JPH03129743A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03129743A
JPH03129743A JP9036590A JP3659090A JPH03129743A JP H03129743 A JPH03129743 A JP H03129743A JP 9036590 A JP9036590 A JP 9036590A JP 3659090 A JP3659090 A JP 3659090A JP H03129743 A JPH03129743 A JP H03129743A
Authority
JP
Japan
Prior art keywords
layer
region
implanted
ions
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9036590A
Other languages
Japanese (ja)
Inventor
Shigeyuki Ohigata
重行 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9036590A priority Critical patent/JPH03129743A/en
Publication of JPH03129743A publication Critical patent/JPH03129743A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

PURPOSE:To increase a resistance of a channel formation region and to enhance a resistant amount to an L load by a method wherein impurities whose conductivity type is opposite to that of a base layer are implanted in advance into a surface layer. CONSTITUTION:Arsenic (As) ions are implanted into the surface of an n-layer 1 of a silicon substrate which is composed of an n<+> layer 2 and the n<-> layer 1. Then, a gate oxide film 6 is formed; polycrystalline silicon is deposited on it and patterned to form a gate electrode 7. Then, B ions for a P-layer 3 are implanted by making use of the gate oxide film 6 and the gate electrode 7 as a mask; in addition, a resist pattern is formed; B ions for a P<+> layer 10 are implanted deeply by making use of the pattern as mask. A heating operation is executed in order to diffuse the P<-> layer 3 and the P<+> layer 10. After that, As ions for an n<+> layer 4 are implanted by making use of the gate oxide film 6, the gate electrode 7 and the resist pattern as a mask; a heating operation is executed; an insulating film composed of PSG is covered and patterned; after that, Al is vapor-deposited and patterned. Thereby, a source electrode 9 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、縦型MO3FET、IGBT、スマートパワ
ーデバイスのように第一導電形の第一領域の表面部に選
択的に第二導電形の第二領域が形成され、第二領域の表
面部に選択的に第一導電形の第三領域が形成され、第二
領域の第一領域および第三領域にはさまれた領域をチャ
ネル形成領域としてその上にゲート絶縁膜を介してゲー
ト電極が設けられるMOS型の半導体装置の製造方法に
関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to selectively injecting a second conductive type into the surface of a first region of a first conductive type, such as a vertical MO3FET, IGBT, or smart power device. A second region is formed, a third region of the first conductivity type is selectively formed on the surface of the second region, and a region sandwiched between the first region and the third region of the second region is used as a channel forming region. The present invention relates to a method of manufacturing a MOS type semiconductor device on which a gate electrode is provided via a gate insulating film.

〔従来の技術〕[Conventional technology]

縦型MO3FETは第1図に示す構造を有する。 The vertical MO3FET has a structure shown in FIG.

図において、 ドレイン層(第一領域)はn−Fitお
よびn3層2よりなり、 n−層の表面部にp〜ベース
層3(第二領域〉が選択的に形成されている。
In the figure, the drain layer (first region) consists of an n-Fit and n3 layer 2, and a p~base layer 3 (second region) is selectively formed on the surface of the n-layer.

さらに、ベース層3の表面部にはn+ソース層4〈第三
領域〉が選択的に形成されている。このソース層4とト
ルイン層1にはさまれたベース層3の領域がチャネル形
成領域5であり、その上にゲート酸化膜6を介してゲー
ト電極7が備えられている。ゲート電極7の上には絶縁
膜8を介してソース電極9が設けられ、絶縁膜8の開口
部でベース層3およびソース層4に接触しているが、ベ
ース層3のソース電極9との接触部分には高濃度ベース
層(94層〉10が形成されている。また、高濃度ドレ
イン層2にはドレイン電極11が接触してぃる。このn
チャネルMO3FETのn+高濃度ドレイン層の代わり
にp+層を形成したものがnチャネルI GBTである
Furthermore, an n+ source layer 4 (third region) is selectively formed on the surface of the base layer 3. A region of the base layer 3 sandwiched between the source layer 4 and the toluin layer 1 is a channel forming region 5, and a gate electrode 7 is provided thereon with a gate oxide film 6 interposed therebetween. A source electrode 9 is provided on the gate electrode 7 via an insulating film 8 and is in contact with the base layer 3 and the source layer 4 at the opening of the insulating film 8. A high concentration base layer (94 layers) 10 is formed in the contact portion. Also, a drain electrode 11 is in contact with the high concentration drain layer 2.
An n-channel IGBT is a channel MO3FET in which a p+ layer is formed in place of the n+ heavily doped drain layer.

