JPH0312773B2 - - Google Patents

Info

Publication number
JPH0312773B2
JPH0312773B2 JP59044100A JP4410084A JPH0312773B2 JP H0312773 B2 JPH0312773 B2 JP H0312773B2 JP 59044100 A JP59044100 A JP 59044100A JP 4410084 A JP4410084 A JP 4410084A JP H0312773 B2 JPH0312773 B2 JP H0312773B2
Authority
JP
Japan
Prior art keywords
porous silicon
substrate
nitrogen atmosphere
pressure
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59044100A
Other languages
Japanese (ja)
Other versions
JPS60189238A (en
Inventor
Fumio Otoi
Hironori Kitabayashi
Kenji Anzai
Kazuo Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Oki Electric Industry Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4410084A priority Critical patent/JPS60189238A/en
Publication of JPS60189238A publication Critical patent/JPS60189238A/en
Publication of JPH0312773B2 publication Critical patent/JPH0312773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Description

【発明の詳細な説明】 (技術分野) この発明は、多孔質シリコンの酸化工程を有す
る半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a semiconductor device that includes a step of oxidizing porous silicon.

(従来技術) 多孔質シリコンの酸化工程は、一例として、素
子分離を多孔質シリコン酸化物により行つた半導
体装置の製造方法に用いられる。その半導体装置
の従来の製造方法を第1図に示す。
(Prior Art) A porous silicon oxidation process is used, for example, in a method of manufacturing a semiconductor device in which element isolation is performed using porous silicon oxide. A conventional method of manufacturing the semiconductor device is shown in FIG.

第1図aにおいて、1はP型シリコン基板であ
り、まず、この基板1上に絶縁窒化膜2を被着す
る(第1図a)。
In FIG. 1a, 1 is a P-type silicon substrate, and first, an insulating nitride film 2 is deposited on this substrate 1 (FIG. 1a).

次に、周知のホトリソエツチング技術にて分離
開孔窓3を絶縁窒化膜2に形成する。しかる後、
その分離開孔窓3を通してP型不純物のイオン注
入を行うことにより、その分離開孔窓3に対応す
る部分の基板1表面に高濃度のP型層4を形成す
る。(第1図b) その後、イオン注入を行うことにより、絶縁窒
化膜2下の基板1表面にN型層のシリコン島領域
5を形成する。この時、前記高濃度P型層4が形
成されていた領域は、基板1の他の領域と同様に
低濃度P型領域に戻る。(第1図c) 次に、弗化水素酸などの強酸性溶液中でP型シ
リコン基板1を所定の深さまで陽極化成処理する
ことにより、シリコン基板1の表面側を、N型の
シリコン島領域5を残して多孔質シリコン層6と
する(第1図d)。
Next, isolation opening windows 3 are formed in the insulating nitride film 2 using a well-known photolithography technique. After that,
By ion-implanting P-type impurities through the isolation aperture window 3, a highly concentrated P-type layer 4 is formed on the surface of the substrate 1 in a portion corresponding to the isolation aperture window 3. (FIG. 1b) Thereafter, by performing ion implantation, a silicon island region 5 of an N-type layer is formed on the surface of the substrate 1 under the insulating nitride film 2. At this time, the region where the high concentration P-type layer 4 was formed returns to a low concentration P-type region like the other regions of the substrate 1. (Fig. 1c) Next, by anodizing the P-type silicon substrate 1 to a predetermined depth in a strong acid solution such as hydrofluoric acid, the surface side of the silicon substrate 1 is transformed into an N-type silicon island. The region 5 is left as a porous silicon layer 6 (FIG. 1d).

