JP2994128B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP2994128B2 JP2994128B2 JP4017754A JP1775492A JP2994128B2 JP 2994128 B2 JP2994128 B2 JP 2994128B2 JP 4017754 A JP4017754 A JP 4017754A JP 1775492 A JP1775492 A JP 1775492A JP 2994128 B2 JP2994128 B2 JP 2994128B2
- Authority
- JP
- Japan
- Prior art keywords
- forming
- gate electrode
- layer
- film
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 239000010410 layer Substances 0.000 claims description 56
- 239000000758 substrate Substances 0.000 claims description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 21
- 229920005591 polysilicon Polymers 0.000 claims description 21
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 19
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 6
- 239000011229 interlayer Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 9
- 230000007547 defect Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 238000010306 acid treatment Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000282806 Rhinoceros Species 0.000 description 1
- -1 Si 2 H 6 Chemical class 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
- H01L21/2652—Through-implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は半導体装置の製造方法
に関する。さらに詳しくはサイドウオールを有するゲー
ト電極部をマスクとしてシリコン基板上に拡散領域を形
成してなる、いわゆるLDD構造のMOSデバイスの製
造方法であって、特にSi基板の結晶欠陥を減少させる
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. More specifically, the present invention relates to a method for manufacturing a MOS device having a so-called LDD structure in which a diffusion region is formed on a silicon substrate using a gate electrode portion having a sidewall as a mask, and particularly to a method for reducing crystal defects in a Si substrate.
【0002】[0002]
【従来の技術及び課題】従来用いられているLDD構造
のMOSデバイスの製造法を図2で説明する。すなわ
ち、まず常法によってSi基板11の上にSiO2 膜1
2を介してゲート電極13を形成する(図2(a)参
照)。次に、Si基板11とゲート電極13の全面にC
VD法によるSiO2 膜を積層し、次いで反応性イオン
エッチング法(RIE法)とHFクリーニング法でゲー
ト上面にSiO2 を残してエッチングしてサイドウオー
ル14を形成する(図2(b))。この時、Si基板上
にも100〜400Å程度のSiO2 膜14aが残って
いる。次に上記ゲート電極とサイドウオールをマスクと
してイオン注入15を行い(図2(c)参照)、次に高
温熱処理が行われ、Si基板に拡散領域が形成される。
しかしこの方法ではSiO2 膜中の酸素が注入イオンと
ともにSi基板中に打込まれてSi基板の結晶欠陥16
が固定され、その後、高温熱処理を行っても結晶欠陥は
消えない。また上記のサイドウオール形成時のRIE法
とHFクリーニング法による残膜14aの厚みのばらつ
きが大きいので欠陥密度が大きくなる。このような結晶
欠陥によって電気的リークが起こり、歩留りが低下す
る。2. Description of the Related Art A method of manufacturing a conventional MOS device having an LDD structure will be described with reference to FIG. That is, first, the SiO 2 film 1 is formed on the Si substrate 11 by an ordinary method.
The gate electrode 13 is formed via the gate electrode 2 (see FIG. 2A). Next, C is deposited on the entire surface of the Si substrate 11 and the gate electrode 13.
An SiO 2 film is laminated by the VD method, and then etched by reactive ion etching (RIE) and HF cleaning while leaving SiO 2 on the upper surface of the gate to form a sidewall 14 (FIG. 2B). At this time, the SiO 2 film 14a of about 100 to 400 ° remains on the Si substrate. Next, ion implantation 15 is performed using the gate electrode and the sidewall as a mask (see FIG. 2C), and then a high-temperature heat treatment is performed to form a diffusion region on the Si substrate.
However, in this method, oxygen in the SiO 2 film is implanted into the Si substrate together with the implanted ions, and the crystal defects 16
Are fixed, and the crystal defects do not disappear even after high-temperature heat treatment is performed. Further, since the thickness variation of the remaining film 14a due to the RIE method and the HF cleaning method at the time of forming the sidewall is large, the defect density is increased. Such crystal defects cause an electric leak and lower the yield.