このような半導体装置においては、 n+ソース層4.
p−ベース層3およびn−ドレイン層1からなる寄生n
pn)ランジスタが存在し、ソース層4の下のベース層
3を電流が流れる際の電圧降下が大きいとこの寄生トラ
ンジスタがターンオンするので、L負荷耐量が低下する
。そこでp+高濃度ソース層10の拡散を深くする方法
、ベース層3にほう素を多く注入してソース層4の下側
部分の抵抗を下げる方法あるいはこの両者を併用するこ
とが行われる。
In such a semiconductor device, an n+ source layer 4.
Parasitic n consisting of p-base layer 3 and n-drain layer 1
If a pn) transistor is present and a large voltage drop occurs when current flows through the base layer 3 under the source layer 4, this parasitic transistor is turned on, resulting in a decrease in L load withstand capability. Therefore, a method of deepening the diffusion of the p+ high concentration source layer 10, a method of implanting a large amount of boron into the base layer 3 to lower the resistance of the lower part of the source layer 4, or a combination of both are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

表面のMO8構造のチャネル形成領域5にチャネルを形
成するためのスレッシュホルド電圧は、p−ベース層3
の抵抗を下げるほど高くなる。
The threshold voltage for forming a channel in the channel forming region 5 of the MO8 structure on the surface is
The lower the resistance, the higher it becomes.

例えばp−層3のほう素(B)8度が1015〜” /
 cfflのときにはスレッシュホルド電圧は4■であ
るが、5XlO”/c11!にすると5.5Vl:ナル
For example, the boron (B) 8 degree of p- layer 3 is 1015~” /
When cffl, the threshold voltage is 4■, but when it is set to 5XlO''/c11!, it is 5.5Vl: null.

本発明の目的は、L負荷耐量を向上させるためにソース
層の下のベース層の抵抗を下げるときにもチャネル形成
のためのスレッシュホルド電圧が高くならない半導体装
置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device in which the threshold voltage for channel formation does not increase even when the resistance of the base layer below the source layer is lowered in order to improve the L load withstand capability. .

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、第一導電形の
第一領域の表面部に選択的に第二導電形の第二領域が形
成され、第二領域の表面部に選択的に第一導電形の第三
領域が形成され、第二領域の第一領域および第三領域に
はさまれた領域をチャネル形成領域としてその上にゲー
ト絶縁膜を介してゲート電極が設けられる半導体装置の
製造方法において、第一領域の表面層に第一導電形のた
めの不純物を打込んだのち、選択的に第二導電形の第二
領域を形成するものとする。
In order to achieve the above object, the present invention provides that a second region of a second conductivity type is selectively formed on the surface of the first region of the first conductivity type, and a second region of the second conductivity type is selectively formed on the surface of the second region. A semiconductor device in which a third region of the first conductivity type is formed, a region sandwiched between the first region and the third region of the second region is used as a channel formation region, and a gate electrode is provided thereon via a gate insulating film. In the manufacturing method, after impurities for the first conductivity type are implanted into the surface layer of the first region, a second region of the second conductivity type is selectively formed.