しかる後、1000〜1100℃の高温で、かつ常圧の
水蒸気雰囲気中で多孔質シリコン層6の酸化処理
を施し、この多孔質シリコン層6を多孔質シリコ
ン酸化膜6′とする。これにより、複数のシリコ
ン島領域(素子領域)5は互いに多孔質シリコン
酸化膜(分離領域)6′により電気的に分離され
る。(第1図e) しかしながら、このような方法では、多孔質シ
リコン層6を酸化した時、第1図eに示すように
基板が反つてしまう欠点があつた。
Thereafter, the porous silicon layer 6 is subjected to an oxidation treatment at a high temperature of 1000 to 1100 DEG C. in a steam atmosphere at normal pressure to form the porous silicon layer 6 into a porous silicon oxide film 6'. As a result, the plurality of silicon island regions (device regions) 5 are electrically isolated from each other by the porous silicon oxide film (separation region) 6'. (FIG. 1e) However, this method has the disadvantage that when the porous silicon layer 6 is oxidized, the substrate warps as shown in FIG. 1e.

そこで、1000℃以下の低温で多孔質シリコン層
6を酸化することが考えられる。この方法によれ
ば、基板の反りを低減できる。しかるに、この方
法では、長時間の酸化時間を要する上に、弗化水
素酸によるエツチングレートの非常に大きい粗悪
な多孔質シリコン酸化膜6′が成長してしまう欠
点があつた。そして、このような多孔質シリコン
酸化膜6′が成長すると、その後のエツチング工
程時に、シリコン島領域5と多孔質シリコン酸化
膜6′の間に大きな段差を生じることになり、半
導体装置製造上、および特性上、問題となる。
Therefore, it is possible to oxidize the porous silicon layer 6 at a low temperature of 1000° C. or lower. According to this method, warping of the substrate can be reduced. However, this method has the disadvantage that it requires a long oxidation time and that a poor porous silicon oxide film 6' with a very high etching rate with hydrofluoric acid grows. If such a porous silicon oxide film 6' grows, a large step will be created between the silicon island region 5 and the porous silicon oxide film 6' during the subsequent etching process, which will cause problems in the manufacturing of semiconductor devices. And due to its characteristics, it becomes a problem.

(発明の目的) この発明は上記の点に鑑みなされたもので、そ
の目的は、半導体基板の反りを小さくすることが
でき、かつ緻密で良好な膜質を有する多孔質シリ
コン酸化物を形成できる半導体装置の製造方法を
提供することにある。
(Objective of the Invention) The present invention has been made in view of the above points, and its object is to reduce the warpage of a semiconductor substrate and to form a porous silicon oxide with a dense and good film quality. An object of the present invention is to provide a method for manufacturing a device.

(発明の概要) この発明の要点は、表面側に多孔質シリコン層
を形成した単結晶シリコン基板を3〜7気圧の高
圧窒素雰囲気中で、または窒素雰囲気を3〜7気
圧に昇圧しながらその窒素雰囲気中で熱処理した
後、前記多孔質シリコン層を酸化することにあ
る。
(Summary of the Invention) The main point of this invention is that a single crystal silicon substrate with a porous silicon layer formed on the surface side is heated in a high-pressure nitrogen atmosphere of 3 to 7 atm, or while the nitrogen atmosphere is pressurized to 3 to 7 atm. The method involves oxidizing the porous silicon layer after heat treatment in a nitrogen atmosphere.

(実施例) 以下この発明の一実施例を図面を参照して説明
する。この発明の一実施例は、多孔質シリコン酸
化膜による素子分離の半導体装置の製造方法にこ
の発明を適用した場合である。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. An embodiment of the present invention is a case where the present invention is applied to a method of manufacturing a semiconductor device with element isolation using a porous silicon oxide film.

この発明の一実施例では、陽極化成処理(多孔
質シリコン層の形成工程)までは第1図の従来の
方法に従つて半導体装置の製造工程を進める。そ
れらの同一工程については、ここでは説明を省略
し、陽極化成処理後の状態を第2図aに示す。こ
の第2図aにおいては、第1図dと同一部分に同
一符号を付す。
In one embodiment of the present invention, the manufacturing process of a semiconductor device is performed according to the conventional method shown in FIG. 1 up to the anodization treatment (the step of forming a porous silicon layer). The description of these same steps will be omitted here, and the state after the anodization treatment is shown in FIG. 2a. In FIG. 2a, the same parts as in FIG. 1d are given the same reference numerals.