【0003】[0003]
【課題を解決するための手段】この発明は上記の問題点
を改善するためになされたものであり、a)半導体のS
i基板上に絶縁膜を介してゲート電極を形成し、b)上
記のSi基板とゲート電極の全面に絶縁膜を形成し、さ
らにその上にポリシリコン層またはアモルファスシリコ
ン層を形成し、c)上記の絶縁膜と、ポリシリコン層ま
たはアモルファスシリコン層とで覆われた上記ゲート電
極の側壁にSiO2のサイドウォールを形成し、次いで
拡散層形成のためのイオン注入を行い、d)サイドウォ
ールを除去した後、800〜850℃で中間温度熱処理
を行うことにより拡散層を形成し、次いで上記のポリシ
リコン層またはアモルファスシリコン層を除去した後、
層間絶縁膜を積層して900〜950℃の高温熱処理を
行うことからなる半導体装置の製造方法を提供するもの
である。SUMMARY OF THE INVENTION The present invention has been made in order to improve the above-mentioned problems.
forming a gate electrode on an i-substrate via an insulating film; b) forming an insulating film on the entire surface of the Si substrate and the gate electrode; forming a polysilicon layer or an amorphous silicon layer thereon; Forming a SiO 2 sidewall on the side wall of the gate electrode covered with the insulating film and the polysilicon layer or the amorphous silicon layer, and then performing ion implantation for forming a diffusion layer; After removal, a diffusion layer is formed by performing an intermediate temperature heat treatment at 800 to 850 ° C., and then, after removing the polysilicon layer or the amorphous silicon layer,
An object of the present invention is to provide a method for manufacturing a semiconductor device, comprising laminating an interlayer insulating film and performing a high-temperature heat treatment at 900 to 950 ° C.
【0004】上記の本発明のa)〜b)の各工程はそれ
ぞれ公知の手段と装置を用いて行うことができる。a)
工程では、Si基板上に絶縁膜を介してゲート電極が形
成される。絶縁膜としては通常SiO2 膜が用いられ、
熱酸化法、CVD法などで形成される。ゲート電極はポ
リシリコン層のみ、またはこのポリシリコン層の上にN
SG(non-doped silicated glass)、BPSG(boron
-doped phosphosilicate glass)などの層を積層して構
成される。これらの層は、CVD法で形成することがで
きる。[0004] Each of the above steps a) and b) of the present invention can be carried out using known means and equipment. a)
In the step, a gate electrode is formed on the Si substrate via an insulating film. Usually, an SiO 2 film is used as the insulating film,
It is formed by a thermal oxidation method, a CVD method, or the like. The gate electrode may be a polysilicon layer only, or an N
SG (non-doped silicated glass), BPSG (boron
-doped phosphosilicate glass). These layers can be formed by a CVD method.
【0005】次のb)の工程では、まずa)工程でゲー
ト電極を形成したSi基板の全面に絶縁膜を形成した後
にポリシリコン層またはアモルファスシリコン層が形成
される。In the next step b), a polysilicon layer or an amorphous silicon layer is formed after an insulating film is formed on the entire surface of the Si substrate on which the gate electrode has been formed in the step a).
【0006】ここで絶縁膜としては(a)工程と同様の
SiO2 膜を用いることができるがSiN膜であっても
よい。この絶縁膜の厚みは50〜100Åが好ましい。
ポリシリコン層またはアモルファスシリコン層は低圧C
VD法で形成することができる。この際の原料としては
Si2 H6 、SiH4 、SiH2 Cl2 、SiCl4 な
どのケイ素化合物を利用できる。ポリシリコン層は一般
に600〜650℃のような高温で10〜50Paの圧
力下でのCVD法で形成できる。またアモルファスシリ
コン層は一般に450〜500℃のような低温で10〜
50Paの圧力下でのCVD法で形成できる。これらの
ポリシリコン層またはアモルファスシリコン層の膜厚は
約100〜200Åが好ましい。Here, as the insulating film, the same SiO 2 film as in the step (a) can be used, but an SiN film may be used. The thickness of this insulating film is preferably 50 to 100 °.