〔作用〕[Effect]

第一領域の表面層に打込まれた第一導電形のための不純
物は、そのあとで形成される第二領域の第二導電形のた
めの不純物の電気的作用を減少させる。従って第二領域
表面層の第二導電形のチャネル形成領域の実効的不純物
濃度が減少し、チャネル形成のためのスレッシュホルド
電圧の増加が抑制される。
The impurity of the first conductivity type implanted into the surface layer of the first region reduces the electrical effect of the impurity of the second conductivity type of the second region subsequently formed. Therefore, the effective impurity concentration of the second conductivity type channel formation region of the second region surface layer is reduced, and an increase in the threshold voltage for channel formation is suppressed.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図を引用して説明する。n
“層2とn−層1からなるシリコン基板の n−層1の
表面にひ素(^S)イオンを注入する。
An embodiment of the present invention will be described below with reference to FIG. n
“Arsenic (^S) ions are implanted into the surface of n-layer 1 of a silicon substrate consisting of layer 2 and n-layer 1.

図で点線の斜線12で示したAsイオン注入領域のAs
濃度は5×10′6/cIII程度になる。次にゲート
酸化膜6を形成し、その上に多結晶シリコンを堆積、パ
ターニングすることによりゲート電極7を形成する。次
いで、ゲート酸化膜6およびゲート電極7をマスクにし
て p−層3のためのBイオンを注入し、さらにレジス
トパターンを作成し、それをマスクにして p+層10
のための深いBイオン注入を行う。そしてp−層3. 
 p“層10の拡散のための加熱を行う。それにより深
さ4〜5μmのp−層3゜深さ8μmのp“層10が生
ずる。このあと、ゲート酸化膜6.ゲート電極7および
レジストパターンをマスクにして深さ0.3μm程度の
n+層4のための^Sイオンの注入、加熱を行い、PS
Gからなる絶縁膜の被覆、パターニングののち、Alの
蒸着。
As in the As ion implantation region indicated by dotted diagonal lines 12 in the figure
The concentration will be approximately 5×10′6/cIII. Next, a gate oxide film 6 is formed, and polycrystalline silicon is deposited thereon and patterned to form a gate electrode 7. Next, using the gate oxide film 6 and the gate electrode 7 as a mask, B ions for the p- layer 3 are implanted, and a resist pattern is created, and using this as a mask, the p+ layer 10 is implanted.
Perform deep B ion implantation for this purpose. and p-layer 3.
Heating is carried out for the diffusion of the p" layer 10. This results in a p" layer 10 with a depth of 4 to 5 .mu.m and a p" layer 3.degree. with a depth of 8 .mu.m. After this, gate oxide film 6. Using the gate electrode 7 and the resist pattern as a mask, ^S ions are implanted and heated for the n+ layer 4 to a depth of about 0.3 μm, and PS
After coating and patterning an insulating film made of G, evaporation of Al is performed.