陽極化成処理が終了したならば、次に、高圧窒
素雰囲気中で基板を熱処理する。ここで、高圧下
とは、常圧以上の加圧下の意味である。すなわ
ち、常圧窒素雰囲気下で基板を装填し、窒素雰囲
気を3〜7気圧に昇圧する。この昇圧の時間は5
〜15分程度である。かつ、900〜1100℃の一定温
度にて加熱する。そして、この高温かつ3〜7気
圧下の窒素雰囲気中に基板を約20分間放置する。
そして圧力を減じ、5〜15分後に常圧に戻し、高
圧処理を完了する。すると、基板は、第2図bに
示すように、多孔質シリコン層6側を凸として反
る。その理由は次の通りである。すなわち、窒素
雰囲気は非酸化性雰囲気であるが、この窒素雰囲
気(3〜7気圧)中の熱処理時多孔質シリコン層
6は、該多孔質シリコン層中の残留酸素あるいは
吸着酸素により酸化される。一方、単結晶シリコ
ンであるシリコン基板1は酸化が起らず、このよ
うに多孔質シリコン層6側のみが酸化されること
により、この多孔質シリコン層6側を凸として基
板が反る。
After the anodization treatment is completed, the substrate is then heat-treated in a high-pressure nitrogen atmosphere. Here, "under high pressure" means under pressure higher than normal pressure. That is, the substrate is loaded under a normal pressure nitrogen atmosphere, and the nitrogen atmosphere is increased in pressure to 3 to 7 atmospheres. The time for this boost is 5
It takes about 15 minutes. And heat at a constant temperature of 900 to 1100°C. Then, the substrate is left in this high temperature nitrogen atmosphere under 3 to 7 atmospheres for about 20 minutes.
Then, the pressure is reduced and returned to normal pressure after 5 to 15 minutes, completing the high-pressure treatment. Then, as shown in FIG. 2b, the substrate is warped with the porous silicon layer 6 side convex. The reason is as follows. That is, although the nitrogen atmosphere is a non-oxidizing atmosphere, during heat treatment in this nitrogen atmosphere (3 to 7 atmospheres), the porous silicon layer 6 is oxidized by residual oxygen or adsorbed oxygen in the porous silicon layer. On the other hand, the silicon substrate 1 made of single-crystal silicon is not oxidized, and only the porous silicon layer 6 side is oxidized in this way, so that the substrate is warped with the porous silicon layer 6 side convex.

その後、常圧下1050℃で水蒸気酸化を行い、多
孔質シリコン層6を実質的に酸化することによ
り、この多孔質シリコン層6を第2図cに示すよ
うに多孔質シリコン酸化膜6′とする。この時、
基板には、前記熱処理時と反対方向に反るように
力が加わる。すなわち、この酸化時、多孔質シリ
コン層6とともに単結晶シリコンのシリコン基板
1の露出面も酸化されるが、その時のシリコン基
板1側の熱膨張係数と多孔質シリコン層6側の熱
膨張係数が異なるため、基板には前記熱処理時と
反対方向に反るように力が加わるのである。した
がつて、この水蒸気酸化を行うと、基板の反りは
徐々に小さくなり、酸化終了時には第2図cに示
すようにほぼ平坦となる。第3図は、前記窒素雰
囲気中の熱処理における窒素雰囲気の圧力と、多
孔質シリコン層酸化後の基板の反りの関係を実験
した結果である。窒素雰囲気の圧力を3〜7気圧
にしてその窒素雰囲気中で前記の熱処理を行い、
基板を多孔質シリコン層側を凸にして反らしてお
いて、その後、水蒸気酸化(1050℃)を行えば、
水蒸気酸化後は基板の反りを約100μm以内とす
ることができることが第3図から分る。
Thereafter, steam oxidation is performed at 1050° C. under normal pressure to substantially oxidize the porous silicon layer 6, thereby converting the porous silicon layer 6 into a porous silicon oxide film 6' as shown in FIG. 2c. . At this time,
A force is applied to the substrate so that it warps in the opposite direction to that during the heat treatment. That is, during this oxidation, the exposed surface of the silicon substrate 1 made of single crystal silicon is also oxidized together with the porous silicon layer 6, but the coefficient of thermal expansion on the silicon substrate 1 side and the thermal expansion coefficient on the porous silicon layer 6 side at that time are Because of this difference, a force is applied to the substrate so that it warps in the opposite direction to that during the heat treatment. Therefore, when this steam oxidation is performed, the warpage of the substrate gradually decreases, and when the oxidation is completed, the substrate becomes almost flat as shown in FIG. 2c. FIG. 3 shows the results of an experiment on the relationship between the pressure of the nitrogen atmosphere during the heat treatment in the nitrogen atmosphere and the warpage of the substrate after oxidizing the porous silicon layer. The pressure of the nitrogen atmosphere is set to 3 to 7 atmospheres, and the heat treatment is performed in the nitrogen atmosphere,
If you warp the substrate with the porous silicon layer side convex and then perform steam oxidation (1050℃),
It can be seen from FIG. 3 that the warpage of the substrate can be kept within about 100 μm after steam oxidation.

なお、水蒸気酸化処理時間としては70〜90分、
流量はO2:2.0〜4.0/M,H2:3.5〜5.0/M
が適当である。
In addition, the steam oxidation treatment time is 70 to 90 minutes,
Flow rate is O 2 : 2.0-4.0/M, H 2 : 3.5-5.0/M
is appropriate.

このように、この発明の一実施例では、基板の
反りを小さくすることができる。特に、酸化温度
を1000℃以上、例えば1050℃にして基板の反りを
小さくすることができる。また、酸化温度を1000
℃以上とすることにより、緻密化したエツチング
レートの小さい良質な多孔質シリコン酸化膜6′
を得ることができる。そして、これらの結果とし
て次のような利点がある。
In this way, in one embodiment of the present invention, the warpage of the substrate can be reduced. In particular, the warpage of the substrate can be reduced by setting the oxidation temperature to 1000°C or higher, for example 1050°C. Also, increase the oxidation temperature to 1000
℃ or higher, a dense porous silicon oxide film 6' with a low etching rate is formed.
can be obtained. As a result of these, there are the following advantages.

歪などによる欠陥の発生がおさえられる。 The occurrence of defects due to distortion etc. can be suppressed.

基板の反りが小さくなることにより、ガラス
マスク上のパターンと基板上のパターンのトー
タルピツチずれがなくなり、ホトリソパターニ
ング精度を向上できる。
By reducing the warpage of the substrate, there is no total pitch deviation between the pattern on the glass mask and the pattern on the substrate, and photolithography patterning accuracy can be improved.

多くの半導体製造装置は、基板の裏面を真空
吸着して固定あるいは搬送する。基板に反りが
ある場合、それら作動に支障をきたすが、反り
が小さく抑えられることにより、そのような問
題はなくなる。
Many semiconductor manufacturing devices use vacuum suction to fix or transport the backside of a substrate. If the board is warped, it will interfere with its operation, but if the warp is kept to a small level, such problems will disappear.

欠陥の発生が抑えられ、かつ多孔質シリコン
酸化膜の緻密化が達成されるので、半導体装置
の電気的特性(特にリーク電流特性)が向上す
る。
Since the generation of defects is suppressed and the porous silicon oxide film is made denser, the electrical characteristics (particularly leakage current characteristics) of the semiconductor device are improved.

緻密な多孔質シリコン酸化膜が得られるの
で、エツチング工程におけるシリコン島領域と
の段差が低減され、島領域を連結させるための
配線の断切れがなくなり、配線歩留りが向上す
る。
Since a dense porous silicon oxide film is obtained, the difference in level between the silicon island region and the silicon island region during the etching process is reduced, there is no disconnection of the wiring for connecting the island regions, and the wiring yield is improved.

水蒸気酸化処理前に窒素処理を行うので、多
孔質シリコンの急激な酸化により生じる、多孔
質シリコン酸化膜の表面不良、はがれなどを抑
制できる。
Since the nitrogen treatment is performed before the steam oxidation treatment, surface defects and peeling of the porous silicon oxide film caused by rapid oxidation of the porous silicon can be suppressed.

なお、以上の一実施例においては、高圧下の、
すなわち、昇圧中および既に昇圧させた窒素雰囲
気中で基板を熱処理したが、窒素雰囲気を昇圧し
ながら、その窒素雰囲気中で基板を一定圧力に達
するまで熱処理してもよい。なお、熱処理の温度
は基板装填時より窒素雰囲気を昇圧する間、一定
に保たれる。その場合、窒素雰囲気は最終的には
3〜7気圧まで昇圧させる。また、この熱処理に
続く酸化工程は、1000〜1100℃の常圧水蒸気雰囲
気中における酸化処理とする。
In addition, in the above example, under high pressure,
That is, although the substrate was heat-treated while the pressure was being increased and in a nitrogen atmosphere whose pressure had already been increased, the substrate may be heat-treated in the nitrogen atmosphere while the pressure of the nitrogen atmosphere is being increased until a constant pressure is reached. Note that the temperature of the heat treatment is kept constant from the time of loading the substrate to the time of increasing the pressure of the nitrogen atmosphere. In that case, the nitrogen atmosphere is finally pressurized to 3 to 7 atmospheres. Further, the oxidation step following this heat treatment is an oxidation treatment in a normal pressure steam atmosphere at 1000 to 1100°C.

また、上記一実施例は、この発明を、多孔質シ
リコン酸化膜による素子分離の半導体装置の製造
方法に適用した場合であるが、この発明は、多孔
質シリコンの酸化工程を有する半導体装置全般の
製造方法に利用することができる。
Further, in the above embodiment, the present invention is applied to a method for manufacturing a semiconductor device with element isolation using a porous silicon oxide film. It can be used in manufacturing methods.

(発明の効果) 以上詳述したようにこの発明の半導体装置の製
造方法によれば、表面側に多孔質シリコン層を形
成した単結晶シリコン基板を3〜7気圧の高圧窒
素雰囲気中で、または窒素雰囲気を3〜7気圧に
昇圧しながらその窒素雰囲気中で熱処理した後、
前記多孔質シリコン層を酸化するようにしたの
で、半導体基板の反りを小さくすることができ、
かつ緻密で良好な膜質を有する多孔質シリコン酸
化物を形成できる。
(Effects of the Invention) As detailed above, according to the method for manufacturing a semiconductor device of the present invention, a single crystal silicon substrate having a porous silicon layer formed on the surface side is heated in a high pressure nitrogen atmosphere of 3 to 7 atmospheres or After heat treatment in the nitrogen atmosphere while increasing the pressure of the nitrogen atmosphere to 3 to 7 atmospheres,
Since the porous silicon layer is oxidized, the warpage of the semiconductor substrate can be reduced,
Moreover, a porous silicon oxide having a dense and good film quality can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法を示す断
面図、第2図はこの発明の半導体装置の製造方法
の一実施例を示す断面図、第3図はこの発明の方
法による効果を確認するために行つた実験結果の
特性図である。 1……P型シリコン基板、6……多孔質シリコ
ン層、6′……多孔質シリコン酸化膜。
FIG. 1 is a sectional view showing a conventional method for manufacturing a semiconductor device, FIG. 2 is a sectional view showing an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIG. 3 confirms the effects of the method of the present invention. It is a characteristic diagram of the experimental results conducted for this purpose. 1... P-type silicon substrate, 6... Porous silicon layer, 6'... Porous silicon oxide film.

Claims (1)

【特許請求の範囲】 1 単結晶シリコン基板の表面側を多孔質シリコ
ン層とする工程と、 そのシリコン基板を3〜7気圧の高圧窒素雰囲
気中あるいは、窒素雰囲気を3〜7気圧まで昇圧
しながらその窒素雰囲気中で熱処理する工程と、 その後、前記シリコン基板の表面側の多孔質シ
リコン層を常圧酸化により多孔質シリコン酸化膜
に変換する工程とを具備してなる半導体装置の製
造方法。
[Claims] 1. A step of forming a porous silicon layer on the surface side of a single-crystal silicon substrate, and placing the silicon substrate in a high-pressure nitrogen atmosphere of 3 to 7 atmospheres or while increasing the pressure of the nitrogen atmosphere to 3 to 7 atmospheres. A method for manufacturing a semiconductor device, comprising the steps of heat-treating the silicon substrate in a nitrogen atmosphere, and then converting the porous silicon layer on the surface side of the silicon substrate into a porous silicon oxide film by normal pressure oxidation.
JP4410084A 1984-03-09 1984-03-09 Production of semiconductor device Granted JPS60189238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4410084A JPS60189238A (en) 1984-03-09 1984-03-09 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4410084A JPS60189238A (en) 1984-03-09 1984-03-09 Production of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60189238A JPS60189238A (en) 1985-09-26
JPH0312773B2 true JPH0312773B2 (en) 1991-02-21

Family

ID=12682193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4410084A Granted JPS60189238A (en) 1984-03-09 1984-03-09 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60189238A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643406B2 (en) * 1989-01-18 1997-08-20 日本電気株式会社 Method of forming oxide film and oxidation device
JPH0438985U (en) * 1990-07-31 1992-04-02

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144149A (en) * 1983-02-08 1984-08-18 Toko Inc Manufacture of dielectric isolating substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144149A (en) * 1983-02-08 1984-08-18 Toko Inc Manufacture of dielectric isolating substrate

Also Published As

Publication number Publication date
JPS60189238A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
JP3294934B2 (en) Method for manufacturing semiconductor substrate and semiconductor substrate
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP2994128B2 (en) Method for manufacturing semiconductor device
JPH098124A (en) Insulation separation substrate and its manufacture
JPH0312773B2 (en)
JPH0964319A (en) Soi substrate and its manufacture
JP2794565B2 (en) Manufacturing method of groove type capacitor
JPS6343887B2 (en)
JP3298291B2 (en) Method for manufacturing composite element and bonded substrate
JP2857456B2 (en) Method for manufacturing semiconductor film
JP2822211B2 (en) Method for manufacturing semiconductor device
JPH0682652B2 (en) Method for forming silicon thermal oxide film
JPH079930B2 (en) Method for manufacturing semiconductor device
JPH11186253A (en) Manufacture of semiconductor device
JP3096177B2 (en) Method for manufacturing semiconductor device
KR100227641B1 (en) Method for forming gate oxide film of semiconductor
JPH0628281B2 (en) Method for manufacturing semiconductor device
JPS6062129A (en) Manufacture of semiconductor device
KR940009578B1 (en) Semiconductor device and manufacturing method thereof
JPS6136380B2 (en)
JPH05217996A (en) Forming method of mesa type semiconductor element
JPH0582514A (en) Manufacture of semiconductor device
JPS5910236A (en) Fabrication of semiconductor device
JPS6151843A (en) Formation of oxide film for isolating element of semiconductor device
JPS6118348B2 (en)