Polysilicon layer or amorphous silicon layer is low pressure C
It can be formed by the VD method. At this time, a silicon compound such as Si 2 H 6 , SiH 4 , SiH 2 Cl 2 , or SiCl 4 can be used as a raw material. The polysilicon layer can be generally formed by a CVD method at a high temperature such as 600 to 650 ° C. under a pressure of 10 to 50 Pa. In addition, the amorphous silicon layer is generally formed at a low temperature such as 450 to 500 ° C.
It can be formed by a CVD method under a pressure of 50 Pa. The thickness of these polysilicon layers or amorphous silicon layers is preferably about 100 to 200 °.
【0007】次のc)工程においてサイドウオールが形
成される。サイドウオールは、まず低圧CVD法によっ
てSiO2 を全面的に積層し、次にエッチング法を利用
して形成される。エッチング法としてはドライエッチン
グ法が用いられるが、真空下CF4 ,C2F6、CHF3
などのフッ化炭素系気体の雰囲気下高周波電力を加えて
放電させ生成した陽イオン(例えばCF3 +など)による
RIE法を利用することができる。このRIE法の後に
例えばサイドウオールのエッジ部分をエッチングするH
F処理をしてもよい。次に、例えばAs+ 、P+ などの
イオンをSi基板に対して垂直方向に注入する。In the next step c), sidewalls are formed. The sidewall is formed by first depositing SiO 2 over the entire surface by a low-pressure CVD method and then using an etching method. As the etching method, a dry etching method is used, and CF 4 , C 2 F 6 , CHF 3
For example, an RIE method using cations (for example, CF 3 + ) generated by applying high-frequency power to discharge in an atmosphere of a fluorocarbon-based gas such as CF 3 + can be used. After this RIE method, for example, H for etching the edge portion of the sidewall
F processing may be performed. Next, ions such as As + and P + are implanted in a direction perpendicular to the Si substrate.
【0008】つぎのd)工程で、上記サイドウオールを
HFで除去してストレスフリーにする。次いで熱処理が
行われる。この熱処理は、Si基板に注入されたイオン
により拡散層を形成するためのものであり、一般に例え
ば800〜850℃の中間温度が適する。In the next step d), the sidewalls are removed with HF to make them stress-free. Next, heat treatment is performed. This heat treatment is for forming a diffusion layer by the ions implanted into the Si substrate, and an intermediate temperature of, for example, 800 to 850 ° C. is generally suitable.
【0009】次に、上記のポリシリンコン層またはアモ
ルファスシリコン層をエッチング法で除去する。エッチ
ング法としてはドライエッチング法が用いられ、CCl
4、SF6ガスなどを用いる等方性の強いのRIEエッチ
ング法を利用できる。次に層間絶縁膜を全面に積層す
る。層間絶縁膜としてはまずNSG層を積層してさらに
BPSG層を積層してもよいがBPSG層だけでもよ
い。次に例えば約900〜950℃の高温熱処理を行っ
て層間絶縁膜を平坦化しかつ拡散層の形成を完成させ
る。Next, the polysilicon layer or the amorphous silicon layer is removed by an etching method. As an etching method, a dry etching method is used, and CCl
4. An isotropic RIE etching method using SF 6 gas or the like can be used. Next, an interlayer insulating film is laminated on the entire surface. As the interlayer insulating film, first, an NSG layer may be stacked and a BPSG layer may be further stacked, or only the BPSG layer may be used. Next, for example, a high-temperature heat treatment at about 900 to 950 ° C. is performed to flatten the interlayer insulating film and complete the formation of the diffusion layer.
【0010】[0010]
【実施例】以下図に示す実施例によってこの発明を説明
するがこの発明を限定するものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in the drawings, but the present invention is not limited thereto.
【0011】実施例1 まず、図1(a)に示すように、まずSi基板1にCV
D法で形成されたSiO2 層を介してCVD法でポリシ
リコン層のゲート電極3を形成する。次にフッ酸処理を
行ってSi基板1上に残っている少量のSiO2 膜を除
去する。次に熱酸化法で、Si基板1とゲート電極3の
全面に約50〜100ÅのSiO2 膜4を形成させ、そ
の上に620℃にて20Paの圧力下、Si2H6を用い
るCVD法で約100〜200Åのポリシリコン層5を
積層する〔図1(b)〕。次にサイドウオール材料のS
iO2 をCVD法で堆積させ、CF4を用いるRIE法
でエッチングして、サイドウオール6を、前記SiO2
膜4とポリシリコン層5を有するゲート電極3の側面に
形成させる〔図1(c)〕。60〜80Kevの加速エ
ネルギーおよび5×1015のドーズ量で、As+ イオン
をゲート電極3、SiO2 膜4、ポリシリコン層5およ
びサイドウオール6をマスクとして注入する(矢印
7)。サイドウオールをフッ酸処理によって除去してス
トレスフリーにした後、800〜850℃で熱処理して
拡散層を形成させる。次にポリシリコン層5をCCl4
を用いるRIE法で除去する〔図1(d)〕。次いでB
PSGを常法によって全体に堆積させ、これを平坦化さ
せるために900〜950℃で熱処理し、次にコンタク
トホールを形成しメタル配線をして半導体装置が作製さ
れる。Embodiment 1 First, as shown in FIG.
A gate electrode 3 of a polysilicon layer is formed by a CVD method via the SiO 2 layer formed by the D method. Next, a small amount of SiO 2 film remaining on the Si substrate 1 is removed by performing a hydrofluoric acid treatment. Next, an SiO 2 film 4 of about 50 to 100 ° is formed on the entire surface of the Si substrate 1 and the gate electrode 3 by a thermal oxidation method, and a CVD method using Si 2 H 6 thereon at 620 ° C. under a pressure of 20 Pa. To form a polysilicon layer 5 having a thickness of about 100 to 200 [deg.] (FIG. 1B). Next, S of the sidewall material
iO 2 is deposited by a CVD method and etched by an RIE method using CF 4 to remove the sidewall 6 from the SiO 2.
It is formed on the side surface of the gate electrode 3 having the film 4 and the polysilicon layer 5 (FIG. 1C). At an acceleration energy of 60 to 80 Kev and a dose of 5 × 10 15 , As + ions are implanted using the gate electrode 3, the SiO 2 film 4, the polysilicon layer 5 and the sidewall 6 as a mask (arrow 7). After removing the sidewall by hydrofluoric acid treatment to make it stress-free, heat treatment is performed at 800 to 850 ° C. to form a diffusion layer. Then CCl 4 a polysilicon layer 5
[FIG. 1 (d)]. Then B
A semiconductor device is manufactured by depositing PSG over the whole by a conventional method, heat-treating it at 900 to 950 ° C. to flatten it, and then forming a contact hole and metal wiring.
【0012】実施例2 まず、図1(a)に示すように、上記実施例1と同様に
してSi基板1にSiO2 膜を介してポリシリコン層の
ゲート電極3を形成する。次にフッ酸処理を行ってSi
基板1上に残っている少量のSiO2 膜を除去する。次
に熱酸化法で、Si基板1とゲート電極3の全面に約5
0〜100ÅのSiO2 膜4を形成させ、その上に46
0℃にて20Paの圧力下、Si2H6を用いるCVD法
で約100〜200Åのアモルファスシリコン層5’を
積層する〔図1(b)〕。次にサイドウオール材料のS
iO2 をCVD法で堆積させ、CF4を用いるRIE法
で(フッ酸処理を付加してもよい)、サイドウオール6
を、前記SiO2 膜4とアモルファスシリコン層5’を
有するゲート電極3の側面に形成させる〔図1
(c)〕。60〜80Kevの加速エネルギーおよび5
×1015のドーズ量で、As + イオンを、ゲート電極
3、SiO2 膜4、アモルファスシリコン層5’、サイ
ドウオール6をマスクとして注入する(矢印7)。サイ
ドウオールをフッ酸処理によって除去してストレスフリ
ーにした後、800〜850℃で熱処理して拡散層を形
成させる。次にアモルファスシリコン層5をCCl4を
用いるのRIE法で除去する〔図1(d)〕。次いでN
SGとBPSGとを順に常法によって全体に堆積させ、
平坦化させるために900〜950℃で熱処理し、次に
コンタクトホールを形成しメタル配線をして半導体装置
が作製される。Embodiment 2 First, as shown in FIG.
To make the Si substrate 1TwoOf the polysilicon layer through the film
The gate electrode 3 is formed. Next, hydrofluoric acid treatment is performed to
A small amount of SiO remaining on the substrate 1TwoRemove the film. Next
About 5 μm on the entire surface of the Si substrate 1 and the gate electrode 3 by thermal oxidation.
0-100% SiOTwoA film 4 is formed, and 46
At 0 ° C. under a pressure of 20 Pa, SiTwoH6CVD method using
To form an amorphous silicon layer 5 'of about 100 to 200
Laminate [FIG. 1 (b)]. Next, S of the sidewall material
iOTwoIs deposited by a CVD method, and CF is deposited.FourMethod using RIE
(Hydrofluoric acid treatment may be added.)
With the SiOTwoThe film 4 and the amorphous silicon layer 5 '
[FIG. 1]
(C)]. 60-80 Kev acceleration energy and 5
× 10FifteenWith a dose of +Ions to the gate electrode
3, SiOTwoFilm 4, amorphous silicon layer 5 ',
Injection is performed using the wall 6 as a mask (arrow 7). Rhinoceros
The door is removed by hydrofluoric acid treatment and stress free
And heat-treated at 800-850 ° C to form a diffusion layer.
Let it run. Next, the amorphous silicon layer 5 isFourTo
It is removed by the RIE method used (FIG. 1D). Then N
SG and BPSG are sequentially deposited on the whole by a usual method,
Heat treatment at 900-950 ° C. to planarize, then
Semiconductor devices with contact holes and metal wiring
Is produced.
【0013】[0013]
【発明の効果】この発明の方法によればSi基板上にS
iO2 膜とポリシリコン層またはアモルファスシリコン
層が積層されているので、イオン注入を行った際にSi
O2 膜中の酸素がSi基板に打込まれることが少ない。
したがって熱処理後に生成する拡散層の結晶欠陥が少な
い。しかも、上記のサイドウオール形成時のエッチング
はポリシリコン層またはアモルファスシリコン層で停止
されるので上記のSiO 2 膜とシリコン層の膜厚のばら
つきが小さい。したがって膜厚の制御が容易で拡散層の
欠陥密度が小さくなる。また特にアモルファスシリコン
層はイオン注入時の注入効率が、SiO2 膜と同程度で
あるためイオン注入のむらが生じないという利点があ
る。その結果、得られる半導体装置、リーク電流が低下
し、接合耐圧の低下を防ぐことができ、信頼性が高まり
歩留りが向上する。According to the method of the present invention, S
iOTwoFilm and polysilicon layer or amorphous silicon
Since the layers are stacked, when ion implantation is performed,
OTwoOxygen in the film is less likely to be implanted into the Si substrate.
Therefore, the number of crystal defects in the diffusion layer generated after the heat treatment is small.
No. Moreover, the etching at the time of forming the above-mentioned sidewalls
Stops at the polysilicon layer or amorphous silicon layer
The above SiO TwoVariation in thickness of film and silicon layer
Stickiness is small. Therefore, it is easy to control the film thickness and the diffusion layer
The defect density decreases. Also especially amorphous silicon
The layer has an implantation efficiency of SiOTwoAs much as a membrane
Has the advantage that uneven ion implantation does not occur.
You. As a result, the obtained semiconductor device and the leakage current decrease.
Lowering of the junction withstand voltage, improving reliability
The yield is improved.
【図1】この発明の製造方法を示す製造工程説明図であ
る。FIG. 1 is an explanatory view of a manufacturing process showing a manufacturing method of the present invention.
【図2】従来の製造方法を示す製造工程説明図である。FIG. 2 is an explanatory view of a manufacturing process showing a conventional manufacturing method.
1 Si基板 2 SiO2 膜 3 ゲート電極 4 SiO2 膜 5 ポリシリコン層 5’ アモルファスシリコン層 6 サイドウオール 7 イオン注入1 Si substrate 2 SiO 2 film 3 gate electrode 4 SiO 2 film 5 polysilicon layer 5 'amorphous silicon layer 6 sidewalls 7 ion implantation
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 29/78 H01L 21/336 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 29/78 H01L 21/336
Claims (1)
てゲート電極を形成し、b)上記のSi基板とゲート電
極の全面に絶縁膜を形成し、さらにその上にポリシリコ
ン層またはアモルファスシリコン層を形成し、c)上記
の絶縁膜と、ポリシリコン層またはアモルファスシリコ
ン層とで覆われた上記ゲート電極の側壁にSiO2のサ
イドウォールを形成し、次いで拡散層形成のためのイオ
ン注入を行い、d)サイドウォールを除去した後、80
0〜850℃で中間温度熱処理を行うことにより拡散層
を形成し、次いで上記のポリシリコン層またはアモルフ
ァスシリコン層を除去した後、層間絶縁膜を積層して9
00〜950℃の高温熱処理を行うことからなる半導体
装置の製造方法。A) forming a gate electrode on a semiconductor Si substrate via an insulating film; b) forming an insulating film over the entire surface of the Si substrate and the gate electrode, and further forming a polysilicon layer or Forming an amorphous silicon layer, c) forming a SiO 2 side wall on the side wall of the gate electrode covered with the insulating film and the polysilicon layer or the amorphous silicon layer, and then forming ions for forming a diffusion layer. After implanting and d) removing the sidewalls, 80
The diffusion layer is formed by performing intermediate temperature heat treatment at from 0 to 850 ° C., and then after removing the polysilicon layer or amorphous silicon layer above, by laminating an interlayer insulating film 9
A method for manufacturing a semiconductor device, comprising performing a high-temperature heat treatment at 00 to 950 ° C.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4017754A JP2994128B2 (en) | 1991-03-04 | 1992-02-03 | Method for manufacturing semiconductor device |
US07/842,515 US5183770A (en) | 1991-03-04 | 1992-02-27 | Semiconductor device |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3758591 | 1991-03-04 | ||
JP3-37585 | 1991-05-27 | ||
JP3-120805 | 1991-05-27 | ||
JP12080591 | 1991-05-27 | ||
JP4017754A JP2994128B2 (en) | 1991-03-04 | 1992-02-03 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0574803A JPH0574803A (en) | 1993-03-26 |
JP2994128B2 true JP2994128B2 (en) | 1999-12-27 |
Family
ID=27281958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4017754A Expired - Fee Related JP2994128B2 (en) | 1991-03-04 | 1992-02-03 | Method for manufacturing semiconductor device |
Country Status (2)
Country | Link |
---|---|
US (1) | US5183770A (en) |
JP (1) | JP2994128B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5298446A (en) * | 1990-02-20 | 1994-03-29 | Sharp Kabushiki Kaisha | Process for producing semiconductor device |
US5217912A (en) * | 1990-07-03 | 1993-06-08 | Sharp Kabushiki Kaisha | Method for manufacturing a semiconductor device |
TW203148B (en) * | 1991-03-27 | 1993-04-01 | American Telephone & Telegraph | |
KR0129985B1 (en) * | 1993-12-17 | 1998-04-07 | 김광호 | Semiconductor device and its manufacturing method |
US5783475A (en) * | 1995-11-13 | 1998-07-21 | Motorola, Inc. | Method of forming a spacer |
US5804499A (en) * | 1996-05-03 | 1998-09-08 | Siemens Aktiengesellschaft | Prevention of abnormal WSix oxidation by in-situ amorphous silicon deposition |
KR100203131B1 (en) * | 1996-06-24 | 1999-06-15 | 김영환 | A method for forming super low junction of semiconductor device |
JP3795634B2 (en) | 1996-06-19 | 2006-07-12 | 株式会社東芝 | Manufacturing method of semiconductor device |
US5702972A (en) * | 1997-01-27 | 1997-12-30 | Taiwan Semiconductor Manufacturing Company Ltd. | Method of fabricating MOSFET devices |
US6255183B1 (en) * | 1997-05-23 | 2001-07-03 | U.S. Phillips Corporation | Manufacture of a semiconductor device with a MOS transistor having an LDD structure using SiGe spacers |
US5915199A (en) * | 1998-06-04 | 1999-06-22 | Sharp Microelectronics Technology, Inc. | Method for manufacturing a CMOS self-aligned strapped interconnection |
EP1020920B1 (en) | 1999-01-11 | 2010-06-02 | Sel Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a driver TFT and a pixel TFT on a common substrate |
KR100416607B1 (en) * | 2001-10-19 | 2004-02-05 | 삼성전자주식회사 | Semiconductor device including transistor and manufacturing methode thereof |
US20040147070A1 (en) * | 2003-01-24 | 2004-07-29 | National Chiao-Tung University | Ultra-shallow junction formation for nano MOS devices using amorphous-si capping layer |
US20050118802A1 (en) * | 2003-12-02 | 2005-06-02 | Chang-Sheng Tsao | Method for implementing poly pre-doping in deep sub-micron process |
US7553732B1 (en) | 2005-06-13 | 2009-06-30 | Advanced Micro Devices, Inc. | Integration scheme for constrained SEG growth on poly during raised S/D processing |
US7572705B1 (en) | 2005-09-21 | 2009-08-11 | Advanced Micro Devices, Inc. | Semiconductor device and method of manufacturing a semiconductor device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642878A (en) * | 1984-08-28 | 1987-02-17 | Kabushiki Kaisha Toshiba | Method of making MOS device by sequentially depositing an oxidizable layer and a masking second layer over gated device regions |
JPS62120082A (en) * | 1985-11-20 | 1987-06-01 | Toshiba Corp | Semiconductor device and manufacture thereof |
JPS63314868A (en) * | 1987-10-03 | 1988-12-22 | Nec Corp | Manufacture of mos semiconductor device |
GB8820058D0 (en) * | 1988-08-24 | 1988-09-28 | Inmos Ltd | Mosfet & fabrication method |
-
1992
- 1992-02-03 JP JP4017754A patent/JP2994128B2/en not_active Expired - Fee Related
- 1992-02-27 US US07/842,515 patent/US5183770A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0574803A (en) | 1993-03-26 |
US5183770A (en) | 1993-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2994128B2 (en) | Method for manufacturing semiconductor device | |
KR0151051B1 (en) | Method of forming insulation film for semiconductor device | |
US4305974A (en) | Method of manufacturing a semiconductor device | |
JPH1012718A (en) | Trench element isolation | |
US4916087A (en) | Method of manufacturing a semiconductor device by filling and planarizing narrow and wide trenches | |
KR100438772B1 (en) | Method for manufacturing semiconductor device capable to prevent bubble defects | |
JP2004006660A (en) | Method for manufacturing semiconductor device | |
JP3039978B2 (en) | Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device | |
JP2004014696A (en) | Method of manufacturing semiconductor device | |
KR0185479B1 (en) | Method for forming isolation film of semiconductor device | |
JP3034327B2 (en) | Method of forming capacitor electrode | |
KR19980081850A (en) | Integrated Circuits and Manufacturing Methods | |
JP3897071B2 (en) | Manufacturing method of semiconductor device | |
JPH0974132A (en) | Manufacture for semiconductor device | |
JPH07245382A (en) | Manufacture of composite element and lamination substrate | |
JP3096177B2 (en) | Method for manufacturing semiconductor device | |
JPS59191354A (en) | Manufacture of semiconductor device | |
JP2000012674A (en) | Manufacture of semiconductor device and method for separating element | |
KR0162138B1 (en) | Element isolation method of semiconductor apparatus | |
JPS6249643A (en) | Semiconductor device and its manufacture | |
JPH0416019B2 (en) | ||
JPS5910236A (en) | Fabrication of semiconductor device | |
JPH05102145A (en) | Method for forming polysilicon wiring | |
JPS63293948A (en) | Forming method for interlayer insulating film | |
JPH06302564A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |