 denotes a sensitive body formed of a porous thin film, which is arranged between the detection electrodes 9 on the surface of the crystal unit 7. Here, the sensitive body 18 is formed by the following method. That is, by applying microwave plasma at a microwave output of 300 W and a pressure of 80 Pa for 5 minutes to trimethylmethoxylane (TMMOS) and argon (Ar) as introduced raw materials, a porous thin film is formed on the surface of the crystal unit 7. Form. Subsequently, a layer containing an amino group is formed on the surface of the thin film formed by applying the plasma, and the amino group and an antibody protein against dioxin (antigen) in the outermost layer are joined via a crosslinker molecule to thereby form the sensitizer 18. Is obtained. In addition, the chemical sensor 19 is comprised by 7-9,18.
The results of experiments on the chemical sensor 19 using the experimental apparatus shown in FIG. 2 proved to be effective in detecting trace amounts of dioxin.
[0015]
As described above, by attaching the antibody protein to the sensitizer 18, an antigen corresponding to the antibody protein can be detected.
Further, since the sensitive body 18 has water repellency, the influence can be suppressed even when the relative humidity is 100%.
In the fourth embodiment, an example in which an antibody protein against dioxin (antigen) is arranged on the outermost layer of the sensitizer 18 has been described. By arranging antibody proteins corresponding to the antigens, etc., each target substance can be detected.
[0016]
【The invention's effect】
According to the present invention, a pair of reference electrodes and a detection electrode are respectively formed on the surface of the quartz oscillator, and a porous and thin-film sensitive body is formed between the detection electrodes, so that the surface area of the sensitive body is increased. Since the detection target gas attached to the sensitive body increases, the detection accuracy can be improved.
In addition, the formation of the basic sensitizer enables the detection of an acidic gas.
Further, by forming the sensitive body in an acidic state, it is possible to detect a basic gas.
In addition, by attaching the antibody protein to the sensitizer, an antigen corresponding to the antibody protein can be detected.
Further, since the sensitive body has water repellency, the influence can be suppressed even when the relative humidity is 100%.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a first embodiment of the present invention.
FIG. 2 is an explanatory view showing an experimental device for a chemical sensor.
FIG. 3 is an explanatory diagram showing a response to toluene according to the first embodiment.
FIG. 4 is an explanatory diagram showing detection characteristics of a chemical sensor for toluene gas according to the first embodiment.
FIG. 5 is an explanatory diagram showing a response of the chemical sensor according to the first embodiment to formaldehyde.
FIG. 6 is an explanatory diagram showing detection characteristics of a chemical sensor for formaldehyde gas according to the first embodiment.
FIG. 7 is a perspective view showing a configuration of a second embodiment of the present invention.
FIG. 8 is a perspective view showing a configuration of a third embodiment of the present invention.
FIG. 9 is a perspective view showing a configuration of a fourth embodiment of the present invention.
FIG. 10 is a perspective view showing a configuration of a conventional chemical sensor.
[Explanation of symbols]
7 crystal oscillator, 8 reference electrode, 9 detection electrode,
10, 14, 16, 18 Sensitive body, 11, 15, 17, 19 Chemical sensor.

Claims (5)

水晶振動子の面にそれぞれ一対の参照電極と検出電極とを形成し、上記水晶振動子の面の上記検出電極間に多孔性で薄膜の感応体を形成したことを特徴とする化学センサ。A chemical sensor comprising: a pair of reference electrodes and a detection electrode formed on a surface of a quartz oscillator; and a porous thin-film sensitive body formed between the detection electrodes on the surface of the quartz oscillator. 請求項1において、上記感応体は塩基性を有することを特徴とする化学センサ。2. The chemical sensor according to claim 1, wherein the sensitive body has basicity. 請求項1において、上記感応体は酸性を有するものであることを特徴とする化学センサ。2. The chemical sensor according to claim 1, wherein the sensitive body has acidity. 請求項1において、上記感応体は表面にアミノ基を含む層が形成され、上記アミノ基と最外層の抗体蛋白とをクロスリンカー分子を介して接合したものであることを特徴とする化学センサ。2. The chemical sensor according to claim 1, wherein the sensitizer has a layer containing an amino group formed on the surface thereof, and the amino group and the outermost antibody protein are bonded via a crosslinker molecule. 請求項1において、上記感応体は撥水性を有することを特徴とする化学センサ。The chemical sensor according to claim 1, wherein the sensitive body has water repellency.
JP2002233310A 2002-08-09 2002-08-09 Chemical sensor and manufacturing method thereof Expired - Fee Related JP3884680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233310A JP3884680B2 (en) 2002-08-09 2002-08-09 Chemical sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233310A JP3884680B2 (en) 2002-08-09 2002-08-09 Chemical sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004069661A true JP2004069661A (en) 2004-03-04
JP3884680B2 JP3884680B2 (en) 2007-02-21