パターニングによりソース電極9を形成する。この場合
、 p−層3(DB1度It 5 XIO”/cii度
テあるが、表面層はAsイオン注入領域12が存在する
ため高抵抗になり、チャネル形成領域5へのnチャネル
形成のためのスレッシュホルド電圧は4v以下に低くな
る。なお、n゛層2代わりにp+層を有する IGBT
においても以上と同様に実施できる。また、導電形を逆
にしたpチャネルMO3型半導体装置にも実施できる。
A source electrode 9 is formed by patterning. In this case, the p-layer 3 (DB1 degree It 5 The threshold voltage is lowered to 4V or less.In addition, the IGBT has a p+ layer instead of the n layer 2.
The above can also be implemented in the same way. Further, the present invention can also be implemented in a p-channel MO3 type semiconductor device in which the conductivity type is reversed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、寄生トランジスタをターンオンしに(
くするために表面層にチャネル形成領域を有するベース
層の不純物濃度を高め抵抗を下げた場合にチャネル形成
のためのスレッシュホルド電圧が増加する問題が、予め
表面層にベース層と反対の導電形のための不純物を打込
むことによりチャネル形成領域の抵抗を高めることによ
って解決することができた。この結果、L負荷耐量が高
く、かつMO3構造のスレッシュホルド電圧の低いMO
3型半導体装置を得ることができた。
According to the present invention, in order to turn on the parasitic transistor (
When the impurity concentration of the base layer with a channel formation region in the surface layer is increased to lower the resistance, the threshold voltage for channel formation increases. This problem could be solved by increasing the resistance of the channel forming region by implanting impurities. As a result, the MO3 structure has a high L load capacity and a low threshold voltage.
A type 3 semiconductor device could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施された縦型MO3FETの断面図
である。 ln−ドレイン層(第一領域)、3p−ベース層(第二
領域)、4n+ソ一ス層(第三領域)、5 チャネル形
成領域、6 ゲート酸化膜、7ゲート電極、12  ^
Sイオン注入領域。 〃 第1図
FIG. 1 is a sectional view of a vertical MO3FET in which the present invention is implemented. ln- drain layer (first region), 3p-base layer (second region), 4n+ source layer (third region), 5 channel formation region, 6 gate oxide film, 7 gate electrode, 12 ^
S ion implantation region. 〃 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)第一導電形の第一領域の表面部に選択的に第二導電
形の第二領域が形成され、第二領域の表面部に選択的に
第一導電形の第三領域が形成され、第二領域の第一領域
および第三領域にはさまれた領域をチャネル形成領域と
してその上にゲート絶縁膜を介してゲート電極が設けら
れる半導体装置の製造方法において、第一領域の表面層
に第一導電形のための不純物を打込んだのち、選択的に
第二導電形の第二領域を形成することを特徴とする半導
体装置の製造方法。
1) A second region of the second conductivity type is selectively formed on the surface of the first region of the first conductivity type, and a third region of the first conductivity type is selectively formed on the surface of the second region. , a method for manufacturing a semiconductor device in which a region sandwiched between the first region and the third region of the second region is used as a channel formation region and a gate electrode is provided thereon via a gate insulating film; 1. A method of manufacturing a semiconductor device, comprising implanting impurities for a first conductivity type into a semiconductor device, and then selectively forming a second region of a second conductivity type.
JP9036590A 1989-07-07 1990-02-17 Manufacture of semiconductor device Pending JPH03129743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9036590A JPH03129743A (en) 1989-07-07 1990-02-17 Manufacture of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-175941 1989-07-07
JP17594189 1989-07-07
JP9036590A JPH03129743A (en) 1989-07-07 1990-02-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03129743A true JPH03129743A (en) 1991-06-03

Family

ID=16004936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9036590A Pending JPH03129743A (en) 1989-07-07 1990-02-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03129743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256368A (en) * 1991-02-08 1992-09-11 Nec Yamagata Ltd Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150769A (en) * 1985-12-24 1987-07-04 Fuji Electric Co Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150769A (en) * 1985-12-24 1987-07-04 Fuji Electric Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256368A (en) * 1991-02-08 1992-09-11 Nec Yamagata Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
EP0694960B1 (en) Process for the localized reduction of the lifetime of charge carriers
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
JPH03145138A (en) Formation of dmos transistor
JPH04107877A (en) Semiconductor device and its production
KR920017279A (en) MOS semiconductor device and manufacturing method thereof
US5990518A (en) MOS device
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH03205832A (en) Insulated-gate semiconductor device and manufacture thereof
JPH03129743A (en) Manufacture of semiconductor device
JPH10107283A (en) Mos technology power device and fabrication thereof
JPS63263767A (en) Semiconductor device
JP3904725B2 (en) Semiconductor device and manufacturing method thereof
JP3193984B2 (en) High voltage MOS transistor
JP4275763B2 (en) Power semiconductor device employing field plate and method of manufacturing the same
JP2765132B2 (en) Manufacturing method of vertical field effect transistor
JPH03214740A (en) Manufacture of vertical type mos field effect transistor
KR920003320B1 (en) Manufacturing method of self-aligned vertical double diffusion type with very small source region
JPH0234937A (en) Manufacture of semiconductor device
JPH0387072A (en) Semiconductor device
JPH04151875A (en) Double diffusion type mos transistor
JPH02172281A (en) Semiconductor device
JPH03120836A (en) Semiconductor device
CN113964190A (en) High-mobility p-type polysilicon gate LDMOS device and manufacturing method thereof
JPH04142078A (en) Semiconductor device
JPS60128656A (en) Semiconductor device