Family

ID=32018465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233310A Expired - Fee Related JP3884680B2 (en) 2002-08-09 2002-08-09 Chemical sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3884680B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240252A (en) * 2006-03-07 2007-09-20 National Institute Of Advanced Industrial & Technology Detection sensor, and oscillator
JP2013044579A (en) * 2011-08-23 2013-03-04 Nagoya Institute Of Technology Method of hydrophobizing zeolite containing metal complex, and sensor obtained by the method
US9791412B2 (en) 2013-06-12 2017-10-17 Nihon Dempa Kogyo Co., Ltd. Sensing device
WO2018221283A1 (en) * 2017-05-31 2018-12-06 国立研究開発法人物質・材料研究機構 Nanomechanical-sensor receptor made of low-hygroscopicity material and nanomechanical sensor employing same as receptor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140838A (en) * 1989-10-26 1991-06-14 Brother Ind Ltd Gas sensor
JPH0545339A (en) * 1991-08-09 1993-02-23 Tokimec Inc Elastic wave element and measuring apparatus of physical property of solution using the element
JPH0545338A (en) * 1991-08-09 1993-02-23 Tokimec Inc Elastic wave element and measuring apparatus of physical property of solution using the element
JPH05281120A (en) * 1991-03-25 1993-10-29 Fuji Xerox Co Ltd Gas detecting apparatus
JPH05312707A (en) * 1992-05-06 1993-11-22 Nippon Soken Inc Gas sensor
JPH06165933A (en) * 1992-09-29 1994-06-14 Mitsubishi Electric Corp Nitrogen oxide selectively adsorbing material reaction control method therefor and device for detecting, adsorption-removing and decomposing gas using them
JPH0894510A (en) * 1994-09-27 1996-04-12 Oki Electric Ind Co Ltd Odor detecting method, odor sensor and its manufacture
JPH09131335A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Individual identifying method and individual identifying device
JPH09189685A (en) * 1996-01-05 1997-07-22 Mitsubishi Electric Corp Gas sensor using self-reproducing gas-sensitive film
JP2000304672A (en) * 1999-04-16 2000-11-02 Agency Of Ind Science & Technol Variable sensitivity detection method of substance to be detected using crystal oscillator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140838A (en) * 1989-10-26 1991-06-14 Brother Ind Ltd Gas sensor
JPH05281120A (en) * 1991-03-25 1993-10-29 Fuji Xerox Co Ltd Gas detecting apparatus
JPH0545339A (en) * 1991-08-09 1993-02-23 Tokimec Inc Elastic wave element and measuring apparatus of physical property of solution using the element
JPH0545338A (en) * 1991-08-09 1993-02-23 Tokimec Inc Elastic wave element and measuring apparatus of physical property of solution using the element
JPH05312707A (en) * 1992-05-06 1993-11-22 Nippon Soken Inc Gas sensor
JPH06165933A (en) * 1992-09-29 1994-06-14 Mitsubishi Electric Corp Nitrogen oxide selectively adsorbing material reaction control method therefor and device for detecting, adsorption-removing and decomposing gas using them
JPH0894510A (en) * 1994-09-27 1996-04-12 Oki Electric Ind Co Ltd Odor detecting method, odor sensor and its manufacture
JPH09131335A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Individual identifying method and individual identifying device
JPH09189685A (en) * 1996-01-05 1997-07-22 Mitsubishi Electric Corp Gas sensor using self-reproducing gas-sensitive film
JP2000304672A (en) * 1999-04-16 2000-11-02 Agency Of Ind Science & Technol Variable sensitivity detection method of substance to be detected using crystal oscillator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240252A (en) * 2006-03-07 2007-09-20 National Institute Of Advanced Industrial & Technology Detection sensor, and oscillator
JP2013044579A (en) * 2011-08-23 2013-03-04 Nagoya Institute Of Technology Method of hydrophobizing zeolite containing metal complex, and sensor obtained by the method
US9791412B2 (en) 2013-06-12 2017-10-17 Nihon Dempa Kogyo Co., Ltd. Sensing device
WO2018221283A1 (en) * 2017-05-31 2018-12-06 国立研究開発法人物質・材料研究機構 Nanomechanical-sensor receptor made of low-hygroscopicity material and nanomechanical sensor employing same as receptor

Also Published As

Publication number Publication date
JP3884680B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
Ngeh-Ngwainbi et al. Parathion antibodies on piezoelectric crystals
US7914740B2 (en) Biosensor utilizing a resonator having a functionalized surface
Luong et al. Analytical applications of piezoelectric crystal biosensors
JP2008122105A (en) Elastic wave sensor and detection method
AU752190B2 (en) Sensor for detecting biological matter
Waiwijit et al. Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance
Cali et al. Gravimetric biosensors
Geddes et al. Piezoelectric crystal for the detection of immunoreactions in buffer solutions
JP4670084B2 (en) Detector for chemical sensor device and use thereof
US11346814B2 (en) Resonator for the detection of a mass analyte and method for operation of the resonator
Yang et al. Trace level analysis of nerve agent simulant DMMP with silicon nanowire FET sensor
JP2004069661A (en) Chemical sensor
JP2006275865A (en) Determination method using qcm sensor
Prusak-Sochaczewski et al. Detection of human transferrin by the piezoelectric crystal
US20110177584A1 (en) Acoustic wave sensor and detection method using acoustic wave sensor
JP3357914B2 (en) Method for detecting low molecular compounds in solution
Vaughan et al. Piezoelectric immunosensors for environmental monitoring
Roush et al. Application of the quartz crystal microbalance to characterize the interaction of solutes with modified interfaces
Vaughan et al. Piezoelectric immunosensors
US8722427B2 (en) Determination of dissociation constants using piezoelectric microcantilevers
ENDO et al. The evaluation of epoxy resin coated quartz crystal humidity sensor and the measurement of water evaporation from human surfaces
Kao et al. Characterization of viscoelastic properties of adsorbed biomolecules and biomolecular assemblies with high frequency micromachined quartz resonators
JP4127192B2 (en) Receptor fixing method on crystal oscillator electrode surface and manufacturing method of receptor fixed crystal oscillator
TWI243898B (en) Detection of volatile aldehyde by nano cysteine cluster networks
RU2326384C1 (en) Method of determining choloroacetenilide hybrids (acetochlorine, butachlor, alachlor) using piezo-quartz immunosensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees